Yıl: 2021 Cilt: 0 Sayı: 78 Sayfa Aralığı: 49 - 60 Metin Dili: Türkçe DOI: 10.17211/tcd.998089 İndeks Tarihi: 12-05-2022

Anadolu’nun sirk gölleri

Öz:
Başta sirk gölleri olmak üzere, buzul gölleri Anadolu’daki yüksek dağlık alanların alpin kuşağında yer alan en önemli gölleri oluşturmaktadır. Anadolu’daki buzul jeomorfolojisi ve Kuvaterner buzullaşma koşulları hakkında birçok çalışma yapılmış olmasına rağmen sirk gölleri yeterince incelenmemiştir. Bu eksiklikten dolayı bu çalışmada Anadolu’daki tüm sirk göllerinin dağılışı ve morfometrik özellikleri CBS tabanlı olarak incelenmiştir. Uydu görüntüleri ve topografya haritaları üzerinden yapılan haritalama çalışmalarında 28 farklı kütle üzerinde toplam 660 adet sirk gölü tespit edilmiştir. Alansal dağılış özelliklerine göre sirk göllerinin çok büyük bir bölümü (%77) Doğu Karadeniz Dağları üzerinde bulunmaktadır ve bu dağlık alanlarda sirk gölü/sirk sayısı oranı (G/S oranı) %30’a ulaşmaktadır. Batı ve Orta Toroslar’da buzullaşmaya uğramış birçok kütle ve yüzlerce sirk bulunmasına rağmen sirk gölü sayısı çok azdır ve birçok kütle üzerinde hiç sirk gölü yer almamaktadır (G/S oranı 0’dır). Bu durumun oluşmasında litolojik koşullar büyük etkiye sahiptir. Batı ve Orta Toroslar’da buzullaşmaya uğramış kütleler karstik birimlerden oluşurken, Doğu Karadeniz Dağları karstik olmayan volkanik ve intrusif birimlerden oluşmaktadır. Morfometrik hesaplamalara göre Anadolu’daki tüm sirk göllerinin ortalama yükseklikleri 2882 metredir ve bu değer Kuvaterner buzul dönemleri kalıcı kar sınırı ölçümleri ile örtüşmektedir. Göl büyüklükleri açısından göllerin ortalama alanları 13.346 m2 (0,0133 km2)’dir ve alan sınıflandırmasına göre göllerin neredeyse tamamına yakını küçük göl sınıfı içerisindedir (%99,5). Küresel grid tabanlı iklim verilerine göre sirk gölü alanlarının yıllık ortalama sıcaklığı -0,11°C, yıllık toplam yağış değeri ise 825 mm’dir.
Anahtar Kelime:

Cirque lakes of Anatolia

Öz:
Glacial lakes, especially cirque lakes, constitute the most important lakes in the alpine belt of high mountain areas in Anatolia. Although there are many studies have been performed on the glacial geomorphology and Quaternary glaciation conditions in Anatolia, the cirque lakes have not been investigated in detail. In this study, the distribution characteristics and morphometric properties of all cirque lakes in Anatolia were investigated based on GIS. As a result of the mapping studies based on satellite images and topography maps, 660 cirque lakes were determined on 28 different mountains. In terms of spatial distribution, most of the cirque lakes (77%) are located on the Eastern Black Sea Mountains, and the ratio of cirque lakes/cirques (L/C ratio) reaches 30% on these mountains. Although there are many glaciated mountains and hundreds of cirques in the Western and Central Taurus Mountains, the cirque lakes are very few and there are no cirque lakes on many mountains (L/C ratio is 0). Lithological conditions have a great influence on this result. While the glaciated mountains in the Western and Central Taurus are composed of karst units, the Eastern Black Sea Mountains are composed of non-karst volcanic and intrusive units. The average altitude of all cirque lakes in Anatolia is 2882 meters and this altitude conforms to permanent snow altitudes in glacial periods of the Quaternary. The average cirque lake area is 13,346 m2 (0.0133 km2) and almost all of the cirque lakes are in the small lake class (99.5%). According to the global gridded climate data, the annual average temperature and the total annual precipitation amount of the around cirque lakes are 0.11°C and 825 mm, respectively.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Akçar, N., Yavuz, V., Ivy-Ochs, S., Kubik, P. W., Vardar, M., & Schlüchter, C. (2007). Paleoglacial records from Kavron Valley, NE Turkey: Field and cosmogenic exposure dating evidence. Quaternary International, 164–165, 170–183. https://doi.org/10.1016/j.quaint. 2006.12.020.
