Yıl: 2021 Cilt: 6 Sayı: 2 Sayfa Aralığı: 267 - 273 Metin Dili: İngilizce DOI: 10.5336/healthsci.2020-75826 İndeks Tarihi: 18-02-2022

The Acute Effect of Exercise Test on Exhaled Carbon Monoxide Rate

Öz:
Objective: The aim of this study is to analyze the acute effect of exercise on the rate of exhaled carbon monoxide (CO) in healty young smokers. Material and Methods: Twenty four male smokers were included in the study. Pulmonary functions of the participants were evaluated by spirometer forced expiratory volume in one second (FEV1), forced vital capacity (FVC), FEV1/FVC, peak flow rate (PEF) and forced expiratory flow at 25 to 75% of FVC (FEF 25%-75%). Exercise testing was performed by using bicycle ergometer. Maximal load, maximum oxygen uptake (VO2max), rest and maximal heart rate were recorded. CO levels before and after the test were mesured with portable breath CO monitor. CO levels and changes were assessed and compared on the exercise test day and rest day (without exercise test). Results: 25% of the participants have dyspnea, 20.8% have cough and 50% have sputum complaints. The results of the pulmonary function test and exercise test of young healthy smokers are as follows: % FEV1=89.7±9.9, % FEV1/FVC=87.4±8.2, % PEF=77.4±9.5, mean rest heart rate=94.8±9.8 bpm, mean maximal heart rate=170.3±9.7 bpm and mean VO2max=30.9±6.5 mL/min/kg. There is a statistically significant difference between the first and the second CO values of the participants measured on both days (p<0.001). There is a significant difference between the mean change of CO on the exercise test day and rest day (p<0.001). Conclusion: Our results show that smoking causes respiratory symptoms, impaired cardiopulmonary responses to exercise and increased CO level and exercise increases to the exhaled CO rate in young and healthy male.
Anahtar Kelime:

Egzersiz Testinin Ekshale Karbon Monoksit Oranı Üzerindeki Akut Etkisi

Öz:
Amaç: Bu çalışmanın amacı, sigara içen genç sağlıklı bireylerde egzersizin ekshale karbon monoksit (CO) oranı üzerindeki akut etkisinin araştırılmasıdır. Gereç ve Yöntemler: Çalışmaya sigara içen 24 erkek birey dâhil edildi. Katılımcıların solunum fonksiyonları spirometri birinci sn zorlu ekspirasyon volümü [forced expiratory volume in one second (FEV1)], zorlu vital kapasite [forced vital capacity (FVC)], FEV1/FVC, tepe akım hızı [peak flow rate (PEF)], FVC’nin %25 ile 75'inde zorlu ekspiratuar akış (FEF %25-75) ile değerlendirildi. Egzersiz testi bisiklet ergometresi kullanılarak yapıldı ve test sırasında maksimum yük, maksimum oksijen tüketimi (VO2max), istirahat ve maksimum kalp hızı değerleri kaydedildi. Bireylerin CO düzeyleri egzersiz testi öncesi ve sonrası portatif CO cihazı ile ölçüldü. CO düzeyleri ve değişiklikler egzersiz testinin yapıldığı gün ve (egzersiz testinin yapılmadığı) istirahat gününde değerlendirildi ve karşılaştırıldı. Bulgular: Katılımcıların %25’inde dispne, %20,8’inde öksürük ve %50’sinde balgam şikâyeti bulunmaktadır. Katılımcıların solunum fonksiyon testi ve egzersiz testi sonuçları şöyledir: % FEV1=89,7±9,9, % FEV1/FVC=87,4±8,2, % PEF=77,4±9,5, ortalama istirahat kalp hızı=94,8±9,8, ortalama maksimum kalp hızı=170,3±9,7 ve ortalama VO2max=30,9±6,5 mL/min/kg. Katılımcıların her 2 gün ölçülen 1. ve 2. CO değerleri arasında istatistiksel olarak anlamlı bir fark vardır (p<0.001). Egzersiz testi yapılarak değerlendirilen CO değişimi ile egzersiz testi yapılmadan değerlendirilen CO değişimi arasında istatistiksel olarak anlamlı bir fark vardır (p<0.001). Sonuç: Bu çalışmaya katılan genç ve sağlıklı erkeklerde sigara tüketimi solunumsal semptomlara, egzersize verilen kardiyopulmoner yanıtların bozulmasına ve CO seviyesinin artmasına neden olmuştur. Bu bireylerde atılan CO miktarının egzersizle birlikte daha fazla olduğu görülmüştür.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Terry PD, Miller AB, Rohan TE. A prospective cohort study of cigarette smoking and the risk of endometrial cancer. Br J Cancer. 2002; 86(9):1430-5. [Crossref] [Pubmed] [PMC]
  • 2. Japan Respiratory Society Committee for the 3rd Edition of COPD Guidelines: 3rd Edition of Guidelines for Diagnosis and Treatment of COPD. Tokyo, Medical Review, 2009.
