Yıl: 2022 Cilt: 47 Sayı: 1 Sayfa Aralığı: 7 - 15 Metin Dili: İngilizce DOI: 10.17826/cumj.978648 İndeks Tarihi: 29-07-2022

Role of hypoxia and embryonic stem cell genes in head and neck cancers

Öz:
Purpose: The aim of this study was to determine the effect of hypoxia on HIF-1α, HIF-2α, SOX2, OCT4, NANOG, CD133, ESRRA genes in Hep-2 laryngeal and FaDu pharyngeal cancer cell lines. Materials and Methods: Hep-2 and FaDu cell lines were exposed to hypoxia for 6, 12, 24, 48, and 72 hours to determine the effect of hypoxia and then treated with 5μM, 10μM and 20μM XCT790 under hypoxic conditions. Taqman Gene Expression Assays were used to determine mRNA expressions. Results: In the hypoxic environment, we observed that HIF-2α, SOX2, OCT4, NANOG, CD133, and ESRRA mRNA expressions increased, except HIF-1α in Hep-2 cells. In FaDu cells, it was observed that HIF-1α and SOX2 mRNA expressions decreased, while HIF-2α, OCT4, NANOG, CD133, and ESRRA mRNA expressions increased. When cells were treated with the ESRRA inverse agonist XCT790, the hypoxia-induced gene expression profile was found altered. Conclusion: In our study, it was determined that hypoxia changed the gene expression profile in Hep-2 and FaDu cell lines. According to our results, it was concluded that the ESRRA gene may be an important cofactor of the hypoxic response, but its inhibition alone may not be sufficient to abolish the hypoxic response. Protein data is needed to reveal the precise mechanisms of ESRRA and hypoxia association in head and neck cancers.
Anahtar Kelime: Head and neck cancers HIF embryonic stem cell marker hypoxia

Baş boyun kanserlerinde hipoksi ve embriyonik kök hücre genlerinin rolü

Öz:
Amaç: Bu çalışmada, Hep-2 larinks kanseri ve FaDu farenks kanseri hücre serilerinde hipoksinin, HIF-1α, HIF-2α, SOX2, OCT4, NANOG, CD133, ESRRA genleri üzerindeki etkisinin belirlenmesi amaçlanmıştır. Gereç ve Yöntem: Hep-2 ve FaDu hücre hatları 6, 12, 24, 48 ve 72 saat süreyle hipoksiye maruz bırakılarak hipoksinin genler üzerindeki etkisi belirlendi daha sonra hücreler hipoksik koşullar altında 5μM, 10μM ve 20μM XCT790 ile muamele edildi. Genlerinin mRNA seviyeleri Taqman gen ekspresyon assayler kullanılarak belirlendi. Bulgular: Hipoksik ortamda Hep-2 hücrelerinde HIF-1α dışında HIF-2α, SOX2, OCT4, NANOG, CD133 ve ESRRA mRNA ekspresyonlarının arttığını gözlemledik. FaDu hücrelerinde ise HIF-1α ve SOX2 mRNA ifadeleri azalırken, HIF-2α, OCT4, NANOG, CD133 ve ESRRA mRNA ifadelerinin arttığı gözlendi. Hücreler ESRRA invers agonisti XCT790 ile muamele edildiğinde, hipoksinin indüklediği gen ekspresyon profilinin değiştiği saptandı. Sonuç: Çalışmamızda hipoksinin, Hep-2 ve FaDu hücre hatlarının gen ekspresyon profilini değiştirdiği saptanmıştır. Sonuçlarımıza göre, ESRRA geninin hipoksik yanıt oluşumunda önemli bir kofaktör olabileceği, ancak tek başına inhibisyonunun hipoksik yanıtı ortadan kaldırmak için yeterli olmayabileceği sonucuna varılmıştır. Baş ve boyun kanserlerinde ESRRA ve hipoksi ilişkisinin mekanizmalarını ortaya çıkarmak için protein verilerine ihtiyaç vardır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Eskiizmir G. Baş boyun yassı hücreli karsinomlarında tümör mikroçevresi. Turk Arch Otorhinolaryngol. 2015;53:120-7.
