Yıl: 2021 Cilt: 11 Sayı: 1 Sayfa Aralığı: 23 - 29 Metin Dili: İngilizce İndeks Tarihi: 17-01-2022

The chemical evaluation of different dental graft materials by energy dispersive X-ray spectrometry technique

Öz:
Aim: The physicochemical properties of dental graft materials are very important because they strongly influence the bone regeneration capabilities of biomaterials. The purpose of this study is to investigate the chemical composition and surface energies of white (WPTG) and black porous titanium granules (PTG), bovine bone graft, and equine-derived bone graft through energy dispersive X-ray spectrometry (EDX) analysis of the comparison. Methodology: The surface chemical compositions of PTG, WPTG, bovine bone graft and equine-derived bone graft were measured by EDX analysis. All graft materials’ morphologic characteristics, such as particle and granule dimension were evaluated with Scanning Electron Microscopy (SEM). The EDX measurement of samples was evaluated at between x85 to x50000 magnification. Results: PTG grafts showed elements of sodium (%8.88±9.98), chlor (2.44±1.96) and aluminum (0.99±0.37) as well as titanium (90.06±11.34) molecule at x5000 magnification. In WPTG, titanium (%34.55±6.41) and oxygen (%65.44±6.42) molecules were detected. EDX analyses have detected the presence of sodium, calcium, and phosphorus in the equinederived and bovine bone graft. Conclusion: It has been found that the PTG surface was not made of pure titanium, it has different chemical molecules at larger magnifications and xenografts exhibited different organic material content. Cell culture and experimental studies are needed to establish a relationship between the different commercial dental grafts and their regenerative properties.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Diğer Erişim Türü: Erişime Açık
  • 1. Esposito M, Grusovin MG, Felice P, Karatzopoulos G, Worthington HV, Coulthard P. The efficacy of horizontal and vertical bone augmentation procedures for dental implants - a Cochrane systematic review. Eur J Oral Implantol. 2009;2(3):167-184.
  • 2. Schwarz F, Sahm N, Bieling K, Becker J. Surgical regenerative treatment of peri-implantitis lesions using a nanocrystalline hydroxyapatite or a natural bone mineral in combination with a collagen membrane: a four-year clinical follow-up report. J Clin Periodontol. 2009;36(9):807-814. (Crossref)
  • 3. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10 Suppl 2:S96-S101. (Crossref)
  • 4. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66. (Crossref)
  • 5. Sheikh Z, Brooks PJ, Barzilay O, Fine N, Glogauer M. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. Materials (Basel). 2015;8(9):5671-5701. (Crossref)
  • 6. Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29(20):2941-2953. (Crossref)
  • 7. Figueiredo M, Henriques J, Martins G, Guerra F, Judas F, Figueiredo H. Physicochemical characterization of biomaterials commonly used in dentistry as bone substitutes--comparison with human bone. J Biomed Mater Res B Appl Biomater. 2010;92(2):409-419. (Crossref)
  • 8. Cooper DM, Thomas CD, Clement JG, Turinsky AL, Sensen CW, Hallgrímsson B. Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft. Bone. 2007;40(4):957-965. (Crossref)
  • 9. Fabbri M, Celotti GC, Ravaglioli A. Hydroxyapatite-based porous aggregates: physico-chemical nature, structure, texture and architecture. Biomaterials. 1995;16(3):225- 228. (Crossref)
  • 10. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413-3431. (Crossref)
  • 11. Rabiee SM, Moztarzadeh F, Salimi-Kenari H,Solati-Hashjin M. Preparation and properties of a porous calcium phosphate bone graft substitute. Mater. Sci. Poland. 2007;25(4):1019-1027.