  • 3. Bernhard D, Wang xL. Smoking, oxidative stress and cardiovascular diseases--do antioxidative therapies fail? Curr Med Chem. 2007;14(16):1703-12. [Crossref] [Pubmed]
  • 4. Benowitz NL, Hukkanen J, Jacob P 3rd. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol. 2009;(192): 29-60. [Crossref] [Pubmed] [PMC]
  • 5. Chen CL, Tang JS, Li PC, Chou PL. Immediate Effects of Smoking on Cardiorespiratory Responses During Dynamic Exercise: Arm Vs. Leg Ergometry. Front Physiol. 2015;6:376. [Crossref] [Pubmed] [PMC]
  • 6. Ryter SW, Sethi JM. Exhaled carbon monoxide as a biomarker of inflammatory lung disease. J Breath Res. 2007;1(2):026004. [Crossref] [Pubmed]
  • 7. Saetta M, Turato G, Maestrelli P, Mapp CE, Fabbri LM. Cellular and structural bases of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163(6):1304-9. [Crossref] [Pubmed]
  • 8. Koubaa A, Triki M, Trabelsi H, Masmoudi L, Zeghal KN, Sahnoun Z, et al. Effect of low-intensity continuous training on lung function and cardiorespiratory fitness in both cigarette and hookah smokers. Afr Health Sci. 2015; 15(4):1170-81. [Crossref] [Pubmed] [PMC]
  • 9. Marcus BH, Lewis BA, Hogan J, King TK, Albrecht AE, Bock B, et al. The efficacy of moderate-intensity exercise as an aid for smoking cessation in women: a randomized controlled trial. Nicotine Tob Res. 2005;7(6):871-80. [Crossref] [Pubmed]
  • 10. Horváth I, Borka P, Apor P, Kollai M. Exhaled carbon monoxide concentration increases after exercise in children with cystic fibrosis. Acta Physiol Hung. 1999;86(3-4):237-44. [Pubmed]
  • 11. Khair RM, Nwaneri C, Damico RL, Kolb T, Hassoun PM, Mathai SC, et al. The Minimal Important Difference in Borg Dyspnea Score in Pulmonary Arterial Hypertension. Ann Am Thorac Soc. 2016;13(6):842-9. [Crossref] [Pubmed] [PMC]
  • 12. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al; ATS/ERS Task Force. Standardisation of spirometry. Eur Respir J. 2005;26(2):319-38. [Pubmed]
  • 13. Graham BL, Steenbruggen I, Miller MR, Barjaktarevic IZ, Cooper BG, Hall GL, et al. Standardization of Spirometry 2019 update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am J Respir Crit Care Med. 2019; 200(8):e70-e88. [Crossref] [Pubmed] [PMC]
  • 14. Christenhusz L, de Jongh F, van der Valk P, Pieterse M, Seydel E, van der Palen J, et al. Comparison of three carbon monoxide monitors for determination of smoking status in smokers and nonsmokers with and without COPD. J Aerosol Med. 2007;20(4):475-83. [Crossref] [Pubmed]
  • 15. King CE, Dodd SL, Cain SM. O2 delivery to contracting muscle during hypoxic or CO hypoxia. J Appl Physiol (1985). 1987;63(2):726- 32. [Crossref] [Pubmed]
  • 16. Kane LA, Ryan BJ, Schmidt W, Byrnes WC. Acute, Low-dose CO Inhalation does not Alter Energy Expenditure during Submaximal Exercise. Int J Sports Med. 2016;37(1):19-24. [Crossref] [Pubmed]
  • 17. Horvath SM, Raven PB, Dahms TE, Gray DJ. Maximal aerobic capacity at different levels of carboxyhemoglobin. J Appl Physiol. 1975; 38(2):300-3. [Crossref] [Pubmed]
  • 18. Aronow WS, Cassidy J. Effect of carbon monoxide on maximal treadmill exercise. A study in normal persons. Ann Intern Med. 1975;83(4):496-9. [Crossref] [Pubmed]
  • 19. Rowell LB. Human Cardiovascular Control. New York: Oxford university Press. 1993. p.326-66.
