Yıl: 2022 Cilt: 28 Sayı: 1 Sayfa Aralığı: 75 - 85 Metin Dili: İngilizce DOI: 10.9775/kvfd.2021.26481 İndeks Tarihi: 13-06-2022

Studies on Overwintering Behavior and Cold Stress Related Unigenes of Wohlfahrtia magnifica

Öz:
The overwintering behavior and unigenes related to cold stress were studied in this paper. The pupae of Wohlfahrtia magnifica were placed at room temperature, 4°C, -5°C, -10°C, -15°C and -24°C respectively, and the recovery experiment after low temperature induction was carried out. The hatching of the pupae was counted, the shell interior pupae at -5°C, -10°C, -15°C and -24°C were photographed and recorded. Transcriptome sequencing was performed on the pupae at room temperature (PA), -5°C (PA1) and -10°C (PA2). The results were analyzed by Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and the HSP67Bc, HSP23, HSP27, HSC70-4 and HSP70Ba were verified by Q-PCR. The results showed that the expression level of heat shock proteins (HSPs) in PA1 and PA2 were significantly higher than in PA, and HSP23, HSP27, HSP67Bc, HSP70Ba, HSP60, HSP83 and heat shock protein homologous (HSCs) such as HSC70-4, HSC7-5 were highly expressed in the pupae under low temperature stress. 13168 and 11161 entries were annotated in GO and KEGG, respectively. Q-PCR result showed that except HSP67Bc, the analysis results of the other four unigenes were consistent with the data of transcriptome analysis. Therefore, the overwintering behavior of Wohlfahrtia magnifica was in the form of pupa. HSPs played an important role in the overwintering process of the Wohlfahrtia magnifica pupa
Anahtar Kelime:

Wohlfahrtia magnifica’nın Kışlama Davranışı ve Soğuk Stresiyle İlgili Unigenleri Üzerine Çalışmalar

Öz:
Bu çalışmada, Wohlfahrtia magnifica’nın kışlama davranışı ve soğuk stresi ile ilgili unigenleri incelenmiştir. Wohlfahrtia magnifica’nın pupaları sırasıyla 4°C, -5°C, -10°C, -15°C ve -24°C’de oda sıcaklığına yerleştirildi ve düşük sıcaklık indüksiyonundan sonra geri kazanım deneyi yapıldı. Pupalardan çıkan erişkin sinekler sayıldı, -5°C, -10°C, -15°C ve -24°C’deki kabuk iç pupalar fotoğraflandı ve kaydedildi. Pupalarda, oda sıcaklığında (PA), -5°C (PA1)’de ve -10°C (PA2)’de transkriptom sekanslama yapıldı. Sonuçlar, Gen ontolojisi (GO) ve Kyoto Gen ve Genom Ansiklopedisi (KEGG) ile analiz edildi ve HSP67Bc, HSP23, HSP27, HSC70-4 ve HSP70Ba, Q-PCR ile doğrulandı. Sonuçlar, PA1 ve PA2’deki ısı şoku proteinlerinin (HSP’ler) ekspresyon seviyelerinin PA’ya göre önemli ölçüde yüksek olduğunu ve HSP23, HSP27, HSP67Bc, HSP70Ba, HSP60, HSP83 ve HSC70-4 ve HSC7-5 gibi ısı şok protein homologlarının (HSC’ler) düşük sıcaklık stresi altındaki pupalarda yüksek oranda eksprese edildiğini gösterdi. GO ve KEGG’de sırasıyla 13168 ve 11161 kayıtlarına açıklama yapıldı. Q-PCR sonucu, HSP67Bc dışındaki diğer dört unigenin analiz sonuçlarının, transkriptom analiz sonuçları ile tutarlı olduğu saptandı. Bu nedenle, Wohlfahrtia magnifica’nın kışlama davranışı pupa formunda olmuştur. HSP’ler, Wohlfahrtia magnifica pupalarının kışlama sürecinde önemli rol oynamıştır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Wangchao Li H, Oyun G, Bao H, Yunzhang L, Yang B, Liu T, Demtu TE: Morphological and scanning electron microscopic (SEM) studies of the pupae of Wohlfahrtia magnifica. J Camel Pract Res, 27 (1): 17-22, 2020. DOI: 10.5958/2277-8934.2020.00003.X