  • Akçer Ön, S. (2011). Küçükçekmece Lagünü, Yeniçağa, Uludağ Buzul ve Bafa Gölleri’nin (Batı Türkiye) Geç Holosen’deki İklim Kayıtları: Avrupa ve Orta Doğu İklim Kayıtları ile Karşılaştırılması. Avrasya Yer Bilimleri Enstitüsü.
  • Akkan, E., & Tunçel, M. (1993). Esence (Keşiş) dağlarında buzul şekilleri. Ankara Üniversitesi, Türkiye Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, 2, 225–240.
  • Altın, T. B. (2003). Aladağlar (Ecemiş Çayı Aklanı) üzerinde buzul ve karst jeomorfolojisi. İstanbul Üniversitesi.
  • Altınay, O., Sarıkaya, M. A., & Çiner, A. (2020). Late-glacial to Holocene glaciers in the Turkish mountains. Mediterranean Geoscience Reviews, 2(1), 119–133. https://doi.org/10.1007/s42990-020- 00024-7
  • Atalay, İ. (1984). Glacial morphology of the Mescit Mountain (NE Anatolia). Ege Coğrafya Dergisi, 2(1). https://dergipark.org.tr/ en/pub/ecd/67072
  • Bakke, J., & Nesje, A. (2011). Equilibrium-Line Altitude (ELA). Encyclopedia of Earth Sciences Series, Part 3(1), 268–277. https://doi. org/10.1007/978-90-481-2642-2_140
  • Barr, I. D., & Spagnolo, M. (2015). Glacial cirques as palaeoenvironmental indicators: Their potential and limitations. Earth-Science Reviews, 151, 48–78. https://doi.org/10.1016/J.EARSCIREV. 2015.10.004
  • Basso, A., Bruno, E., Parise, M., & Pepe, M. (2013). Morphometric analysis of sinkholes in a karst coastal area of southern Apulia (Italy). Environmental Earth Sciences, 70(6), 2545–2559. https:// doi.org/10.1007/s12665-013-2297-z
  • Bayrakdar, C., Çılğın, Z., Döker, M. F., & Canpolat, E. (2015). Evidence of an active glacier in the Munzur Mountains, eastern Turkey. Turkish Journal of Earth Sciences, 24, 56–71. https://doi. org/10.3906/yer-1403-7
  • Bayrakdar, C., Çılğın, Z., & Keserci, F. (2020). Traces of late quaternary glaciations and paleoclimatic interpretation of Mount Akdağ (Alanya, 2451 m), Southwest Turkey. Mediterranean Geoscience Reviews, 2(1), 135–151. https://doi.org/10.1007/s42990-020- 00026-5
  • Bayrakdar, C., Çılgın, Z., & Sarış, F. (2017a). Karadağ’da Pleyistosen Buzullaşmaları, Batı Toroslar, Türkiye. Türkiye Jeoloji Bülteni / Geological Bulletin of Turkey, 60(4), 451–469. https://doi. org/10.25288/tjb.360610
  • Bayrakdar, C., Güneç Kıyak, N., Turoğlu, H., Öztürk, T. & Canel, T. (2017b). Akdağ Kütlesi’nde Peistosen buzullaşmalarının jeomorfolojik özellikleri ve optik uyarmalı lüminesans (OSL) ile yaşlandırılması. Türk Coğrafya Dergisi, 69, 27–37. https://doi. org/10.17211/tcd.318170
  • Bayrakdar, C., & Özdemir, H. (2014). Kaçkar Dağı’nda bakı faktörünün glasiyal ve periglasiyal topografya gelişimi üzerindeki etkisi. Türk Coğrafya Dergisi, 54, 1–13. https://doi.org/10.17211/TCD.95116
  • Benn, D. I., & Lehmkuhl, F. (2000). Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International, 65–66, 15–29. https://doi.org/10.1016/ S1040-6182(99)00034-8
  • Bilgin, T. (1972). Munzur Dağları Doğu kısmının glasiyal ve periglasiyal morfolojisi. İstanbul Üniversitesi Yayınları. https://www. nadirkitap.com/munzur-daglari-dogu-kisminin-glasiyal-ve-periglasiyal- morfolojisi-bilgin-turgut-kitap15186763.html
  • Birman, J. H. (1968). Glacial Reconnaissance in Turkey. GSA Bulletin, 79(8), 1009–1026. https://pubs.geoscienceworld.org/gsa/ gsabulletin/article/79/8/1009/6355/Glacial-Reconnaissance- in-Turkey
  • Bondesan, A., Meneghel, M. & Sauro, U. (1992). Morphometric analysis of dolines. International Journal of Speleology, 21(1), 1–55.
