Yıl: 2020 Cilt: 44 Sayı: 4 Sayfa Aralığı: 1002 - 1015 Metin Dili: İngilizce DOI: 10.3906/kim-1911-49 İndeks Tarihi: 21-06-2022

Effect of CNT incorporation on PAN/PPy nanofibers synthesized by electrospinning method

Öz:
In this study, carbon nanotubes (CNTs) added polyacrylonitrile/polypyrrole (PAN/PPy) electrospun nanofibers were produced. Average diameters of the nanofibers were measured as 268 and 153 nm for 10 and 25 wt% of PPy contents, respectively. A relatively higher strain to failure values (23.3%) were observed for the low PPy content. When as-grown CNTs (1 and 4 wt%) were added into the PAN/PPy blends, disordered nanofibers were observed to form within the microstructure. To improve the interfacial properties of CNTs/PAN/PPy composites, CNTs were functionalized with H2 SO4 /HNO3 /HCl solution. The functionalized CNTs were well dispersed within the nanofibers and aligned along the direction of nanofibers. Therefore, beads formation on nanofibers decreased. The impedance of the nanofibers was found to decrease with the PPy content and CNT addition. These nanofibers had a great potential to be used as an electrochemical actuator or a tissue engineering scaffold.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Zhou Y, Wu P, Cheng Z, Ingram J, Jeelani S. Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube. Express Polymer Letters 2008; 2 (1): 40-48. doi:10.3144/expresspolymlett
  • 2. Guo W, Liu C, Sun X, Yang Z, Kia HG et al. Aligned carbon nanotube/polymer composite fibers with improved mechanical strength and electrical conductivity. Journal of Materials Chemistry 2012; 22 (3): 903-908. doi: 10.1039/C1JM3769G
  • 3. Wang X, Bradford PD, Liu W, Zhao H, Inoue Y et al. Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching. Composites Science and Technology 2011; 71 (14): 1677- 1683. doi: 10.1016/j.compscitech.2011.07.023
  • 4. Arash B, Wang Q, Varadan V. Mechanical properties of carbon nanotube/polymer composites. Scientific Reports 2014; 4: 6479. doi: 10.1038/srep06479
  • 5. Yardimci AI, Tanoglu M, Selamet Y. Development of electrically conductive and anisotropic gel-coat systems using CNTs. Progress in Organic Coatings 2013; 76 (6): 963-965. doi: 10.1016/j.porgcoat.2012.10.015
  • 6. Fidelus J, Wiesel E, Gojny F, Schulte K, Wagner H. Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing 2005; 36 (11): 1555-1561.
  • 7. Rajoria H, Jalili N. Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites. Composites Science and Technology 2005; 65 (14): 2079-2093. doi: 10.1016/j.compscitech.2005.05.015
  • 8. Sandler J, Shaffer M, Prasse T, Bauhofer W, Schulte K et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 1999; 40 (21): 5967-5971. doi: 10.1016/S0032- 3861(99)00166-4
  • 9. Jia Z, Wang Z, Xu C, Liang J, Wei B et al. Study on poly (methyl methacrylate)/carbon nanotube composites. Materials Science and Engineering: A 1999; 271 (1-2): 395-400. doi: 10.1016/S0921-5093(99)00263-4
  • 10. Xie X-L, Mai Y-W, Zhou X-P. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Materials Science and Engineering: R: Reports 2005; 49 (4): 89-112. doi: 10.1016/j.mser.2005.04.002
  • 11. Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN et al. Improving the dispersion and integration of singlewalled carbon nanotubes in epoxy composites through functionalization. Nano Letters 2003; 3 (8): 1107-1113. doi: 10.1021/nl0342489
  • 12. Dyke CA, Tour JM. Covalent functionalization of single-walled carbon nanotubes for materials applications. The Journal of Physical Chemistry A 2004; 108 (51): 11151-11159. doi: 10.1021/jp046274g
  • 13. Thostenson ET, Karandikar PG, Chou T-W. Fabrication and characterization of reaction bonded silicon carbide/carbon nanotube composites. Journal of Physics D: Applied Physics 2005; 38 (21): 3962. doi: 10.1088/0022- 3727/38/21/020
  • 14. Spinks GM, Mottaghitalab V, Bahrami-Samani M, Whitten PG, Wallace GG. Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Advanced Materials 2006; 18 (5): 637-640. doi: 10.1002/adma.200502366
  • 15. Li C, Thostenson ET, Chou T-W. Sensors and actuators based on carbon nanotubes and their composites: a review. Composites Science and Technology 2008; 68 (6): 1227-1249. doi: 10.1016/j.compscitech.2008.01.006
  • 16. Zhang S, Zhang N, Huang C, Ren K, Zhang Q. Microstructure and electromechanical properties of carbon nanotube/poly (vinylidene fluoride—trifluoroethylene—chlorofluoroethylene) composites. Advanced Materials 2005; 17 (15): 1897-1901. doi: 10.1002/adma.200500313