  • 2. Suh Y, Amelio I, Guerrero Urbano T, Tavassoli M. Clinical update on cancer: molecular oncology of head and neck cancer. Cell Death Dis. 2014;23:e1018.
  • 3. Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11:9-22.
  • 4. Ruan K, Song G, Ouyang G. Role of hypoxia in the hallmarks of human cancer. J Cell Biochem. 2009;107:1053-62.
  • 5. Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncologist. 2004;5:10-7.
  • 6. Weidemann A, Johnson RS. Biology of HIF-1alpha. Cell Death Differ. 2008;15:621-7.
  • 7. Forristal CE, Wright KL, Hanley NA, Oreffo RO, Houghton FD. Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction. 2010;139:85-97.
  • 8. Koide H. Embryonic stem cells and oncogenes. In Pluripotent Stem Cell Biology - Advances in Mechanisms, Methods and Models (Eds CS Atwood, SV Meethal):41-61. London, In Tech, 2014.
  • 9. Yeo JC, Ng HH. Transcriptomic analysis of pluripotent stem cells: insights in to health an disease. Genome Med. 2011;3:68.
  • 10. Amini S, Fathi F, Mobalegi J, Sofimajidpour H, Ghadimi T. The expressions of stem cell markers: Oct4, Nanog, Sox2, nucleostemin, Bmi, Zfx, Tcl1, Tbx3, Dppa4, and Esrrb in bladder, colon, and prostate cancer, and certain cancer cell lines. Anat Cell Biol. 2014;47:1-11.
  • 11. Luo W, Li S, Peng B, Ye Y, Deng X, Yao K. Embryonic stem cells markers SOX2, OCT4 and Nanog expression and their correlations with epithelial-mesenchymal transition in nasopharyngeal carcinoma. PLoS One. 2013;8:e56324.
  • 12. Basati G, Mohammadpour H, Emami Razavi AJ. Association of high expression levels of SOX2, NANOG, and OCT4 in gastric cancer tumor tissues with progression and poor prognosis. Gastrointest Cancer. 2020;51:41-7.
  • 13. Assadollahi V, Gholami M, Zendedel A, Afsartala Z, Jahanmardi F. Comparison of Oct4, Sox2 and Nanog expression in pancreatic cancer cell lines and human pancreatic tumor. Zahedan J Res Med Sci. 2015;17:e5186.
  • 14. Weina K, Utikal J.SOX2 and cancer: current research and its implications in the clinic. Clin Transl Med. 2014;3:19.
  • 15. Wang YD, Cai N, Wu XL, Cao HZ, Xie LL, Zheng PS. OCT4 promotes tumorigenesis and inhibits apoptosis of cervical cancer cells by miR-125b/BAK1 pathway. Cell Death Dis. 2013;4:e760.
  • 16. Gawlik-Rzemieniewska N, Bednarek I. The role of NANOG transcriptional factor in the development of malignant phenotype of cancer cells. Cancer Biol Ther. 2016;17:1-10.
  • 17. Li Z. CD133: a stem cell biomarker and beyond. Exp Hematol Oncol. 2013;2:17.
  • 18. Ao A, Wang H, Kamarajugadda S, Lu J. Involvement of estrogen-related receptors in transcriptional response to hypoxia and growth of solid tumors. Proc Natl Acad Sci USA. 2008;105:7821-6.
  • 19. Cunningham KF, Beeson GC, Beeson CC, Baicu CF, Zile MR, McDermott PJ. Estrogen-Related Receptor α (ERRα) is required for adaptive increases in PGC-1 isoform expression during electrically stimulated contraction of adult cardiomyocytes in sustained hypoxic conditions. Int J Cardiol. 2015;187:393-400.
  • 20. Zou C, Yu S, Xu Z, Wu D, Ng CF, Yao X et al. ERRα augments HIF-1 signalling by directly interacting with HIF-1α in normoxic and hypoxic prostate cancer cells. J Pathol. 2014;233:61-73.
