Yıl: 2021 Cilt: 69 Sayı: 3 Sayfa Aralığı: 380 - 386 Metin Dili: İngilizce DOI: 10.5578/tt.20219710 İndeks Tarihi: 14-05-2022

Artificial intelligence applications in pulmonology and its advantages during the pandemic period

Öz:
Artificial intelligence, with its increasing data volume, developing technologies, more information processing power and new algorithms, has a wide usage area in all sectors. In the field of health, these technologies is gaining an increasing place every day. Artificial intelligence methods can act as a simulation of the human mind and intelligence, resulting in the analysis and classification of complex data in a short time. Thus, by separating the small differences in the images examined, it can help diagnosis, detect preliminary signs of the disease and predict how the disease will develop. Computer based programs; diagnostic algorithms, surgical support and robotic systems developed on the basis of patient data are increasingly used in the drug development industry. In this study, artificial intelligence applications in the field of health and its use in pulmonology, the place of wearable technologies in our department and the advantages they provide us during the pandemic period were discussed in the light of the literature.
Anahtar Kelime:

Göğüs hastalıklarında yapay zeka uygulamaları ve pandemi döneminde sağladığı avantajlar

Öz:
Yapay zeka; artan veri hacmi, gelişen teknolojiler ile daha fazla bilgi işleme gücü ve yeni algoritmalar sayesinde tüm sektörlerde geniş bir kullanım alanına sahiptir. Sağlık alanında da bu teknolojiler kendisine her gün daha da artan bir yer edinmiştir. Yapay zeka yöntemleri, insan zihninin ve zekasının bir simülasyonu gibi davranarak karmaşık verilerin analizini ve sınıflandırmasını kısa sürede sonuçlandırabilir. Böylece incelenen görüntülerde küçük farklılıkları ayırarak tanıya yardımcı olabilir, hastalığın ön belirtilerini tespit edebilir ve hastalığın nasıl gelişeceğini tahmin edebilir. Bilgisayar tabanlı programların; hasta verilerine dayanarak geliştirilen tanı algoritmaları, cerrahi destek ve ultrasorobotik sistemler, ilaç geliştirme sektöründe kullanımı gittikçe yaygınlaşmaktadır. Bu çalışmada sağlık alanında yapay zeka uygulamaları ve göğüs hastalıkları özelinde kullanımı, giyilebilir teknolojilerin branşımızdaki yeri ve pandemi döneminde bize sağladığı avantajlar literatür eşliğinde tartışılmıştır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019; 25(1): 44-56.
  • 2. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (eds). ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. Proceedings of the IEEE conference on computer vision and pattern recognition; 2017.
  • 3. Li Z, Wang C, Han M, Xue Y, Wei W, Li L-J, et al (eds). Thoracic disease identification and localization with limited supervision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2018.
  • 4. Titano JJ, Badgeley M, Schefflein J, Pain M, Su A, Cai M, et al. Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat Med 2018; 24(9): 1337-41.
  • 5. Willems JL, Abreu-Lima C, Arnaud P, van Bemmel JH, Brohet C, Degani R, et al. The diagnostic performance of computer programs for the interpretation of electrocardiograms. N Engl J Med 1991; 325(25): 1767-73.
  • 6. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542(7639): 115-8.
  • 7. Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol 2018; 29(8): 1836-42.
  • 8. Wong TY, Bressler NM. Artificial intelligence with deep learning technology looks into diabetic retinopathy screening. JAMA 2016; 316(22): 2366-7.
  • 9. Cao B, Zheng L, Zhang C, Yu PS, Piscitello A, Zulueta J, et al (eds). Deepmood: modeling mobile phone typing dynamics for mood detection. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2017.
  • 10. Fitzpatrick KK, Darcy A, Vierhile M. Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial. JMIR Ment Health 2017; 4(2): e19.
  • 11. Eichstaedt JC, Smith RJ, Merchant RM, Ungar LH, Crutchley P, Preoiuc-Pietro D, et al. Facebook language predicts depression in medical records. Proc Natl Acad Sci USA 2018; 115(44): 11203-8.
  • 12. Petrone J. FDA approves stroke-detecting AI software. Nat Biotechnol 2018; 36(4): 290.