  • 2. Li H, An X, Zhou J, Ba L, Cha H, Bao H, Yang B, Li Y, Er D: Morphological observation of the Wohlfahrtia magnifica in mongolia plateau. J Camel Pract Res, 27 (3): 351-357, 2020. DOI: 10.5958/2277-8934.2020.00051.X
  • 3. Villaescusa JM, Angulo I, Pontón A, Nistal JF: Infestation of a diabetic foot by Wohlfahrtia magnifica. J Vasc Surg Cases Innov, 2 (3): 119-122, 2016. DOI: 10.1016/j.jvscit.2016.04.007
  • 4. Boscarelli A, Levi Sandri GB: Periungual myiasis caused by Wohlfahrtia magnifica mimicking an ingrown toenail. Transl Pediatr, 5 (2): 95-96, 2016. DOI: 10.21037/tp.2016.03.01
  • 5. Chen W, Geng SL, Song Z, Li YJ, Wang H, Cao JY: Alternative splicing and expression analysis of HSF1 in diapause pupal brains in the cotton bollworm, Helicoverpa armigera. Pest Manag Sci, 75 (5): 1258-1269, 2019. DOI: 10.1002/ps.5238
  • 6. Reynolds JA, Bautista-Jimenez R, Denlinger DL: Changes in histone acetylation as potential mediators of pupal diapause in the flesh fly, Sarcophaga bullata. Insect Biochem Mol Biol, 76, 29-37, 2016. DOI: 10.1016/j.ibmb.2016.06.012
  • 7. Santana E, de Los Reyes T, Casas-Tinto S: Small heat shock proteins determine synapse number and neuronal activity during development. PLoS One, 15 (5): e0233231, 2020. DOI: 10.1371/journal.pone.0233231
  • 8. Zhou C, Yang XB, Yang H, Long GY, Wang Z, Jin DC: Effects of abiotic stress on the expression of Hsp70 genes in Sogatella furcifera (Horvath). Cell Stress Chaperones, 25 (1): 119-131, 2020. DOI: 10.1007/s12192-019- 01053-4
  • 9. Fregonezi NF, Oliveira LT, Singulani JL, Marcos CM, Dos Santos CT, Taylor ML, Mendes-Giannini MJS, de Oliveira HC, Fusco-Almeida AM: Heat shock protein 60, insights to its importance in Histoplasma capsulatum: From biofilm formation to host-interaction. Front Cell Infect Microbiol, 10: 591950, 2020. DOI: 10.3389/fcimb.2020.591950
  • 10. Zhao J, Huang Q, Zhang G, Zhu-Salzman K, Cheng W: Characterization of two small heat shock protein genes (Hsp17.4 and Hs20.3) from Sitodiplosis mosellana, and their expression regulation during diapause. Insects, 12 (2): 119, 2021. DOI: 10.3390/insects12020119
  • 11. Bai J, Liu XN, Lu MX, Du YZ: Characterization of genes encoding small heat shock proteins from Bemisia tabaci and expression under thermal stress. Peer J, 7: e6992, 2019. DOI: 10.7717/peerj.6992
  • 12. Yi J, Wu H, Liu J, Lai X, Guo J, Li D, Zhang G: Molecular characterization and expression of six heat shock protein genes in relation to development and temperature in Trichogramma chilonis. PLoS One, 13 (9): e0203904, 2018. DOI: 10.1371/journal.pone.0203904
  • 13. Farahani S, Bandani AR, Alizadeh H, Goldansaz SH, Whyard S: Differential expression of heat shock proteins and antioxidant enzymes in response to temperature, starvation, and parasitism in the Carob moth larvae, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). PLoS One, 15 (1): e0228104, 2020. DOI: 10.1371/journal.pone.0228104