  • Çalışkan, O., Gürgen, G., Yılmaz, E., & Yeşilyurt, S. (2012). Bolkar Dağları kuzeydoğusunun glasyal morfolojisi ve döküntüyle örtülü buzulları. Uluslararası İnsan Bilimleri Dergisi, 9(1), 890–911.
  • Candaş, A., Sarikaya, M. A., KÖSE, O., Şen, Ö. L. & Çiner, A. (2020). Modelling Last Glacial Maximum ice cap with the Parallel Ice Sheet Model to infer palaeoclimate in south‐west Turkey. Journal of Quaternary Science, 35(7), 935–950. https://doi.org/10.1002/ jqs.3239
  • Chen, F., Zhang, M., Tian, B., & Li, Z. (2017). Extraction of Glacial Lake Outlines in Tibet Plateau Using Landsat 8 Imagery and Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(9), 4002–4009. https://doi. org/10.1109/JSTARS.2017.2705718
  • Chinn, T. J., Kargel, J. S., Leonard, G. J., Haritashya, U. K., & Pleasants, M. (2014). New Zealand’s Glaciers. In Global Land Ice Measurements from Space (pp. 675–715). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-79818-7_29
  • Çiner, A. (2003). Türkiye’nin Güncel Buzulları ve Geç Kuvaterner Buzul Çökelleri. Türkiye Jeoloji Bülteni, 46(1), 55–78. https://dergipark. org.tr/tr/pub/tjb/590866
  • Çiner, A., & Sarıkaya, M. A. (2017). Cosmogenic 36Cl geochronology of late Quaternary glaciers in the Bolkar Mountains, south central Turkey. In P. Hughes & J. Woodward (Eds.), Quaternary glaciation in the Mediterranean mountains (Vol. 433, Issue 1, pp. 271–287). Geological Society of London. https://doi. org/10.1144/SP433.3
  • Çiner, A., Sarıkaya, M. A., & Yıldırım, C. (2015). Geyik Dağı (Orta Toroslar) Geç Kuvaterner Buzullaşması ve Paleoiklim Yorumu.
  • Çılğın, Z. (2015). Dedegöl Dağı Kuvaterner buzullaşmaları. Türk Coğrafya Dergisi, 64, 19–38. https://doi.org/10.17211/tcd.55740
  • Çılğın, Z. (2020). 3D Surface Modeling of Late Pleistocene Glaciers in the Munzur Mountains (Eastern Turkey) and its paleoclimatic implications. Turkish Journal of Earth Sciences, 29(5), 714–732. https://doi.org/10.3906/yer-1905-18
  • Dede, V., Çiçek, İ., Sarıkaya, M. A., Çiner, A., & Uncu, L. (2017). First cosmogenic geochronology from the Lesser Caucasus: Late Pleistocene glaciation and rock glacier development in the Karçal Valley, NE Turkey. Quaternary Science Reviews, 164, 54–67. https:// doi.org/10.1016/j.quascirev.2017.03.025
  • Denizman, C. (2003). Morphometric and spatial distribution parameters of karstic depressions, Lower Suwannee River Basin, Florida. Journal of Cave and Karst Studies, 65(1), 29–35.