  • 13. Hsu J. Spectrum. AI could make detecting autism easier. The Atlantic 2018. https://wwwtheatlantic.com/technology/ archive/2018/07/ai-autism-diagnosis-screening-bottleneck/ 564890
  • 14. Kim HK, Min S, Song M, Jung S, Choi JW, Kim Y, et al. Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity. Nat Biotechnol 2018; 36(3): 239.
  • 15. Maier-Hein L, Vedula SS, Speidel S, Navab N, Kikinis R, Park A, et al. Surgical data science for next-generation interventions. Nat Biomed Eng 2017; 1(9): 691-6.
  • 16. Kaur H, Wasan SK. Empirical study on applications of data mining techniques in healthcare. J Comput Sci 2006; 2(2): 194-200.
  • 17. Lovejoy CA, Phillips E, Maruthappu M. Application of artificial intelligence in respiratory medicine: Has the time arrived? Respirol 2019; 24(12): 1136-7.
  • 18. Grzywalski T, Piecuch M, Szajek M, Brborowicz A, Hafke- Dys H, Kociski J, et al. Practical implementation of artificial intelligence algorithms in pulmonary auscultation examination. Eur J Pediatr 2019; 178(6): 883-90.
  • 19. Aykanat M, Kılıç Ö, Bahar K, Saryal SBB. Lung disease classification using machine learning algorithms. IJAMEC 2020; 8(4): 125-32.
  • 20. Radomski WEP, Szajek M, Hafke-Dys H, Kocinski J. Available from: https://stethome.com/files/StethoMe_ doctors_offer.pdf (Accessed Date: 27 Apr 2021).
  • 21. Harris M, Qi A, Jeagal L, Torabi N, Menzies D, Korobitsyn A, et al. A systematic review of the diagnostic accuracy of artificial intelligence-based computer programs to analyze chest x-rays for pulmonary tuberculosis. PLoS One 2019; 14(9): e0221339.
  • 22. Matsumoto T, Kodera S, Shinohara H, Ieki H, Yamaguchi T, Higashikuni Y, et al. Diagnosing Heart Failure from chest X-ray images using deep learning. Int Heart J 2020; 61(4): 781-6.
  • 23. Filice RW, Stein A, Wu CC, Arteaga VA, Borstelmann S, Gaddikeri R, et al. Crowdsourcing pneumothorax annotations using machine learning annotations on the NIH chest X-ray dataset. J Digit Imaging 2020; 33(2): 490-6.
  • 24. Baltruschat I, Steinmeister L, Nickisch H, Saalbach A, Grass M, Adam G, et al. Smart chest X-ray worklist prioritization using artificial intelligence: a clinical workflow simulation. Eur Radiol 2021; 31(6): 3837-45.
  • 25. Wang L, Lin ZQ, Wong A. COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci Rep 2020; 10(1): 19549.
  • 26. Wang Z, Xiao Y, Li Y, Zhang J, Lu F, Hou M, et al. Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays. Pattern Recognit 2021; 110: 107613
  • 27. De Moura J, García LR, Vidal PFL, Cruz M, López LA, Lopez EC, et al. Deep convolutional approaches for the analysis of covid-19 using chest x-ray images from portable devices. IEEE Access 2020; 8: 195594-607.
  • 28. de Moura J, Novo J, Ortega M. Fully automatic deep convolutional approaches for the analysis of Covid-19 using chest X-ray images. medRxiv 2020.
  • 29. Christie JR, Lang P, Zelko LM, Palma DA, Abdelrazek M, Mattonen SA. Artificial intelligence in lung cancer: bridging the gap between computational power and clinical decision-making. Can Assoc Radiol J 2021; 72(1): 86-97.
  • 30. Ather S, Kadir T, Gleeson F. Artificial intelligence and radiomics in pulmonary nodule management: current status and future applications. Clin Radiol 2020; 75(1): 13-9.
  • 31. Weikert T, Winkel DJ, Bremerich J, Stieltjes B, Parmar V, Sauter AW, et al. Automated detection of pulmonary embolism in CT pulmonary angiograms using an AI-powered algorithm. Eur Radiol 2020; 30(12): 6545-53.