  • 21. Hamidian A, von Stedingk K, Munksgaard Thorén M, Mohlin S, Påhlman S. Differential regulation of HIF1α and HIF-2α in neuroblastoma: Estrogen-related receptor alpha (ERRα) regulates HIF2A transcription and correlates to poor outcome. Biochem Biophys Res Commun. 2015;461:560-7.
  • 22. Wu D, Yotnda P Induction and testing of hypoxia in cell culture. J Vis Exp. 2011;54:2899.
  • 23. Cesário JM, Brito RB, Malta CS, Silva CS, Matos YS, Kunz TC et al. A simple method to induce hypoxiainducedvascular endothelial growth factor (VEGF) expression in T24 human bladder cancer cells. In Vitro Cell Dev Biol Anim. 2017;53:272-6.
  • 24. Anspach LA. Chaperone BiP: master regulator of the unfolded protein response (UPR) and its role in regulation of angiogenesis (Doctoral dissertation). Mainz, Johannes Gutenberg-Universität, 2015.
  • 25. Fedele AO. Differential function and regulation of the hypoxia inducible factors in the rat pheochromocytoma cell line pc12 (Doctoral thesis). Adelaide, Australia, University of Adelaide, 2004.
  • 26. Olechnowicz SW, Fedele AO, Peet DJ. Hypoxic induction of the regulator of G-protein signalling 4 gene is mediated by the hypoxia-inducible factor pathway. PLoS One. 2012;7:e44564.
  • 27. Smith H, Bard M, Pellagatti A, Turley H, Boultwood J, Callaghan R. The effects of severe hypoxia on glycolytic flux and enzyme activity in a model of solid tumors. J Cell Biochem. 2016;117:1890-901.
  • 28. O'Connor DJ, Lu X. Stress signals induce transcriptionally inactive E2F-1 independently of p53 and Rb. Oncogene. 2000;19:2369-76.
  • 29. Özyiğit MÖ, Kahraman MM, Akkoç A. The effects of hypoxia on the expression of vascular endothelial growth factor in broiler lung fibroblasts. Turk J Vet Anim Sci. 2015;39:174-180.
  • 30. Cesário JM, Brito RB, Malta CS, Silva CS, Matos YS, Kunz TC et al. A simple method to induce hypoxiainduced vascular endothelial growth factor-A (VEGFA) expression in T24 human bladder cancer cells. In Vitro Cell Dev Biol Anim. 2017;53:272-6.
  • 31. Hamdan FH, Zihlif MA. Gene expression alterations in chronic hypoxic MCF7 breast cancer cell line. Genomics. 2014;104:477-81.
  • 32. Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 2015;3:83-92.
  • 33. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 2009;15:501-13.
  • 34. Zúñiga J, Checa M, Maldonado-Martínez HA, Trinidad-López A, Cisneros J, Torres- Espíndola LM et al. Effects of 2-methoxyestradiol on apoptosis and HIF-1α and HIF-2α expression in lung cancer cells under normoxia and hypoxia. Oncol Rep. 2016;35:577-83.
  • 35. Chamboredon S, Ciais D, Desroches-Castan A, Savi P, Bono F, Feige JJ et al. Hypoxia-inducible factor-1α mRNA: a new target for destabilization by tristetraprolin in endothelial cells. Mol Biol Cell. 2011;22:3366-78.
  • 36. Cavadas MA, Mesnieres M, Crifo B, Manresa MC, Selfridge AC, Scholz CC et al. REST mediates resolution of HIF-dependent gene expression in prolonged hypoxia. Sci Rep. 2015;5:17851.
  • 37. Bartoszewska S, Kochan K, Piotrowski A, Kamysz W, Ochocka RJ, Collawn JF et al. The hypoxia-inducible miR-429 regulates hypoxia-inducible factor-1α expression in human endothelial cells through a negative feedback loop. FASEB J. 2015;29:1467-79.