  • Doğan, M. (2011). Sandıras Dağı’nda (Muğla) buzullaşma ve buzul şekilleri. Ege Coğrafya Dergisi, 20(1), 29–52.
  • Doğu, A. F., Somuncu, M., Çiçek, İ., Tunçel, H., & Gürgen, G. (2018). Kaçkar Dağında Buzul Şekilleri, Yaylalar ve Turizm. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 36(1–2). http://www.dtcfdergisi.ankara.edu.tr/index.php/dtcf/article/ view/4795
  • Emmer, A., & Vilímek, V. (2014). New method for assessing the susceptibility of glacial lakes to outburst floods in the Cordillera Blanca, Peru. Hydrology and Earth System Sciences, 18(9), 3461– 3479. https://doi.org/10.5194/HESS-18-3461-2014
  • Erinç, S. (1949). Uludağ üzerinde glasyal morfoloji araştırmaları. Türk Coğrafya Dergisi, 11–12, 79–94.
  • Erinç, S. (1955). Glasiyal ve Periglasiyal morfoloji bakımından Honaz ve Bozdağ. Türk Coğrafya Dergisi, 13–14, 25–43.
  • Erinç, S. (2001). Jeomorfoloji II Güncelleştirenler Ertek, A., Güneysu, C.,. Der Yayınları.
  • Evans, I. S., Çılğın, Z., Bayrakdar, C., & Canpolat, E. (2021). The form, distribution and palaeoclimatic implications of cirques in southwest Turkey (Western Taurus). Geomorphology, 391, 107885. https://doi.org/10.1016/J.GEOMORPH.2021.107885
  • Fakıoğlu, Ö., Arslan, H., & Köktürk, M. (2019). Qualitative Investigation of Phytoplankton of Glacial Lakes (Tortum/Erzurum). Journal of the Institute of Science and Technology, 9(3), 1704–1709. https:// doi.org/10.21597/jist.461249
  • Fey, M., Korr, C., Maidana, N. I., Carrevedo, M. L., Corbella, H., Dietrich, S., Haberzettl, T., Kuhn, G., Lücke, A., Mayr, C., Ohlendorf, C., Paez, M. M., Quintana, F. A., Schäbitz, F. & Zolitschka, B. (2009). Palaeoenvironmental changes during the last 1600 years inferred from the sediment record of a cirque lake in southern Patagonia (Laguna Las Vizcachas, Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology, 281(3–4), 363–375. https:// doi.org/10.1016/j.palaeo.2009.01.012
  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi. org/10.1002/joc.5086
  • Geçen, R., Toprak, V., & Tonbul, S. (2018). The Effect of Aspect On Glaciation: A case Study of Eastern Black Sea Mountains (Turkey). Ege Coğrafya Dergisi, 27, 35–54.
  • Gürgen, G. & Yeşilyurt, S. (2012). Karçal Dağı Buzulları (Artvin). Coğrafi Bilimler Dergisi, 10, 91–104.
  • Gürgen, Gürcan, Çalışkan, O., Yılmaz, E., & Yeşilyurt, S. (2010). Yedigöller Platosu ve Emli Vadisinde (Aladağlar) döküntü örtülü buzullar. E-Journal of New World Sciences Academy, NEWSSA, 5(2), 98–116.
  • ICIMOD. (2011). Glacial lakes and glacial lake outburst floods in Nepal.
  • Jain, S. K., Lohani, A. K., Singh, R. D., Chaudhary, A., & Thakural, L. N. (2012). Glacial lakes and glacial lake outburst flood in a Himalayan basin using remote sensing and GIS. Natural Hazards 2012 62:3, 62(3), 887–899. https://doi.org/10.1007/S11069- 012-0120-X
  • Khadka, N., Zhang, G., & Thakuri, S. (2018). Glacial Lakes in the Nepal Himalaya: Inventory and Decadal Dynamics (1977–2017). Remote Sensing, 10(12), 1913. https://doi.org/10.3390/rs10121913
  • Köse, O., Sarıkaya, M. A., Çİner, A., & Candaş, A. (2019). Late Quaternary glaciations and cosmogenic 36Cl geochronology of Mount Dedegöl, south-west Turkey. Journal of Quaternary Science, 34(1), 51–63. https://doi.org/10.1002/jqs.3080
  • Kurter, A. (1991). Glaciers of Middle East and Africa glaciers of Turkey. In R. S. Williams & J. G. Ferrigno (Eds.), Satellite Image Atlas of the World (pp. 1–30).
