Designing a Pseudo-Random Bit Generator Using GeneralizedCascade Fractal Function

Yıl: 2021 Cilt: 3 Sayı: 1 Sayfa Aralığı: 11 - 19 Metin Dili: İngilizce DOI: 10.51537/chaos.835222 İndeks Tarihi: 29-07-2022

Designing a Pseudo-Random Bit Generator Using GeneralizedCascade Fractal Function

Öz:
A cascade function is designed by combining two seed maps that resultantly has more parameters, high complexity, randomness, and more unpredictable behavior. In the paper, a cascade fractal function, i.e. cascade-PLMS is proposed by considering the phoenix and lambda fractal functions. The constructed cascade-PLMS exhibits the required fractal features such as fractional dimension, self-similar structure, and covering entire phase space by the data sequence in addition to the chaotic properties. Due to the chaotic behavior, the proposed function is utilized to generate a pseudo-random number sequence in both integer and binary format. This is the result of an extreme scalability feature of a fractal function that can be implemented on a large scale. A sequence generator is designed by performing the linear function operation to the real and imaginary part of a cascade-PLMS, cascade-PLJS separately, and the iteration number at which the cascade-PLJS converges to the fixed point. The performance analysis results show that the given method has a large keyspace, fast key generation speed, high key sensitivity, and strong randomness. Therefore, the scheme can be efficiently used further to design a secure cryptosystem with the ability to withstand various attacks.
Anahtar Kelime: PRNG dynamic behavior Mandelbrot set Cascade phoenix lambda fractal key security analysis.

