Yıl: 2022 Cilt: 4 Sayı: 1 Sayfa Aralığı: 45 - 53 Metin Dili: İngilizce DOI: 10.46387/bjesr.1081644 İndeks Tarihi: 29-07-2022

Modelling and Control of Single-Phase Bidirectional AC/DC Converter Used in Microgrid Energy Systems

Öz:
In this study, bidirectional single-phase PWM AC/DC converter that is used in microgrid systems at connection point to the grid, is modelled and controlled. PWM signals of the converter is generated with hysteresis current control technique. The mathematical model is developed in Matlab/Simulink. The converter with 5 kW active power capability is examined in rectifier and inverter mode for steady-state and transient response. Two operation modes of the converter is existed by changing power of the DC load and source. The converter transfers the energy from grid to DC bus in rectifier mode while the energy in the DC bus is transferred to grid in inverter mode. The grid current THD% values meet IEEE 1547 and IEEE 519 standards in both modes with 1.52%. The reactive power support of the converter with phase angle control of the grid current is presented. In both modes, reactive power of 500-900 VAr are provided. The obtained results show the availability of the modelling and control of the converter for active and reactive power generating.
Anahtar Kelime: Inverter PWM Rectifier Converter Modelling Microgrid Hysteresis Current Control

Mikroşebeke Enerji Sistemlerinde Kullanılan Tek Fazlı İki Yönlü AC/DC Dönüştürücünün Modellenmesi ve Kontrolü

Öz:
Bu çalışmada mikroşebeke enerji sistemlerinde şebeke bağlantı noktasında kullanılan iki yönlü tek fazlı PWM AC/DC dönüştürücünün modellemesi ve kontrolü yapılmıştır.Matlab/Simulink ortamında matematiksel model geliştirilmiştir. Dönüştürücü inverter ve doğrultucu modunda 5 kW aktif güç kapasitesinde kararlı hal ve geçici durum cevabı incelenmiştir. Dönüştürücü doğrultucu modunda enerjiyi şebekeden DC baraya doğru gönderirken inverter modunda ise DC baradan şebekeye enerji transferi gerçekleştirmektedir. Şebeke akımı %THD değeri incelendiğinde IEEE 1547 ve IEEE 519 standartları her iki çalışma modunda da %1,52 bozulum oranı karşılanmaktadır. Dönüştürücünün çalışmasında şebeke akımı faz açısı kontrolü ile reaktif güç üretimi de ortaya konmuştur. Elde edilen sonuçlar geliştirilen dönüştürücü modelinin ve kontrolünün dönüştürücü aktif ve reaktif güç üretimindeki uygunluğunu göstermektedir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] I. Cetinbas, B. Tamyurek, and M. Demirtas, “Optimal Design of a Microgrid with PV Generation and Energy Storage Unit to Reduce Electricity Cost in Eskisehir Osmangazi University Campus”, EMO Bilimsel Dergi, vol. 8, no. 1, pp. 33-38, 2018.
  • [2] A. S. Aziz, M. F. N. Tajuddin, M. R. Adzman, M. A. M. Ramli and S. Mekhilef, “Energy Management and Optimization of a PV/Diesel/Battery Hybrid Energy System Using a Combined Dispatch Strategy”, Sustainability, vol. 11, no. 683, pp. 1-26, 2019.
  • [3] D. Emara, M. Ezzat, A. Y. Abdelaziz, K. Mahmoud, M. Lehtonen and M.M.F. Darwish, “Novel Control Strategy for Enhancing Microgrid Operation Connected to Photovoltaic Generation and Energy Storage Systems”, Electronics, vol. 10, no. 1261, pp. 1-17, 2021.
  • [4] S. Vasantharaj, V. Indragandhi, V. Subramaniyaswamy, Y. Teekaraman, R. Kuppusamy and S. Nikolovski, “Efficient Control of DC Microgrid with Hybrid PV-Fuel Cell and Energy Storage Systems”, Energies, vol. 14, no. 3234, pp. 1- 18, 2021.