  • 20. Goldbarg AN, Krone RJ, Resnekov L. Effects of cigarette smoking on hemodynamics at rest and during exercise. Normal subjects. Chest. 1971;60(6):531-6. [Crossref] [Pubmed]
  • 21. Mendonca GV, Pereira FD, Fernhall B. Effects of cigarette smoking on cardiac autonomic function during dynamic exercise. J Sports Sci. 2011;29(9):879-86. [Crossref] [Pubmed]
  • 22. Hashizume K, Yamaji K, Kusaka Y, Kawahara K. Effects of abstinence from cigarette smoking on the cardiorespiratory capacity. Med Sci Sports Exerc. 2000;32(2):386-91. [Crossref] [Pubmed]
  • 23. Yasuda Y, Ito T, Miyamura M, Niwayama M. Effect of ramp bicycle exercise on exhaled carbon monoxide in humans. J Physiol Sci. 2011;61(4):279-86. [Crossref] [Pubmed]
  • 24. Motterlini R, Foresti R. Biological signaling by carbon monoxide and carbon monoxide-releasing molecules. Am J Physiol Cell Physiol. 2017;312(3):C302-C13. [Crossref] [Pubmed]
  • 25. Regan EA, Lynch DA, Curran-Everett D, Curtis JL, Austin JH, Grenier PA, et al; Genetic Epidemiology of COPD (COPDGene) Investigators. Clinical and Radiologic Disease in Smokers With Normal Spirometry. JAMA Intern Med. 2015;175(9):1539-49. doi Erratum in: JAMA Intern Med. 2015;175(9):1588. [Crossref] [Pubmed] [PMC]
  • 26. Woodruff PG, Barr RG, Bleecker E, Christenson SA, Couper D, Curtis JL, et al; SPIROMICS Research Group. Clinical Significance of Symptoms in Smokers with Preserved Pulmonary Function. N Engl J Med. 2016;374(19):1811-21. [Crossref] [Pubmed] [PMC]
  • 27. Lange P, Celli B, Agustí A, Boje Jensen G, Divo M, Faner R, et al. Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease. N Engl J Med. 2015;373(2): 111-22. [Crossref] [Pubmed]
  • 28. Cook NR, Evans DA, Scherr PA, Speizer FE, Taylor JO, Hennekens CH, et al. Peak expiratory flow rate and 5-year mortality in an elderly population. Am J Epidemiol. 1991;133(8): 784-94. [Crossref] [Pubmed]
APA Yakut H, Ozalevli S, KILINC O (2021). The Acute Effect of Exercise Test on Exhaled Carbon Monoxide Rate. , 267 - 273. 10.5336/healthsci.2020-75826
Chicago Yakut Hazal,Ozalevli Sevgi,KILINC OGUZ The Acute Effect of Exercise Test on Exhaled Carbon Monoxide Rate. (2021): 267 - 273. 10.5336/healthsci.2020-75826
MLA Yakut Hazal,Ozalevli Sevgi,KILINC OGUZ The Acute Effect of Exercise Test on Exhaled Carbon Monoxide Rate. , 2021, ss.267 - 273. 10.5336/healthsci.2020-75826
AMA Yakut H,Ozalevli S,KILINC O The Acute Effect of Exercise Test on Exhaled Carbon Monoxide Rate. . 2021; 267 - 273. 10.5336/healthsci.2020-75826
Vancouver Yakut H,Ozalevli S,KILINC O The Acute Effect of Exercise Test on Exhaled Carbon Monoxide Rate. . 2021; 267 - 273. 10.5336/healthsci.2020-75826
IEEE Yakut H,Ozalevli S,KILINC O "The Acute Effect of Exercise Test on Exhaled Carbon Monoxide Rate." , ss.267 - 273, 2021. 10.5336/healthsci.2020-75826
ISNAD Yakut, Hazal vd. "The Acute Effect of Exercise Test on Exhaled Carbon Monoxide Rate". (2021), 267-273. https://doi.org/10.5336/healthsci.2020-75826
APA Yakut H, Ozalevli S, KILINC O (2021). The Acute Effect of Exercise Test on Exhaled Carbon Monoxide Rate. Türkiye Klinikleri Sağlık Bilimleri Dergisi, 6(2), 267 - 273. 10.5336/healthsci.2020-75826
Chicago Yakut Hazal,Ozalevli Sevgi,KILINC OGUZ The Acute Effect of Exercise Test on Exhaled Carbon Monoxide Rate. Türkiye Klinikleri Sağlık Bilimleri Dergisi 6, no.2 (2021): 267 - 273. 10.5336/healthsci.2020-75826
MLA Yakut Hazal,Ozalevli Sevgi,KILINC OGUZ The Acute Effect of Exercise Test on Exhaled Carbon Monoxide Rate. Türkiye Klinikleri Sağlık Bilimleri Dergisi, vol.6, no.2, 2021, ss.267 - 273. 10.5336/healthsci.2020-75826
AMA Yakut H,Ozalevli S,KILINC O The Acute Effect of Exercise Test on Exhaled Carbon Monoxide Rate. Türkiye Klinikleri Sağlık Bilimleri Dergisi. 2021; 6(2): 267 - 273. 10.5336/healthsci.2020-75826
Vancouver Yakut H,Ozalevli S,KILINC O The Acute Effect of Exercise Test on Exhaled Carbon Monoxide Rate. Türkiye Klinikleri Sağlık Bilimleri Dergisi. 2021; 6(2): 267 - 273. 10.5336/healthsci.2020-75826
IEEE Yakut H,Ozalevli S,KILINC O "The Acute Effect of Exercise Test on Exhaled Carbon Monoxide Rate." Türkiye Klinikleri Sağlık Bilimleri Dergisi, 6, ss.267 - 273, 2021. 10.5336/healthsci.2020-75826
ISNAD Yakut, Hazal vd. "The Acute Effect of Exercise Test on Exhaled Carbon Monoxide Rate". Türkiye Klinikleri Sağlık Bilimleri Dergisi 6/2 (2021), 267-273. https://doi.org/10.5336/healthsci.2020-75826