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Agarwal, S., 2018 Cryptographic key generation using burn- ing ship fractal. In Proceedings of the 2nd International Con- ference on Vision, Image and Signal Processing, pp. 1–6.
  • Agarwal, S., 2020 A new composite fractal function and its application in image encryption. Journal of Imaging 6: 70.
  • Alvarez, G. and S. Li, 2006 Some basic cryptographic re- quirements for chaos-based cryptosystems. International journal of bifurcation and chaos 16: 2129–2151.
  • Artu ̆ger, F. and F. Özkaynak, 2020 A novel method for per- formance improvement of chaos-based substitution boxes. Symmetry 12: 571.
  • Ayubi, P., S. Setayeshi, and A. M. Rahmani, 2020 Determin- istic chaos game: A new fractal based pseudo-random number generator and its cryptographic application. Jour- nal of Information Security and Applications 52: 102472.
  • Bai, S., L. Zhou, M. Yan, X. Ji, and X. Tao, 2020 Image cryp- tosystem for visually meaningful encryption based on fractal graph generating. IETE Technical Review pp. 1–12.
  • Barani, M. J., P. Ayubi, M. Y. Valandar, and B. Y. Irani, 2020 A new pseudo random number generator based on gen- eralized newton complex map with dynamic key. Journal of Information Security and Applications 53: 102509.
  • Bonilla, L. L., M. Alvaro, and M. Carretero, 2016 Chaos- based true random number generators. Journal of Mathe- matics in Industry 7: 1–17.
  • Chen, G. and T. Ueta, 1999 Yet another chaotic attractor. International Journal of Bifurcation and chaos 9: 1465– 1466.
  • Çimen, M. E., Z. GAR ̇IP, Ö. F. Boyraz, I. Pehlivan, M. Z. YILDIZ, et al., 2020 An interface design for calculation of fractal dimension. Chaos Theory and Applications 2: 3–9.
  • Czyz, J., 1994 Paradoxes of measures and dimensions originating in Felix Hausdorff’s ideas. World Scientific.
  • Devaney, R., 2018 An introduction to chaotic dynamical systems. CRC Press.
  • Devaney, R. L., J. A. Yorke, L. Keen, K. T. Alligood, M. F. Barnsley, et al., 1989 Chaos and Fractals: The Mathematics Behind the Computer Graphics: The Mathematics Behind the Computer Graphics, volume 1. American Mathematical Soc.
  • Dey, N., A. S. Ashour, H. Kalia, R. Goswami, and H. Das, 2018 Histopathological image analysis in medical decision mak- ing. IGI Global.
  • Hamza, R., 2017 A novel pseudo random sequence gen- erator for image-cryptographic applications. Journal of Information Security and Applications 35: 119–127.
  • Hua, Z., F. Jin, B. Xu, and H. Huang, 2018 2d logistic-sine- coupling map for image encryption. Signal Processing 149: 148–161.
  • Khelaifi, F. and H. He, 2020 Perceptual image hashing based on structural fractal features of image coding and ring partition. Multimedia Tools and Applications pp. 1–20.
  • Lynnyk, V., N. Sakamoto, and S. ˇCelikovsk `y, 2015 Pseudo random number generator based on the generalized lorenz chaotic system. IFAC-PapersOnLine 48: 257–261.
  • Mandelbrot, B. B. and B. B. Mandelbrot, 1982 The fractal geometry of nature, volume 1. WH freeman New York.
  • Mot `yl, I. and R. Jašek, 2011 Advanced user authentication process based on the principles of fractal geometry. In Proceedings of the 11th WSEAS International Conference on Signal Processing, Computational Geometry and Artificial Vi- sion (ISCGAV’11), pp. 109–112.
  • Moysis, L., A. Tutueva, K. Christos, and D. Butusov, 2020a A chaos based pseudo-random bit generator using multiple digits comparison. Chaos Theory and Applications 2: 58– 68.
  • Moysis, L., A. Tutueva, C. Volos, D. Butusov, J. M. Munoz- Pacheco, et al., 2020b A two-parameter modified logistic map and its application to random bit generation. Sym- metry 12: 829.
  • Peitgen, H.-O., H. Jürgens, and D. Saupe, 2006 Chaos and fractals: new frontiers of science. Springer Science & Business Media.
  • Sahari, M. L. and I. Boukemara, 2018 A pseudo-random numbers generator based on a novel 3d chaotic map with an application to color image encryption. Nonlinear Dy- namics 94: 723–744.
  • Shannon, C. E., 1949 Communication theory of secrecy sys- tems. The Bell system technical journal 28: 656–715.
  • SI, W. S., 1998 Cryptography and network security: Princi- ples and practice.
  • Wang, L. and H. Cheng, 2019 Pseudo-random number gen- erator based on logistic chaotic system. Entropy 21: 960.
  • Zhao, Y., C. Gao, J. Liu, and S. Dong, 2019 A self-perturbed pseudo-random sequence generator based on hyperchaos. Chaos, Solitons & Fractals: X 4: 100023.
  • Zhou, Y., Z. Hua, C.-M. Pun, and C. P. Chen, 2014 Cascade chaotic system with applications. IEEE transactions on cybernetics 45: 2001–2012.
APA Agarwal S (2021). Designing a Pseudo-Random Bit Generator Using GeneralizedCascade Fractal Function. , 11 - 19. 10.51537/chaos.835222
Chicago Agarwal Shafali Designing a Pseudo-Random Bit Generator Using GeneralizedCascade Fractal Function. (2021): 11 - 19. 10.51537/chaos.835222
MLA Agarwal Shafali Designing a Pseudo-Random Bit Generator Using GeneralizedCascade Fractal Function. , 2021, ss.11 - 19. 10.51537/chaos.835222
AMA Agarwal S Designing a Pseudo-Random Bit Generator Using GeneralizedCascade Fractal Function. . 2021; 11 - 19. 10.51537/chaos.835222
Vancouver Agarwal S Designing a Pseudo-Random Bit Generator Using GeneralizedCascade Fractal Function. . 2021; 11 - 19. 10.51537/chaos.835222
IEEE Agarwal S "Designing a Pseudo-Random Bit Generator Using GeneralizedCascade Fractal Function." , ss.11 - 19, 2021. 10.51537/chaos.835222
ISNAD Agarwal, Shafali. "Designing a Pseudo-Random Bit Generator Using GeneralizedCascade Fractal Function". (2021), 11-19. https://doi.org/10.51537/chaos.835222
APA Agarwal S (2021). Designing a Pseudo-Random Bit Generator Using GeneralizedCascade Fractal Function. Chaos Theory and Applications, 3(1), 11 - 19. 10.51537/chaos.835222
Chicago Agarwal Shafali Designing a Pseudo-Random Bit Generator Using GeneralizedCascade Fractal Function. Chaos Theory and Applications 3, no.1 (2021): 11 - 19. 10.51537/chaos.835222
MLA Agarwal Shafali Designing a Pseudo-Random Bit Generator Using GeneralizedCascade Fractal Function. Chaos Theory and Applications, vol.3, no.1, 2021, ss.11 - 19. 10.51537/chaos.835222
AMA Agarwal S Designing a Pseudo-Random Bit Generator Using GeneralizedCascade Fractal Function. Chaos Theory and Applications. 2021; 3(1): 11 - 19. 10.51537/chaos.835222
Vancouver Agarwal S Designing a Pseudo-Random Bit Generator Using GeneralizedCascade Fractal Function. Chaos Theory and Applications. 2021; 3(1): 11 - 19. 10.51537/chaos.835222
IEEE Agarwal S "Designing a Pseudo-Random Bit Generator Using GeneralizedCascade Fractal Function." Chaos Theory and Applications, 3, ss.11 - 19, 2021. 10.51537/chaos.835222
ISNAD Agarwal, Shafali. "Designing a Pseudo-Random Bit Generator Using GeneralizedCascade Fractal Function". Chaos Theory and Applications 3/1 (2021), 11-19. https://doi.org/10.51537/chaos.835222