Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate

Yıl: 2022 Cilt: 9 Sayı: 1 Sayfa Aralığı: 57 - 63 Metin Dili: İngilizce DOI: 10.17350/HJSE19030000255 İndeks Tarihi: 29-07-2022

Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate

Öz:
ZnO nanosheets were fabricated on a silver-metalized polyimide (PI/Ag) substrate using electrochemical deposition. For a comparison, PI/Ag film was also obtained by electroless deposition. FE-SEM, XRD, UV–Vis absorption, and I-V measurements were employed to examine the structural, optical and electrical properties of silver-metalized PI film and ZnO deposited PI/Ag film. FE-SEM analysis indicated that a continuous silver film layer, consisted of spherical Ag nanoparticles, and the ZnO nanosheets were synthesized on PI substrate by electroless and electrochemical deposition, respectively. Moreover, the growth mechanism of the Ag film and ZnO nanosheets was also discussed. The characterization of X-ray diffraction verified that the ZnO nanosheets had a hexagonal phase and grew along the [002] direction. The optical absorbance spectra of bare PI, PI/Ag, and PI/Ag/ZnO showed a broad absorption peak around 300 nm. The electrical properties of the PI/Ag and PI/Ag/ZnO samples were studied by current-voltage (I-V) measurements in the dark environment at room temperature (300 K). The I-V measurements suggested that the samples presented ohmic characteristics. The results revealed that the deposition of ZnO on PI/Ag substrate improved the electrical conductivity compare with bare PI/Ag.
Anahtar Kelime: Polyimide Electrochemical deposition ZnO nanosheet Silver