  • Louis, H. L. (1944). Evidence for Pleistocene glaciation in Anatolia. Geologische Rundschau, 34(7–8), 447–481.
  • Messerli, B. (1967). Die eiszeitliche und die gegenwärtige Vergletscherung im Mittelmeerraum. Geographica Helvetica, 22(3), 105–228. https://doi.org/10.5194/gh-22-105-1967
  • Munro-Stasiuk, M. J., Heyman, J., & Harbor, J. (2013). Erosional Features. In J. Shroder (Ed.), Treatiseon Geomorphology, vol.8, Glacial and Periglacial Geomorphology (pp. 83–99).
  • Nazik, L., Poyraz, M., & Karabıyıkoğlu, M. (2019). Karstic Landscapes and Landforms in Turkey. In Catherine Kuzucuoğlu, A. Çiner & N. Kazancı (Eds.), Landscapes and Landforms of Turkey (pp. 181–196). Springer, Cham. https://doi.org/10.1007/978-3-030- 03515-0_5
  • Otto, J.-C. (2019). Proglacial Lakes in High Mountain Environments. In Heckmann T. & Morche D. (Eds.), Geomorphology of Proglacial Systems (pp. 231–247). https://doi.org/10.1007/978-3-319- 94184-4_14
  • Öztürk, M. Z. (2012). Uludağ’daki periglasiyal süreçlerin, periglasiyal yerşekillerinin ve bunları denetleyen etmenlerin incelenmesi.
  • Öztürk, M. Z. (2018). Karstik Kapalı Depresyonların (Dolinlerin) Morfometrik Analizleri. COĞRAFYA DERGİSİ JOURNAL OF GEOGRAPHY Cografya Dergisi Coğrafya Dergisi – Journal of Geography, 36(36), 1–13. https://doi.org/10.26650/JGEOG371149
  • Öztürk, M. Z., Şimşek, M., Şener, M. F., & Utlu, M. (2018). GIS based analysis of doline density on Taurus Mountains, Turkey. Environmental Earth Sciences, 77(536), 536. https://doi.org/10.1007/ s12665-018-7717-7
  • Perinçek, D. (1979). Cilo Dağı, Sat Gölleri. Yeryuvarı ve İnsan, 4(3), 25–33.
  • Planhol, X. de., & Bilgin, T. (1964). Glaciaire et périglaciaire quaternaires et actuels dans le massif du Karagöl (Chaînes pontiques, Turquie). Revue de Géographie Alpine, 52(3), 497–512. https:// doi.org/10.3406/RGA.1964.3181
  • Rai Praveen, K., & Narayan, M. V. (2017). Changes of glacier lakes using multi-temporal remote sensing data: A case study from India. Geographica Pannonica, 21(3), 132–141. https://doi. org/10.5937/GEOPAN1703132K
  • Raj, K. B. G., & Kumar, K. V. (2016). Inventory of Glacial Lakes and its Evolution in Uttarakhand Himalaya Using Time Series Satellite Data. Journal of the Indian Society of Remote Sensing, 44(6), 959–976. https://doi.org/10.1007/s12524-016-0560-y
  • Sarı, H. M., Ustaoğlu, M. R., İlhan, A., & Özbek, M. (2015). Kaçkar ve Soğanlı Dağları Göllerinin morfometrik özellikleri (Türkiye). Su Ürünleri Dergisi, 32, 31–36. https://avesis.ege.edu.tr/yayin/5e- 6e4b38-ac0e-4f1a-a777-f2175a868f98/kackar-ve-soganli-daglari- gollerinin-morfometrik-ozellikleri-turkiye
  • Sarıkaya, M. A. (2012). Recession of the ice cap on Mount Ağrı (Ararat), Turkey, from 1976 to 2011 and its climatic significance. Journal of Asian Earth Sciences, 46, 190–194. https://doi.org/ 10.1016/j.jseaes.2011.12.009