  • 38. Uchida T, Rossignol F, Matthay MA, Mounier R, Couette S, Clottes E et al. Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF1alpha. J Biol Chem. 2004;279:14871-8.
  • 39. Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ et al. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 2006;20:557-70.
  • 40. Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM et al. HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 2011;71:4640-52.
  • 41. Bruning U, Cerone L, Neufeld Z, Fitzpatrick SF, Cheong A, Scholz CC et al. MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol Cell Biol. 2011;31:4087-96.
  • 42. Liang D, Ma Y, Liu J, Trope CG, Holm R, Nesland JM et al. The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells. BMC Cancer. 2012;12:201.
  • 43. Rasbach KA, Gupta RK, Ruas JL, Wu J, Naseri E, Estall JL et al. PGC-1alpha regulates a HIF2alphadependent switch in skeletal muscle fiber types. Proc Natl Acad Sci U S A. 2010;14:21866-71.
  • 44. Mukherjee TK, Malik P, Hoidal JR. The emerging role of estrogen related receptorα in complications of nonsmall cell lung cancers. Oncol Lett. 2021;21:258.
  • 45. Zhong Y, He K, Shi L, Chen L, Zhou B, Ma R et al. Down-regulation of estrogen-related receptor alpha (ERRalpha) inhibits gastric cancer cell migration and invasion in vitro and in vivo. Aging (Albany NY). 2021;11:5845-57.
  • 46. Tiwari A, Swamy S, Gopinath KS, Kumar A. Genomic amplification upregulates estrogen-related receptor alpha and its depletion inhibits oral squamous cell carcinoma tumors in vivo. Sci Rep. 2015;5:17621.
  • 47. Chen Y, Zhang K, Li Y, He Q. Estrogen-related receptor α participates transforming growth factor- (TGF-β) induced epithelial-mesenchymal transition of osteosarcoma cells. Cell Adh Migr. 2017;11:338-46.
  • 48. Casaburi I, Avena P, De Luca A, Chimento A, Sirianni R, Malivindi R et al. Estrogen related receptor α (ERRα) a promising target for the therapy of adrenocortical carcinoma (ACC). Oncotarget. 2015;6:25135-48.
  • 49. Huang M, Chen L, Mao X, Liu G, Gao Y, You X et al. ERRalpha inhibitor acts as a potential agonist of PPARgamma to induce cell apoptosis and inhibit cell proliferation in endometrial cancer. Aging (Albany NY). 2020;12:23029-46.
  • 50. Wu F, Wang J, Wang Y, Kwok TT, Kong SK, Wong C. Estrogen-related receptor alpha (ERRalpha) inverse agonist XCT-790 induces cell death in chemotherapeutic resistant cancer cells. Chem Biol Interact. 2009;181:236-42.
  • 51. Kokabu T, Mori T, Matsushima H, Yoriki K, Kataoka H, Tarumi Y et al. Antitumor effect of XCT790, an ERRα inverse agonist, on ERα-negative endometrial cancer cells. Cell Oncol (Dordr). 2019;42:223-35.
  • 52. Wu YM, Chen ZJ, Jiang GM, Zhang KS, Liu Q, Liang SW et al. Inverse agonist of estrogen-related receptor α suppresses the growth of triple negative breast cancer cells through ROS generation and interaction with multiple cell signaling pathways. Oncotarget. 2016;7:12568-81.
  • 53. Deblois G, St-Pierre J, Giguère V. The PGC-1/ERR signaling axis in cancer. Oncogene. 2013;25;3483-90.
  • 54. Wang J, Wang Y, Wong C. Oestrogen-related receptor alpha inverse agonist XCT-790 arrests A549 lung cancer cell population growth by inducing mitochondrial reactive oxygen species production. Cell Prolif. 2010;43:103-13.
  • 55. Wu F, Wang J, Wang Y, Kwok TT, Kong SK, Wong C. Estrogen-related receptor alpha (ERRalpha) inverse agonist XCT-790 induces cell death in chemotherapeutic resistant cancer cells. Chem Biol Interact. 2009;181:236-42.