  • 14. Teets NM, Dalrymple EG, Hillis MH, Gantz JD, Spacht DE, Lee Jr RE, Denlinger DL: Changes in energy reserves and gene expression elicited by freezing and supercooling in the antarctic midge, Belgica antarctica. Insects, 11 (1): 18, 2019. DOI: 10.3390/insects11010018
  • 15. Wu YK, Zou C, Fu DM, Zhang WN, Xiao HJ: Molecular characterization of three Hsp90 from Pieris and expression patterns in response to cold and thermal stress in summer and winter diapause of Pieris melete. Insec Sci, 25 (2): 273-283, 2018. DOI: 10.1111/1744-7917.12414
  • 16. Chen K, Tang T, Song Q, Wang Z, He K, Liu X, Song J, Wang L, Yang Y, Feng C: Transcription analysis of the stress and immune response genes to temperature stress in Ostrinia furnacalis. Front Physiol, 10:1289, 2019. DOI: 10.3389/fphys.2019.01289
  • 17. Eskandari A, Leow TC, Rahman MBA, Oslan SN: Antifreeze proteins and their practical utilization in industry, medicine, and agriculture. Biomolecules, 10 (12): 1649, 2020. DOI: 10.3390/biom10121649
  • 18. Kim HJ, Lee JH, Hur YB, Lee CW, Park SH, Koo BW: Marine antifreeze proteins: Structure, function, and application to cryopreservation as a potential cryoprotectant. Mar Drugs, 15 (2): 27, 2017. DOI: 10.3390/ md15020027
  • 19. Meister K, Moll CJ, Chakraborty S, Jana B, DeVries AL, Ramløv H, Bakker HJ: Molecular structure of a hyperactive antifreeze protein adsorbed to ice. J Chem Phys, 150 (13): 131101, 2019. DOI: 10.1063/ 1.5090589
  • 20. Cheung RCF, Ng TB, Wong JH: Antifreeze proteins from diverse organisms and their applications: An overview. Curr Protein Pept Sci, 18 (3): 262-283, 2017. DOI: 10.2174/1389203717666161013095027
  • 21. Ye Q, Eves R, Campbell RL, Davies PL: Crystal structure of an insect antifreeze protein reveals ordered waters on the ice-binding surface. Biochem J, 477 (17): 3271-3286, 2020. DOI: 10.1042/bcj20200539
  • 22. Eslami M, Shirali Hossein Zade R, Takalloo Z, Mahdevar G, Emamjomeh A, Sajedi RH, Zahiri J: afpCOOL: A tool for antifreeze protein prediction. Heliyon, 4 (7): e00705, 2018. DOI: 10.1016/j.heliyon. 2018.e00705
  • 23. Toxopeus J, Sinclair BJ: Mechanisms underlying insect freeze tolerance. Biol Rev Camb Philos Soc, 93 (4): 1891-1914, 2018. DOI: 10.1111/ brv.12425
  • 24. Shivananjappa S, Laird RA, Floate KD, Fields PG: Cross-tolerance to desiccation and cold in Khapra Beetle (Coleoptera: Dermestidae). J Econ Entomol, 113 (2): 695-699, 2020. DOI: 10.1093/jee/toz316
  • 25. Kivelä SM, Gotthard K, Lehmann P: Developmental plasticity in metabolism but not in energy reserve accumulation in a seasonally polyphenic butterfly. J Exp Biol, 222 (Pt 13): jeb202150, 2019. DOI: 10.1242/jeb.202150
  • 26. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C: Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods, 14 (4): 417-419, 2017. DOI: 10.1038/nmeth.4197
  • 27. Zhao S, Ye Z, Stanton R: Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA, 26 (8): 903- 909, 2020. DOI: 10.1261/rna.074922.120