  • Sarıkaya, M. A., & Çiner, A. (2015). Late Pleistocene glaciations and paleoclimate of Turkey. Bulletin Of The Mineral Research and Exploration, 151, 107–127. https://doi.org/10.19111/ bmre.35245
  • Sarıkaya, M. A., & Çiner, A. (2019). Ice in Paradise: Glacial Heritage Landscapes of Anatolia. In C. Kuzucuoğlu, A. Çiner & N. Kazancı (Eds.), Landscapes and Landforms of Turkey (pp. 397–411). https:// doi.org/10.1007/978-3-030-03515-0_20
  • Sarıkaya, M. A., Çiner, A. & Zreda, M. (2011). Quaternary Glaciations of Turkey. Developments in Quaternary Sciences, 15, 393–403. https://doi.org/10.1016/B978-0-444-53447-7.00030-1
  • Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S., Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S. & Strattman, K. (2020). Rapid worldwide growth of glacial lakes since 1990. Nature Climate Change 2020 10:10, 10(10), 939–945. https:// doi.org/10.1038/s41558-020-0855-4
  • Şimşek, M., Utlu, M., Poyraz, M., & Öztürk, M. Z. (2019). Geyik Dağı kütlesinin yüzey karstı jeomorfolojisi ve kütle üzerindeki karst-buzul jeomorfolojisi ilişkisi. Ege Coğrafya Dergisi, 29(2), 97–110.
  • Stroeven, A. P., Harbor, J., & Heyman, J. (2013). Erosional Landscapes. In J. Shroder (Ed.), Treatiseon Geomorphology vol.8, Glacial and Periglacial Geomorphology (Vol. 8, pp. 100–112). Academic Press. https://doi.org/10.1016/B978-0-12-374739-6.00198-6
  • Taş, B. & Hamzaçebi, E. Ş. (2020). Assessment of algal diversity and hydrobiological preliminary results in a high-mountain lake (Karagöl Lake, Giresun Mountains, Turkey). 11Review of Hydrobiology, 13(1–2), 11–38.
  • Tonbul, S. (1997). Bingöl Dağında Buzul Şekilleri. Türkiye Coğrafyası Dergisi, 6, 347–374.
  • Turoğlu, H. (2011). Buzullar ve Buzul Jeomorfolojisi. Çantay Kitapevi.
  • Ustaoğlu, M. R., Balık, S., Sarı, H. M., Mis, D. Ö., Aygen, C., Özbek, M., İlhan, A., Taşdemir, A., Yıldız, S. & Topkara, E. T. (2008). Uludağ (Bursa)’daki buzul gölleri ve akarsularında faunal bir çalışma. E.Ü. Su Ürünleri Dergisi, 25(4), 295–299.
  • Vilímek, V., Klimeš, J. & Červená, L. (2015). Glacier-related landforms and glacial lakes in Huascarán National Park, Peru. Https:// Doi.Org/10.1080/17445647.2014.1000985, 12(1), 193–202. https:// doi.org/10.1080/17445647.2014.1000985
  • Wilson, R., Glasser, N. F., Reynolds, J. M., Harrison, S., Anacona, P. I., Schaefer, M. & Shannon, S. (2018). Glacial lakes of the Central and Patagonian Andes. Global and Planetary Change, 162, 275–291. https://doi.org/10.1016/J.GLOPLACHA.2018.01.004
  • Yalçınlar, İ. (1951). Soğanlı-Kaçkar ve Mescit dağı silsilelerinin glasiasyon şekilleri. İstanbul Üniversitesi Coğrafya Enstitüsü Dergisi, 1(2), 82–88.