  • 12. Daculsi G, CorreP, Malard O, LeGeros RZ, Goyenvalle E. Performance for bone ingrowth of biphasic calcium phosphate ceramic versus bovine bone substitute. Trans Tech Publications Ltd. 2006;309-311:1379-1382. (Crossref)
  • 13. Glowacki J. A review of osteoinductive testing methods and sterilization processes for demineralized bone. Cell Tissue Bank, 2005;6(1):3-12. (Crossref)
  • 14. Bystedt H, Rasmusson L. Porous titanium granules used as osteoconductive material for sinus floor augmentation: a clinical pilot study. Clin Implant Dent Relat Res. 2009;11(2):101-105. (Crossref)
  • 15. Guler B, Uraz A, Yalım M, Bozkaya S. The Comparison of Porous Titanium Granule and Xenograft in the Surgical Treatment of Peri-Implantitis: A Prospective Clinical Study. Clin Implant Dent Relat Res. 2017;19(2):316-327. (Crossref)
  • 16. Dursun CK, Dursun E, Eratalay K, et al. Effect of Porous Titanium Granules on Bone Regeneration and Primary Stability in Maxillary Sinus: A Human Clinical, Histomorphometric, and Microcomputed Tomography Analyses. J Craniofac Surg. 2016;27(2):391-397. (Crossref)
  • 17. Wohlfahrt JC, Lyngstadaas SP, Heijl L, Aass AM. Porous titanium granules in the treatment of mandibular Class II furcation defects: a consecutive case series. J Periodontol. 2012;83(1):61-69. (Crossref)
  • 18. Andersen H, Aass AM, Wohlfahrt JC. Porous titanium granules in the treatment of peri-implant osseous defectsa 7-year follow-up study. Int J Implant Dent. 2017;3(1):50. (Crossref)
  • 19. Sabetrasekh R, Tiainen H, Lyngstadaas SP, Reseland J, Haugen H. A novel ultra-porous titanium dioxide ceramic with excellent biocompatibility. J Biomater Appl. 2011;25(6):559-580. (Crossref)
  • 20. Karaji ZG, Houshmand B, Faghihi S. Surface Modification of Porous Titanium Granules for Improving Bioactivity. Int J Oral Maxillofac Implants. 2016;31(6):1274-1280. (Crossref)
  • 21. Verket A, Lyngstadaas SP, Rønold HJ, Wohlfahrt JC. Osseointegration of dental implants in extraction sockets preserved with porous titanium granules - an experimental study. Clin Oral Implants Res. 2014;25(2):e100-e108. (Crossref)
  • 22. Scarano A, Piattelli A, Perrotti V, Manzon L, Iezzi G. Maxillary sinus augmentation in humans using cortical porcine bone: a histological and histomorphometrical evaluation after 4 and 6 months. Clin Implant Dent Relat Res. 2011;13(1):13-18. (Crossref)
  • 23. Schmitt CM, Doering H, Schmidt T, Lutz R, Neukam FW, Schlegel KA. Histological results after maxillary sinus augmentation with Straumann® BoneCeramic, Bio-Oss®, Puros®, and autologous bone. A randomized controlled clinical trial. Clin Oral Implants Res. 2013;24(5):576-585. (Crossref)
  • 24. Duan R, Barbieri D, Luo X, et al. Variation of the bone forming ability with the physicochemical properties of calcium phosphate bone substitutes. Biomater Sci. 2017;6(1):136-145. (Crossref)
  • 25. Zizzari VL, Zara S, Tetè G, Vinci R, Gherlone E, Cataldi A. Biologic and clinical aspects of integration of different bone substitutes in oral surgery: a literature review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(4):392- 402. (Crossref)
  • 26. Pepelassi E, Perrea D, Dontas I, Ulm C, Vrotsos I, Tangl S. Porous Titanium Granules in comparison with Autogenous Bone Graft in Femoral Osseous Defects: A Histomorphometric Study of Bone Regeneration and Osseointegration in Rabbits. Biomed Res Int. 2019;2019:8105351. (Crossref)
  • 27. Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P. Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials. 2008;29(9):1177-1188. doi:10.1016/j.biomaterials.2007.11.034. (Crossref)
  • 28. Chan O, Coathup MJ, Nesbitt A, et al. The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials. Acta Biomater. 2012;8(7):2788-2794. (Crossref)
  • 29. Gao C, Peng S, Feng P, Shuai C. Bone biomaterials and interactions with stem cells. Bone Res. 2017;5:17059. (Crossref)
  • 30. Shih YR, Hwang Y, Phadke A, et al. Calcium phosphatebearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proc Natl Acad Sci U S A. 2014;111(3):990-995. (Crossref)
  • 31. do Desterro Fde P, Sader MS, Soares GD, Vidigal GM Jr. Can inorganic bovine bone grafts present distinct properties?. Braz Dent J. 2014;25(4):282-288. (Crossref)
  • 32. McDowell H, Gregory TM, Brown WE., Solubility of Ca5 (P04) 3OH in the System Ca (OH) 2-H3P04-H20 at 5, 15, 25, and 37 C. J Res Natl Bur Stand Sec A, 1977;81:273-781. (Crossref)