  • 28. Chen Y, Lun AT, Smyth GK: From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res, 5:1438, 2016. DOI: 10.12688/f1000research.8987.2
  • 29. Anstead CA, Korhonen PK, Young ND, Hall RS, Jex AR, Murali SC, Hughes DS, Lee SF, Perry T, Stroehlein AJ, Ansell BRE, Breugelmans B, Hofmann A, Qu J, Dugan S, Lee SL, Chao H, Dinh H, Han Y, Doddapaneni HV, Worley KC, Muzny DM, Ioannidis P, Waterhouse RM, Zdobnov EM, James PJ, Bagnall NH, Kotze AC, Gibbs RA, Richards S, Batterham P, Gasser RB: Lucilia cuprina genome unlocks parasitic fly biology to underpin future interventions. Nat Commun, 6:7344, 2015. DOI: 10.1038/ncomms8344
  • 30. Gu X, Chen W, Perry T, Batterham P, Hoffmann AA: Genomic knockout of hsp23 both decreases and increases fitness under opposing thermal extremes in Drosophila melanogaster. Insect Biochem Mol Biol, 139: 103652, 2021. DOI: 10.1016/j.ibmb.2021.103652
  • 31. Economou K, Kotsiliti E, Mintzas AC: Stage and cell-specific expression and intracellular localization of the small heat shock protein Hsp27 during oogenesis and spermatogenesis in the Mediterranean fruit fly, Ceratitis capitata. J Insect Physiol, 96: 64-72, 2017. DOI: 10.1016/j. jinsphys.2016.10.010
  • 32. Jabłońska J, Dubińska-Magiera M, Jagla T, Jagla K, Daczewska M: Drosophila Hsp67Bc hot-spot variants alter muscle structure and function. Cell Mol Life Sci, 75 (23): 4341-4356, 2018. DOI: 10.1007/s00018- 018-2875-z
  • 33. Rinehart JP, Yocum GD, Denlinger DL: Developmental upregulation of inducible hsp70 transcripts, but not the cognate form, during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Insect Biochem Mol Biol, 30 (6): 515-521, 2000. DOI: 10.1016/s0965-1748(00)00021-7
  • 34. Drori R, Davies PL, Braslavsky I: When are antifreeze proteins in solution essential for ice growth inhibition? Langmuir, 31 (21): 5805-5811, 2015. DOI: 10.1021/acs.langmuir.5b00345
  • 35. Duman JG: Animal ice-binding (antifreeze) proteins and glycolipids: An overview with emphasis on physiological function. J Exp Biol, 218 (Pt 12): 1846-1855, 2015. DOI: 10.1242/jeb.116905
  • 36. Arai T, Yamauchi A, Miura A, Kondo H, Nishimiya Y, Sasaki YC, Tsuda S: Discovery of hyperactive antifreeze protein from phylogenetically distant beetles questions its evolutionary origin. Int J Mol Sci, 22 (7): 3637, 2021. DOI: 10.3390/ijms22073637
  • 37. Quan G, Duan J, Fick W, Candau JN: Molecular characterization of eight ATP-dependent heat shock protein transcripts and their expression profiles in response to stresses in the spruce budworm, Choristoneura fumiferana (L.). J Therm Biol, 88:102493, 2020. DOI: 10.1016/j.jtherbio. 2019.102493
  • 38. King AM, MacRae TH: Insect heat shock proteins during stress and diapause. Annu Rev Entomol, 60, 59-75, 2015. DOI: 10.1146/annurev- ento-011613-162107
  • 39. Kang DS, Cotten MA, Denlinger DL, Sim C: Comparative trans- criptomics reveals key gene expression differences between diapausing and non-diapausing adults of Culex pipiens. PLoS One, 11 (4): e0154892, 2016. DOI: 10.1371/journal.pone.0154892