  • [5] J. Jiao, R. Meng, Z. Guan, C. Ren, L. Wang and B. Zhang, “Grid-connected Control Strategy for Bidirectional AC-DC Interlinking Converter in ACDC Hybrid Microgrid”, IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 341-345, 2019.
  • [6] F. Gao, X. Wang, P. Yang, S. Kou and M. Sun, “Research and Simulation of Hybrid AC/DC Microgrid”, 4th International Conference on HVDC, pp. 1276-1280, 2020.
  • [7] X. Wang, J.M. Guerrero, F. Blaabjerg and Z. Chen, “A Review of Power Electronics Based Microgrids”, International Journal of Power Electronics, vol. 12, no. 1, pp. 181-192, 2012.
  • [8] C. Kalavalli, K. ParkaviKathirvelu and R. Balasubramanian, “Single Phase Bidirectional PWM Converter for Microgrid System”, International Journal of Engineering and Technology, vol. 5, no. 3, pp. 2436-2441, 2013.
  • [9] C. K. Gowda, V. G. Khedekar, N. Anandh, L. R. S. Paragond and P. Kulkarni, “Bidirectional on-board EV battery charger with V2H application”, 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), pp.1-5, 2019.
  • [10] V. Vivek and V. A. Manjusha, “Bidirectional AC/DC Converter Using Simplified PWM with Feed-Forward Control”, International Journal of Innovative Research in Science, Engineering and Technology, vol. 5, no. 7, pp. 12426-12433, 2016.
  • [11] E. Isen, “Modeling and Simulation of Hysteresis Current Controlled Single-Phase Grid-Connected Inverter”, 17th International Conference on Electrical and Power Engineering, pp. 322-326, 2015.
  • [12] A. Sangari, R. Umamaheswari, M. G. Umamaheswari and S. Lekshmi, “A novel SOSMC based SVPWM control of Z-source inverter for AC microgrid applications”, Microprocessors and Microsystems, vol. 75, pp. 1-13, 2020.
  • [13] E. Isen and A. F. Bakan, “10 kW grid-connected three-phase inverter system: Control, simulation and experimental results”, IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 836-840, 2012.
  • [14] S. Paghdar, U. Sipai, K. Ambasana and P. J. Chauhan, “Active and reactive power control of grid connected distributed generation system”, Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), pp. 1- 7, 2017.
  • [15] J. J. Justo, F. Mwasilu, J. Lee and J. W. Jung, “ACmicrogrids versus DC-microgrids with distributed energy resources: A review”, Renewable and Sustainable Energy Reviews, vol. 24, pp. 387-405, 2013.
  • [16] A. M. R. Lede, M. G. Molina, M. Martinez and P. E. Mercado, “Microgrid Architectures for Distributed Generation: A Brief Review”, IEEE PES Innovative Smart Grid Technologies Conference-Latin America (ISGT Latin America), pp. 1-7, 2017.
  • [17] E. R. Diaz, E. J. P. Garcia, A. A. Moghaddam, J. C. Vasquez and J. Guerrero, “Real-Time Energy Management System for a Hybrid AC/DC Residential Microgrid”, IEEE Second International Conference on DC Microgrids (ICDCM), pp. 256- 261, 2017.
  • [18] M. A Alarcon, R. G. Alarcon, A. H. Gonzalez and A. Ferramosca, “Modeling a residential microgrid for energy management”, 2020 Argentine Conference on Automatic Control (AADECA), pp. 1-6, 2020.
  • [19] K. Tazi, F. Abdi, A. B. Chaka and F. M. Abbou, “Modeling and simulation of a residential microgrid supplied with PV/batteries in connected/disconnected modes-Case of Morocco”, Journal of Renewable and Sustainable Energy, vol. 9, no. 025503, pp. 1-15, 2017.
  • [20] M. M. U. Rashid, M. A. Alotaibi, A. H. Chowdhury, M. Rahman, M. S. Alam, M. A. Hossain and M. A. Abido, “Home Energy Management for Community Microgrids Using Optimal Power Sharing Algorithm”, Energies, vol. 14, no. 1060, pp. 1-21, 2021.