  • 32. Prayer F, Röhrich S, Pan J, Hofmanninger J, Langs G, Prosch H. Artificial intelligence in lung imaging. Radiologe 2020; 60(1): 42-7.
  • 33. Das N, Topalovic M, Janssens W. Artificial intelligence in diagnosis of obstructive lung disease: current status and future potential. Curr Opin Pulm Med 2018; 24(2): 117- 23.
  • 34. Courtiol P, Maussion C, Moarii M, Pronier E, Pilcer S, Sefta M, et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat Med 2019; 25(10): 1519-25.
  • 35. Lenfant M, Chevallier O, Comby PO, Secco G, Haioun K, Ricolfi F, et al. Deep learning versus iterative reconstruction for CT pulmonary angiography in the emergency setting: improved image quality and reduced radiation dose. Diagnostics 2020; 10(8): 558.
  • 36. Fischer AM, Varga-Szemes A, Martin SS, Sperl JI, Sahbaee P, Neumann D, et al. Artificial intelligence-based fully automated per lobe segmentation and emphysema-quantification based on chest computed tomography compared with global initiative for chronic obstructive lung disease severity of smokers. J Thorac Imaging 2020; 35(Suppl 1) :S28-S34.
  • 37. Bartholmai BJ, Raghunath S, Karwoski RA, Moua T, Rajagopalan S, Maldonado F, et al. Quantitative CT imaging of interstitial lung diseases. J Thorac Imaging 2013; 28(5): 298-307.
  • 38. Topalovic M, Das N, Burgel PR, Daenen M, Derom E, Haenebalcke C, et al. Artificial intelligence outperforms pulmonologists in the interpretation of pulmonary function tests. Eur Respir J 2019; 53(4): 1801660.
  • 39. Xinling L, Fangfang G, Zhen Z, Zhang F, Qin W, Zhijun P, et al. Performance of deep-learning-based artificial intelligence on detection of pulmonary nodules in chest CT. Zhongguo Fei Ai Za Zhi 2019; 22(6): 336-40.
  • 40. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med 2019; 25(6): 954-61.
  • 41. Gao XW, Qian Y. Prediction of multidrug-resistant TB from CT pulmonary images based on deep learning techniques. Mol Pharm 2018; 15(10): 4326-35.
  • 42. Ozcelik N, Ozcelik AE, Bulbul Y, Oztuna F, Ozlu T. Can artificial intelligence distinguish between malignant and benign mediastinal lymph nodes using sonographic features on EBUS images? Curr Med Res Opin 2020; 36(12): 2019-24.
  • 43. Chen CH, Lee YW, Huang YS, Lan WR, Chang RF, Tu CY, et al. Computer-aided diagnosis of endobronchial ultrasound images using convolutional neural network. Comput Methods Programs Biomed 2019; 177: 175-82.
  • 44. Koenigkam Santos M, Raniery Ferreira Júnior J, Tadao Wada D, Magalhães Tenório AP, Nogueira Barbosa MH, de Azevedo Marques PM. Artificial intelligence, machine learning, computer-aided diagnosis, and radiomics: advances in imaging towards to precision medicine. Radiol Bras 2019; 52(6): 387-96.
  • 45. Soltan AA, Kouchaki S, Zhu T, Kiyasseh D, Taylor T, Hussain ZB, et al. Rapid triage for COVID-19 using routine clinical data for patients attending hospital: development and prospective validation of an artificial intelligence screening test. Lancet Digit Health 2021; 3(2): e78-e87.
  • 46. Infervision G. Available from: https://global.infervision. com/product/5/ (Accessed Date: 27 Apr 2021).
  • 47. Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, et al. Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19. IEEE Rev Biomed Eng 2021; 14: 4-15.
  • 48. Mishra T, Wang M, Metwally AA, Bogu GK, Brooks AW, Bahmani A, et al. Pre-symptomatic detection of COVID-19 from smartwatch data. Nature Biomed Eng 2020; 4(12): 1208-20.
  • 49. Kakria P, Tripathi N, Kitipawang P. A real-time health monitoring system for remote cardiac patients using smartphone and wearable sensors. Int J Telemed Appl 2015; 2015: 373474.