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Lee D, Youn DY, Luo Z, Kim I D. Highly flexible transparent electrodes using a silver nanowires-embedded colorless polyimide film via chemical modification. RSC Adv. 6 (2016) 30331–30336.
  • 2. Yu Y, Shen W, Li F, Fang X, Duan H, Xu F, Xiong Y, Xu W, Song W. Solution-processed multifunctional transparent conductive films based on long silver nanowires/polyimide structure with highly thermostable and antibacterial properties. RSC Adv. 7 (2017) 28670–28676.
  • 3. Kang L, Shi Y, Zhang J, Huang C, Zhang N, He Y, Li W, Wang C, Wu X, Zhou X. A flexible resistive temperature detector (RTD) based on in-situ growth of patterned Ag film on polyimide without lithography. Microelectron. Eng. 216 (2019) 111052.
  • 4. Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 37 (2012) 907–974.
  • 5. Ou X, Lu X, Chen S, Lu Q. Thermal conductive hybrid polyimide with ultrahigh heat resistance, excellent mechanical properties and low coefficient of thermal expansion. Eur. Polym. J. 122 (2019) 109368.
  • 6. Chen TP, Young SJ, Chang SJ, Hsiao CH. Photoconductive gain of vertical ZnO nanorods on flexible polyimide substrate by low-temperature process. IEEE Sens. J. 11 (2011) 3457–3461.
  • 7. Cooper R, Ferguson D, Engelhart DP, Hoffmann R. Effects of radiation damage on polyimide resistivity. J. Spacecr. Rockets. 54 (2017) 343–348.
  • 8. Shen FY, Huang SE, Dow WP. Silver metallization of polyimide surfaces using environmentally friendly reducing agents. ECS Electrochem. Lett. 2 (2013) 45–48.
  • 9. Chen JJ, An Q, Rodriguez RD, Sheremet E, Wang Y, Sowade E, Baumann RR, Feng ZS. Surface modification with special morphology for the metallization of polyimide film. Appl. Surf. Sci. 487 (2019) 503–509.
  • 10. Nguyen THL, Cortes LQ, Lonjon A, Dantras E, Lacabanne C. High conductive Ag nanowire-polyimide composites: Charge transport mechanism in thermoplastic thermostable materials. J. Non. Cryst. Solids. 385 (2014) 34–39.
  • 11. Akamatsu K, Ikeda S, Nawafune H. Site-Selective Direct Silver Metallization on Surface-Modified Polyimide Layers. Langmuir. 19 (2003) 10366–10371.
  • 12. Tang QY, Chan YC, Wong NB, Cheung R. Surfactant-assisted processing of polyimide/multiwall carbon nanotube nanocomposites formicroelectronics applications. Polym. Int. 59 (2010) 1240–1245.
  • 13. Akamatsu K, Shinkai H, Ikeda S, Adachi S, Nawafune H, Tomita S. Controlling interparticle spacing among metal nanoparticles through metal-catalyzed decomposition of surrounding polymer matrix. J. Am. Chem. Soc. 127 (2005) 7980–7981.
  • 14. Chang TFM, Wang CC, Yen CY, Chen SH, Chen CY, Sone M. Metallization of polyimide films with enlarged area by conducting the catalyzation in supercritical carbon dioxide. Microelectron. Eng. 153 (2016) 1–4.
  • 15. Choi DJ, Maeng JS, Ahn KO, Jung MJ, Song SH, Kim YH. Synthesis of Cu or Cu2O-polyimide nanocomposites using Cu powders and their optical properties. Nanotechnology. 25 (2014), 375604.
  • 16. Kou H, Jia L, Wang C. Electrochemical deposition of flower-like ZnO nanoparticles on a silver-modified carbon nanotube/polyimide membrane to improve its photoelectric activity and photocatalytic performance. Carbon. 50 (2012) 3522–3529.
  • 17. Chen Q, Sun Y, Wang Y, Cheng H, Wang QM. ZnO nanowires-polyimide nanocomposite piezoresistive strain sensor. Sensors Actuators, A Phys. 190 (2013) 161-167.
  • 18. Babrekar HA, Jejurikar SM, Jog JP, Adhi KP, Bhoraskar SV. Low thermal emissive surface properties of ZnO/polyimide composites prepared by pulsed laser deposition. Appl. Surf. Sci. 257 (2011) 1824–1828.
  • 19. Li D, Wu C, Ruan L, Wang J, Qui Z, Wang K, Liu Y, Zhang Y, Guo T, Lin J, Kim TW. Electron-transfer mechanisms for confirmation of contact-electrification in ZnO/polyimide-based triboelectric nanogenerators. Nano Energy. 75 (2020) 104818.
  • 20. Shishino K, Yamada T, Arai M, İkeda M, Hirata H, Motoi M, Hatakeyama T, Teshima K. A strongly adhering ZnO crystal layer: Via a seed/buffer-free, low-temperature direct growth on a polyimide film via a solution process. CrystEngComm. 22 (2020) 5533-5538.
  • 21. Wu Z, Wu D, Qi S, Zhang T, Jin R. Preparation of surface conductive and highly reflective silvered polyimide films by surface modification and in situ self-metallization technique. Thin Solid Films. 493 (2005) 179–184.
  • 22. Liu TJ, Chen CH, Wu PY, Lin CH, Chen CM. Efficient and Adhesiveless Metallization of Flexible Polyimide by Functional Grafting of Carboxylic Acid Groups. Langmuir. 35 (2019) 7212–7221.
  • 23. Cetinel A, Artunç N, Tarhan E. The growth of silver nanostructures on porous silicon for enhanced photoluminescence: The role of AgNO3 concentration and deposition time. EPJ Appl. Phys. 86 (2019) 11301.
  • 24. Aydemir G, Utlu G, Çetinel A. Growth and characterization of ZnO nanostructures on porous silicon substrates: Effect of solution temperature. Chem. Phys. Lett. 737 (2019) 136827.
  • 25. Yang J, Wang Y, Kong J, Jia H, Wang Z. Synthesis of ZnO nanosheets via electrodeposition method and their optical properties, growth mechanism. Opt. Mater. 46 (2015) 179–185.
  • 26. Patterson AL. The scherrer formula for X-ray particle size determination. Phys. Rev. 56 (1939) 978–982.
  • 27. Siegel J, Polívková M, Kasálková NS, Kolská Z, Švorčík V. Properties of silver nanostructure-coated PTFE and its biocompatibility. Nanoscale Res. Lett. 8 (2013) 1–10.
  • 28. Sessler GM, Hahn B, Yoon DY. Electrical conduction in polyimide films. J. Appl. Phys. 60 (1986) 318–326.
APA Çetinel A (2022). Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate. , 57 - 63. 10.17350/HJSE19030000255
Chicago Çetinel Alper Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate. (2022): 57 - 63. 10.17350/HJSE19030000255
MLA Çetinel Alper Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate. , 2022, ss.57 - 63. 10.17350/HJSE19030000255
AMA Çetinel A Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate. . 2022; 57 - 63. 10.17350/HJSE19030000255
Vancouver Çetinel A Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate. . 2022; 57 - 63. 10.17350/HJSE19030000255
IEEE Çetinel A "Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate." , ss.57 - 63, 2022. 10.17350/HJSE19030000255
ISNAD Çetinel, Alper. "Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate". (2022), 57-63. https://doi.org/10.17350/HJSE19030000255
APA Çetinel A (2022). Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate. Hittite Journal of Science and Engineering, 9(1), 57 - 63. 10.17350/HJSE19030000255
Chicago Çetinel Alper Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate. Hittite Journal of Science and Engineering 9, no.1 (2022): 57 - 63. 10.17350/HJSE19030000255
MLA Çetinel Alper Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate. Hittite Journal of Science and Engineering, vol.9, no.1, 2022, ss.57 - 63. 10.17350/HJSE19030000255
AMA Çetinel A Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate. Hittite Journal of Science and Engineering. 2022; 9(1): 57 - 63. 10.17350/HJSE19030000255
Vancouver Çetinel A Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate. Hittite Journal of Science and Engineering. 2022; 9(1): 57 - 63. 10.17350/HJSE19030000255
IEEE Çetinel A "Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate." Hittite Journal of Science and Engineering, 9, ss.57 - 63, 2022. 10.17350/HJSE19030000255
ISNAD Çetinel, Alper. "Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate". Hittite Journal of Science and Engineering 9/1 (2022), 57-63. https://doi.org/10.17350/HJSE19030000255