  • 33. Ripamonti U, Klar RM. Regenerative frontiers in craniofacial reconstruction: grand challenges and opportunities for the mammalian transforming growth factor-β proteins. Front Physiol. 2010;1:143. (Crossref)
  • 34. LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108(11):4742-4753. (Crossref)
  • 35. Lozano-Carrascal N, Satorres-Nieto M, Delgado-Ruiz R, et al. Scanning electron microscopy study of new bone formation following small and large defects preserved with xenografts supplemented with pamidronate-A pilot study in Fox-Hound dogs at 4 and 8 weeks. Ann Anat. 2017;209:61-68. (Crossref)
  • 36. Lindgren C, Hallman M, Sennerby L, Sammons R. Backscattered electron imaging and elemental analysis of retrieved bone tissue following sinus augmentation with deproteinized bovine bone or biphasic calcium phosphate. Clin Oral Implants Res. 2010;21(9):924-930. (Crossref)
  • 37. Vanzillotta PS, Sader MS, Bastos IN, Soares Gde A. Improvement of in vitro titanium bioactivity by three different surface treatments. Dent Mater. 2006;22(3):275- 282. (Crossref)
  • 38. Figueiredo A, Coimbra P, Cabrita A, Guerra F, Figueiredo M. Comparison of a xenogeneic and an alloplastic material used in dental implants in terms of physico-chemical characteristics and in vivo inflammatory response. Mater Sci Eng C Mater Biol Appl. 2013;33(6):3506-3513. (Crossref)
  • 39. Sirak SV, Giesenhagen B, Kozhel IV, et al. Osteogenic Potential of Porous Titanium. An Experimental Study in Sheep. J Natl Med Assoc. 2019;111(3):310-319. (Crossref)
  • 40. Carvalho AL, Faria PE, Grisi MF, et al. Effects of granule size on the osteoconductivity of bovine and synthetic hydroxyapatite: a histologic and histometric study in dogs. J Oral Implantol. 2007;33(5):267-276. (Crossref)
APA GÜLER B, Uraz Çörekci A, Cetiner D (2021). The chemical evaluation of different dental graft materials by energy dispersive X-ray spectrometry technique. , 23 - 29.
Chicago GÜLER Berceste,Uraz Çörekci Ahu,Cetiner Deniz The chemical evaluation of different dental graft materials by energy dispersive X-ray spectrometry technique. (2021): 23 - 29.
MLA GÜLER Berceste,Uraz Çörekci Ahu,Cetiner Deniz The chemical evaluation of different dental graft materials by energy dispersive X-ray spectrometry technique. , 2021, ss.23 - 29.
AMA GÜLER B,Uraz Çörekci A,Cetiner D The chemical evaluation of different dental graft materials by energy dispersive X-ray spectrometry technique. . 2021; 23 - 29.
Vancouver GÜLER B,Uraz Çörekci A,Cetiner D The chemical evaluation of different dental graft materials by energy dispersive X-ray spectrometry technique. . 2021; 23 - 29.
IEEE GÜLER B,Uraz Çörekci A,Cetiner D "The chemical evaluation of different dental graft materials by energy dispersive X-ray spectrometry technique." , ss.23 - 29, 2021.
ISNAD GÜLER, Berceste vd. "The chemical evaluation of different dental graft materials by energy dispersive X-ray spectrometry technique". (2021), 23-29.
APA GÜLER B, Uraz Çörekci A, Cetiner D (2021). The chemical evaluation of different dental graft materials by energy dispersive X-ray spectrometry technique. International Dental Research, 11(1), 23 - 29.
Chicago GÜLER Berceste,Uraz Çörekci Ahu,Cetiner Deniz The chemical evaluation of different dental graft materials by energy dispersive X-ray spectrometry technique. International Dental Research 11, no.1 (2021): 23 - 29.
MLA GÜLER Berceste,Uraz Çörekci Ahu,Cetiner Deniz The chemical evaluation of different dental graft materials by energy dispersive X-ray spectrometry technique. International Dental Research, vol.11, no.1, 2021, ss.23 - 29.
AMA GÜLER B,Uraz Çörekci A,Cetiner D The chemical evaluation of different dental graft materials by energy dispersive X-ray spectrometry technique. International Dental Research. 2021; 11(1): 23 - 29.
Vancouver GÜLER B,Uraz Çörekci A,Cetiner D The chemical evaluation of different dental graft materials by energy dispersive X-ray spectrometry technique. International Dental Research. 2021; 11(1): 23 - 29.
IEEE GÜLER B,Uraz Çörekci A,Cetiner D "The chemical evaluation of different dental graft materials by energy dispersive X-ray spectrometry technique." International Dental Research, 11, ss.23 - 29, 2021.
ISNAD GÜLER, Berceste vd. "The chemical evaluation of different dental graft materials by energy dispersive X-ray spectrometry technique". International Dental Research 11/1 (2021), 23-29.