  • 56. Kokabu T, Mori T, Matsushima H, Yoriki K, Kataoka H, Tarumi Y et al. Antitumor effect of XCT790, an ERRα inverse agonist, on ERα-negative endometrial cancer cells. Cell Oncol (Dordr). 2019;42:223-35.
APA ILGAZ N, ÖKSÜZ H, yilmaz m, KESER N, Alptekin D (2022). Role of hypoxia and embryonic stem cell genes in head and neck cancers. , 7 - 15. 10.17826/cumj.978648
Chicago ILGAZ Nermin Seda,ÖKSÜZ Hale,yilmaz mehmet bertan,KESER NURŞEN,Alptekin Davut Role of hypoxia and embryonic stem cell genes in head and neck cancers. (2022): 7 - 15. 10.17826/cumj.978648
MLA ILGAZ Nermin Seda,ÖKSÜZ Hale,yilmaz mehmet bertan,KESER NURŞEN,Alptekin Davut Role of hypoxia and embryonic stem cell genes in head and neck cancers. , 2022, ss.7 - 15. 10.17826/cumj.978648
AMA ILGAZ N,ÖKSÜZ H,yilmaz m,KESER N,Alptekin D Role of hypoxia and embryonic stem cell genes in head and neck cancers. . 2022; 7 - 15. 10.17826/cumj.978648
Vancouver ILGAZ N,ÖKSÜZ H,yilmaz m,KESER N,Alptekin D Role of hypoxia and embryonic stem cell genes in head and neck cancers. . 2022; 7 - 15. 10.17826/cumj.978648
IEEE ILGAZ N,ÖKSÜZ H,yilmaz m,KESER N,Alptekin D "Role of hypoxia and embryonic stem cell genes in head and neck cancers." , ss.7 - 15, 2022. 10.17826/cumj.978648
ISNAD ILGAZ, Nermin Seda vd. "Role of hypoxia and embryonic stem cell genes in head and neck cancers". (2022), 7-15. https://doi.org/10.17826/cumj.978648
APA ILGAZ N, ÖKSÜZ H, yilmaz m, KESER N, Alptekin D (2022). Role of hypoxia and embryonic stem cell genes in head and neck cancers. Cukurova Medical Journal, 47(1), 7 - 15. 10.17826/cumj.978648
Chicago ILGAZ Nermin Seda,ÖKSÜZ Hale,yilmaz mehmet bertan,KESER NURŞEN,Alptekin Davut Role of hypoxia and embryonic stem cell genes in head and neck cancers. Cukurova Medical Journal 47, no.1 (2022): 7 - 15. 10.17826/cumj.978648
MLA ILGAZ Nermin Seda,ÖKSÜZ Hale,yilmaz mehmet bertan,KESER NURŞEN,Alptekin Davut Role of hypoxia and embryonic stem cell genes in head and neck cancers. Cukurova Medical Journal, vol.47, no.1, 2022, ss.7 - 15. 10.17826/cumj.978648
AMA ILGAZ N,ÖKSÜZ H,yilmaz m,KESER N,Alptekin D Role of hypoxia and embryonic stem cell genes in head and neck cancers. Cukurova Medical Journal. 2022; 47(1): 7 - 15. 10.17826/cumj.978648
Vancouver ILGAZ N,ÖKSÜZ H,yilmaz m,KESER N,Alptekin D Role of hypoxia and embryonic stem cell genes in head and neck cancers. Cukurova Medical Journal. 2022; 47(1): 7 - 15. 10.17826/cumj.978648
IEEE ILGAZ N,ÖKSÜZ H,yilmaz m,KESER N,Alptekin D "Role of hypoxia and embryonic stem cell genes in head and neck cancers." Cukurova Medical Journal, 47, ss.7 - 15, 2022. 10.17826/cumj.978648
ISNAD ILGAZ, Nermin Seda vd. "Role of hypoxia and embryonic stem cell genes in head and neck cancers". Cukurova Medical Journal 47/1 (2022), 7-15. https://doi.org/10.17826/cumj.978648