  • [21] C. Picardi, D. Sgro and G. Gioffre, “A simple and low-cost PLL structure for single-phase gridconnected inverters”, SPEEDAM 2010, pp. 358- 362, 2010.
  • [22] Z. Ali, N. Christofides, L. Hadjidemetriou, E. Kyriakides, Y. Yang and F. Blaabjerg, “Three-phase phase-locked loop synchronization algorithms for grid-connected renewable energy systems: A review”, Renewable and Sustainable Energy Reviews, vol. 90, pp. 434-452, 2018.
APA Isen E (2022). Modelling and Control of Single-Phase Bidirectional AC/DC Converter Used in Microgrid Energy Systems. , 45 - 53. 10.46387/bjesr.1081644
Chicago Isen Evren Modelling and Control of Single-Phase Bidirectional AC/DC Converter Used in Microgrid Energy Systems. (2022): 45 - 53. 10.46387/bjesr.1081644
MLA Isen Evren Modelling and Control of Single-Phase Bidirectional AC/DC Converter Used in Microgrid Energy Systems. , 2022, ss.45 - 53. 10.46387/bjesr.1081644
AMA Isen E Modelling and Control of Single-Phase Bidirectional AC/DC Converter Used in Microgrid Energy Systems. . 2022; 45 - 53. 10.46387/bjesr.1081644
Vancouver Isen E Modelling and Control of Single-Phase Bidirectional AC/DC Converter Used in Microgrid Energy Systems. . 2022; 45 - 53. 10.46387/bjesr.1081644
IEEE Isen E "Modelling and Control of Single-Phase Bidirectional AC/DC Converter Used in Microgrid Energy Systems." , ss.45 - 53, 2022. 10.46387/bjesr.1081644
ISNAD Isen, Evren. "Modelling and Control of Single-Phase Bidirectional AC/DC Converter Used in Microgrid Energy Systems". (2022), 45-53. https://doi.org/10.46387/bjesr.1081644
APA Isen E (2022). Modelling and Control of Single-Phase Bidirectional AC/DC Converter Used in Microgrid Energy Systems. Mühendislik bilimleri ve araştırmaları dergisi (Online), 4(1), 45 - 53. 10.46387/bjesr.1081644
Chicago Isen Evren Modelling and Control of Single-Phase Bidirectional AC/DC Converter Used in Microgrid Energy Systems. Mühendislik bilimleri ve araştırmaları dergisi (Online) 4, no.1 (2022): 45 - 53. 10.46387/bjesr.1081644
MLA Isen Evren Modelling and Control of Single-Phase Bidirectional AC/DC Converter Used in Microgrid Energy Systems. Mühendislik bilimleri ve araştırmaları dergisi (Online), vol.4, no.1, 2022, ss.45 - 53. 10.46387/bjesr.1081644
AMA Isen E Modelling and Control of Single-Phase Bidirectional AC/DC Converter Used in Microgrid Energy Systems. Mühendislik bilimleri ve araştırmaları dergisi (Online). 2022; 4(1): 45 - 53. 10.46387/bjesr.1081644
Vancouver Isen E Modelling and Control of Single-Phase Bidirectional AC/DC Converter Used in Microgrid Energy Systems. Mühendislik bilimleri ve araştırmaları dergisi (Online). 2022; 4(1): 45 - 53. 10.46387/bjesr.1081644
IEEE Isen E "Modelling and Control of Single-Phase Bidirectional AC/DC Converter Used in Microgrid Energy Systems." Mühendislik bilimleri ve araştırmaları dergisi (Online), 4, ss.45 - 53, 2022. 10.46387/bjesr.1081644
ISNAD Isen, Evren. "Modelling and Control of Single-Phase Bidirectional AC/DC Converter Used in Microgrid Energy Systems". Mühendislik bilimleri ve araştırmaları dergisi (Online) 4/1 (2022), 45-53. https://doi.org/10.46387/bjesr.1081644