  • 40. Neelakanta G, Hudson AM, Sultana H, Cooley L, Fikrig E: Expression of Ixodes scapularis antifreeze glycoprotein enhances cold tolerance in Drosophila melanogaster. PLoS One, 7 (3): e33447, 2012. DOI: 10.1371/journal.pone.0033447
APA LI H, Xue J, Han B, Er D (2022). Studies on Overwintering Behavior and Cold Stress Related Unigenes of Wohlfahrtia magnifica. , 75 - 85. 10.9775/kvfd.2021.26481
Chicago LI Haobo,Xue Jiaqi Xue,Han Baoxiang,Er Demtu Studies on Overwintering Behavior and Cold Stress Related Unigenes of Wohlfahrtia magnifica. (2022): 75 - 85. 10.9775/kvfd.2021.26481
MLA LI Haobo,Xue Jiaqi Xue,Han Baoxiang,Er Demtu Studies on Overwintering Behavior and Cold Stress Related Unigenes of Wohlfahrtia magnifica. , 2022, ss.75 - 85. 10.9775/kvfd.2021.26481
AMA LI H,Xue J,Han B,Er D Studies on Overwintering Behavior and Cold Stress Related Unigenes of Wohlfahrtia magnifica. . 2022; 75 - 85. 10.9775/kvfd.2021.26481
Vancouver LI H,Xue J,Han B,Er D Studies on Overwintering Behavior and Cold Stress Related Unigenes of Wohlfahrtia magnifica. . 2022; 75 - 85. 10.9775/kvfd.2021.26481
IEEE LI H,Xue J,Han B,Er D "Studies on Overwintering Behavior and Cold Stress Related Unigenes of Wohlfahrtia magnifica." , ss.75 - 85, 2022. 10.9775/kvfd.2021.26481
ISNAD LI, Haobo vd. "Studies on Overwintering Behavior and Cold Stress Related Unigenes of Wohlfahrtia magnifica". (2022), 75-85. https://doi.org/10.9775/kvfd.2021.26481
APA LI H, Xue J, Han B, Er D (2022). Studies on Overwintering Behavior and Cold Stress Related Unigenes of Wohlfahrtia magnifica. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 28(1), 75 - 85. 10.9775/kvfd.2021.26481
Chicago LI Haobo,Xue Jiaqi Xue,Han Baoxiang,Er Demtu Studies on Overwintering Behavior and Cold Stress Related Unigenes of Wohlfahrtia magnifica. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 28, no.1 (2022): 75 - 85. 10.9775/kvfd.2021.26481
MLA LI Haobo,Xue Jiaqi Xue,Han Baoxiang,Er Demtu Studies on Overwintering Behavior and Cold Stress Related Unigenes of Wohlfahrtia magnifica. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, vol.28, no.1, 2022, ss.75 - 85. 10.9775/kvfd.2021.26481
AMA LI H,Xue J,Han B,Er D Studies on Overwintering Behavior and Cold Stress Related Unigenes of Wohlfahrtia magnifica. Kafkas Üniversitesi Veteriner Fakültesi Dergisi. 2022; 28(1): 75 - 85. 10.9775/kvfd.2021.26481
Vancouver LI H,Xue J,Han B,Er D Studies on Overwintering Behavior and Cold Stress Related Unigenes of Wohlfahrtia magnifica. Kafkas Üniversitesi Veteriner Fakültesi Dergisi. 2022; 28(1): 75 - 85. 10.9775/kvfd.2021.26481
IEEE LI H,Xue J,Han B,Er D "Studies on Overwintering Behavior and Cold Stress Related Unigenes of Wohlfahrtia magnifica." Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 28, ss.75 - 85, 2022. 10.9775/kvfd.2021.26481
ISNAD LI, Haobo vd. "Studies on Overwintering Behavior and Cold Stress Related Unigenes of Wohlfahrtia magnifica". Kafkas Üniversitesi Veteriner Fakültesi Dergisi 28/1 (2022), 75-85. https://doi.org/10.9775/kvfd.2021.26481