  • 50. Baig MM, GholamHosseini H, Moqeem AA, Mirza F, Lindén M. A systematic review of wearable patient monitoring systems–current challenges and opportunities for clinical adoption. J Med Syst 2017; 41(7): 115
  • 51. Kumar PM, Lokesh S, Varatharajan R, Babu GC, Parthasarathy P. Cloud and IoT based disease prediction and diagnosis system for healthcare using Fuzzy neural classifier. Future Generation Computer Systems 2018; 86: 527-34.
  • 52. Ajibade A, Younas H, Pullan M, Harky A. Telemedicine in cardiovascular surgery during COVID‐19 pandemic: a systematic review and our experience. J Card Surg 2020; 35(10): 2773-84.
  • 53. Ponciano V, Pires IM, Ribeiro FR, Villasana MV, Crisóstomo R, Canavarro Teixeira M, et al. Mobile computing technologies for health and mobility assessment: research design and results of the timed up and go test in older adults. Sensors 2020; 20(12): 3481.
  • 54. Ahmed N, Zhu Y. Early detection of atrial fibrillation based on ECG signals. Bioengineering 2020; 7(1): 16.
APA OZCELIK N, SELİMOĞLU İ (2021). Artificial intelligence applications in pulmonology and its advantages during the pandemic period. , 380 - 386. 10.5578/tt.20219710
Chicago OZCELIK Neslihan,SELİMOĞLU İNCİ Artificial intelligence applications in pulmonology and its advantages during the pandemic period. (2021): 380 - 386. 10.5578/tt.20219710
MLA OZCELIK Neslihan,SELİMOĞLU İNCİ Artificial intelligence applications in pulmonology and its advantages during the pandemic period. , 2021, ss.380 - 386. 10.5578/tt.20219710
AMA OZCELIK N,SELİMOĞLU İ Artificial intelligence applications in pulmonology and its advantages during the pandemic period. . 2021; 380 - 386. 10.5578/tt.20219710
Vancouver OZCELIK N,SELİMOĞLU İ Artificial intelligence applications in pulmonology and its advantages during the pandemic period. . 2021; 380 - 386. 10.5578/tt.20219710
IEEE OZCELIK N,SELİMOĞLU İ "Artificial intelligence applications in pulmonology and its advantages during the pandemic period." , ss.380 - 386, 2021. 10.5578/tt.20219710
ISNAD OZCELIK, Neslihan - SELİMOĞLU, İNCİ. "Artificial intelligence applications in pulmonology and its advantages during the pandemic period". (2021), 380-386. https://doi.org/10.5578/tt.20219710
APA OZCELIK N, SELİMOĞLU İ (2021). Artificial intelligence applications in pulmonology and its advantages during the pandemic period. Tüberküloz ve Toraks, 69(3), 380 - 386. 10.5578/tt.20219710
Chicago OZCELIK Neslihan,SELİMOĞLU İNCİ Artificial intelligence applications in pulmonology and its advantages during the pandemic period. Tüberküloz ve Toraks 69, no.3 (2021): 380 - 386. 10.5578/tt.20219710
MLA OZCELIK Neslihan,SELİMOĞLU İNCİ Artificial intelligence applications in pulmonology and its advantages during the pandemic period. Tüberküloz ve Toraks, vol.69, no.3, 2021, ss.380 - 386. 10.5578/tt.20219710
AMA OZCELIK N,SELİMOĞLU İ Artificial intelligence applications in pulmonology and its advantages during the pandemic period. Tüberküloz ve Toraks. 2021; 69(3): 380 - 386. 10.5578/tt.20219710
Vancouver OZCELIK N,SELİMOĞLU İ Artificial intelligence applications in pulmonology and its advantages during the pandemic period. Tüberküloz ve Toraks. 2021; 69(3): 380 - 386. 10.5578/tt.20219710
IEEE OZCELIK N,SELİMOĞLU İ "Artificial intelligence applications in pulmonology and its advantages during the pandemic period." Tüberküloz ve Toraks, 69, ss.380 - 386, 2021. 10.5578/tt.20219710
ISNAD OZCELIK, Neslihan - SELİMOĞLU, İNCİ. "Artificial intelligence applications in pulmonology and its advantages during the pandemic period". Tüberküloz ve Toraks 69/3 (2021), 380-386. https://doi.org/10.5578/tt.20219710