  • Yao, X., Liu, S., Han, L., Sun, M. & Zhao, L. (2018). Definition and classification system of glacial lake for inventory and hazards study. Journal of Geographical Sciences 2018 28:2, 28(2), 193–205. https:// doi.org/10.1007/S11442-018-1467-Z
  • Yavaşlı, D. D., Tucker, C. J. & Melocik, K. A. (2015). Change in the glacier extent in Turkey during the Landsat Era. Remote Sensing of Environment, 163, 32–41. https://doi.org/10.1016/j. rse.2015.03.002
  • Yesilyurt, S. (2012). Late Quaternary glaciations of the Munzur Mountains, Eastern Anatolia, Turkey: an assessment using remote sensing and GIS techniques. XVIII INQUA Congress, 279– 280. https://doi.org/10.1016/j.quaint.2012.08.1929
  • Yeşilyurt, S., Doğan, U. & Akçar, N. (2018). Narlıca Vadisi’nde Geç Kuvaterner Buzullaşma İzleri, Kavuşşahap Dağları. Türk Coğrafya Dergisi, 70, 99–108. https://doi.org/10.17211/tcd.415232
  • Zahno, C., Akçar, N., Yavuz, V., Kubik, P. W. & Schlüchter, C. (2010). Chronology of Late Pleistocene glacier variations at the Uludağ Mountain, NW Turkey. Quaternary Science Reviews, 29(9–10), 1173–1187. https://doi.org/10.1016/j.quascirev.2010.01.012
  • Zhang, G., Yao, T., Xie, H., Wang, W. & Yang, W. (2015). An inventory of glacial lakes in the Third Pole region and their changes in response to global warming. Global and Planetary Change, 131, 148–157. https://doi.org/10.1016/J.GLOPLACHA.2015.05.013
APA Öztürk M, ŞİMŞEK M, UTLU M (2021). Anadolu’nun sirk gölleri. , 49 - 60. 10.17211/tcd.998089
Chicago Öztürk Muhammed Zeynel,ŞİMŞEK MESUT,UTLU MUSTAFA Anadolu’nun sirk gölleri. (2021): 49 - 60. 10.17211/tcd.998089
MLA Öztürk Muhammed Zeynel,ŞİMŞEK MESUT,UTLU MUSTAFA Anadolu’nun sirk gölleri. , 2021, ss.49 - 60. 10.17211/tcd.998089
AMA Öztürk M,ŞİMŞEK M,UTLU M Anadolu’nun sirk gölleri. . 2021; 49 - 60. 10.17211/tcd.998089
Vancouver Öztürk M,ŞİMŞEK M,UTLU M Anadolu’nun sirk gölleri. . 2021; 49 - 60. 10.17211/tcd.998089
IEEE Öztürk M,ŞİMŞEK M,UTLU M "Anadolu’nun sirk gölleri." , ss.49 - 60, 2021. 10.17211/tcd.998089
ISNAD Öztürk, Muhammed Zeynel vd. "Anadolu’nun sirk gölleri". (2021), 49-60. https://doi.org/10.17211/tcd.998089
APA Öztürk M, ŞİMŞEK M, UTLU M (2021). Anadolu’nun sirk gölleri. Türk Coğrafya Dergisi, 0(78), 49 - 60. 10.17211/tcd.998089
Chicago Öztürk Muhammed Zeynel,ŞİMŞEK MESUT,UTLU MUSTAFA Anadolu’nun sirk gölleri. Türk Coğrafya Dergisi 0, no.78 (2021): 49 - 60. 10.17211/tcd.998089
MLA Öztürk Muhammed Zeynel,ŞİMŞEK MESUT,UTLU MUSTAFA Anadolu’nun sirk gölleri. Türk Coğrafya Dergisi, vol.0, no.78, 2021, ss.49 - 60. 10.17211/tcd.998089
AMA Öztürk M,ŞİMŞEK M,UTLU M Anadolu’nun sirk gölleri. Türk Coğrafya Dergisi. 2021; 0(78): 49 - 60. 10.17211/tcd.998089
Vancouver Öztürk M,ŞİMŞEK M,UTLU M Anadolu’nun sirk gölleri. Türk Coğrafya Dergisi. 2021; 0(78): 49 - 60. 10.17211/tcd.998089
IEEE Öztürk M,ŞİMŞEK M,UTLU M "Anadolu’nun sirk gölleri." Türk Coğrafya Dergisi, 0, ss.49 - 60, 2021. 10.17211/tcd.998089
ISNAD Öztürk, Muhammed Zeynel vd. "Anadolu’nun sirk gölleri". Türk Coğrafya Dergisi 78 (2021), 49-60. https://doi.org/10.17211/tcd.998089