  • 17. Tahhan M, Truong V-T, Spinks GM, Wallace GG. Carbon nanotube and polyaniline composite actuators. Smart Materials and Structures 2003; 12 (4): 626. doi: 10.1088/0964-1726/12/4/313
  • 18. Courty S, Mine J, Tajbakhsh A, Terentjev E. Nematic elastomers with aligned carbon nanotubes: new electromechanical actuators. Europhysics Letters 2003; 64 (5): 654. doi: 10.1209/epl/i2003-00277-9
  • 19. Zheng W, Razal JM, Whitten PG, Ovalle-Robles R, Wallace GG et al. Artificial muscles based on polypyrrole/carbon nanotube laminates. Advanced Materials 2011; 23 (26): 2966-2970. doi: 10.1002/adma.201100512
  • 20. Park O-K, Lee S, Joh H-I, Kim JK, Kang P-H et al. Effect of functional groups of carbon nanotubes on the cyclization mechanism of polyacrylonitrile (PAN). Polymer 2012; 53 (11): 2168-2174. doi: 10.1016/j.polymer.2012.03.031
  • 21. Mottaghitalab V, Xi B, Spinks GM, Wallace GG. Polyaniline fibres containing single walled carbon nanotubes: enhanced performance artificial muscles. Synthetic Metals 2006; 156 (11-13): 796-803. doi: 10.1016/j.synthmet.2006.03.016
  • 22. Spinks GM, Shin SR, Wallace GG, Whitten PG, Kim IY et al. A novel “dual mode” actuation in chitosan/polyaniline /carbon nanotube fibers. Sensors and Actuators B: Chemical 2007; 121 (2): 616-621. doi: 10.1016/j.snb.2006.04.103
  • 23. Kai D, Prabhakaran MP, Jin G, Ramakrishna S. Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering. Journal of Biomedical Materials Research Part A 2011; 99 (3): 376-385. doi: 10.1002/jbm.a.33200
  • 24. Lee JY, Bashur CA, Goldstein AS, Schmidt CE. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 2009; 30 (26): 4325-4335. doi: 10.1016/j.biomaterials.2009.04.042
  • 25. Madden JD, Vandesteeg NA, Anquetil PA, Madden PG, Takshi A et al. Artificial muscle technology: physical principles and naval prospects. IEEE Journal of Oceanic Engineering 2004; 29 (3): 706-728. doi: 10.1109/JOE.2004.833135
  • 26. Bay L, West K, Sommer-Larsen P, Skaarup S, Benslimane M. A conducting polymer artificial muscle with 12% linear strain. Advanced Materials 2003; 15 (4): 310-313. doi: 10.1002/adma.200390075
  • 27. Hara S, Zama T, Takashima W, Kaneto K. TFSI-doped polypyrrole actuator with 26% strain. Journal of Materials Chemistry 2004; 14 (10): 1516-1517. doi: 10.1039/b404232h
  • 28. Chen I-H, Wang C-C, Chen C-Y. Fabrication and structural characterization of polyacrylonitrile and carbon nanofibers containing plasma-modified carbon nanotubes by electrospinning. The Journal of Physical Chemistry C 2010; 114 (32): 13532-13539. doi: 10.1021/jp103993b
  • 29. Madden JD, Rinderknecht D, Anquetil PA, Hunter IW. Creep and cycle life in polypyrrole actuators. Sensors and Actuators A: Physical 2007; 133 (1): 210-217.
  • 30. Chronakis IS, Grapenson S, Jakob A. Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties. Polymer 2006; 47 (5): 1597-1603. doi: 10.1016/j.polymer.2006.01.032
  • 31. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. Journal of Electrostatics 1995; 35 (2-3): 151-160. doi: 10.1016/0304- 3886(95)00041-8
  • 32. Nair S, Natarajan S, Kim SH. Fabrication of electrically conducting polypyrrole-poly (ethylene oxide) composite nanofibers. Macromolecular rapid communications 2005; 26 (20): 1599-1603. doi: 10.1002/marc.200500457
  • 33. Li X, Hao X, Yu H, Na H. Fabrication of Polyacrylonitrile/polypyrrole (PAN/Ppy) composite nanofibres and nanospheres with core–shell structures by electrospinning. Materials Letters 2008; 62 (8-9): 1155-1158. doi: 10.1016/j.matlet.2007.08.003
  • 34. Ketpang K, Park JS. Electrospinning PVDF/PPy/MWCNTs conducting composites. Synthetic Metals 2010; 160 (15-16): 1603-1608. doi: 10.1016/j.synthmet.2010.05.022
  • 35. Bai H, Zhao L, Lu C, Li C, Shi G. Composite nanofibers of conducting polymers and hydrophobic insulating polymers: preparation and sensing applications. Polymer 2009; 50 (14): 3292-3301. doi: 10.1016/j.polymer.2009.04.066
  • 36. Ju Y-W, Choi G-R, Jung H-R, Lee W-J. Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole. Electrochimica Acta 2008; 53 (19): 5796-5803. doi: 10.1016/j.electacta.2008.03.028
  • 37. Yardimci AI, Yılmaz S, Selamet Y. The effects of catalyst pretreatment, growth atmosphere and temperature on carbon nanotube synthesis using Co–Mo/MgO catalyst. Diamond and Related Materials 2015; 60: 81-86. doi: 10.1016/j.diamond.2015.10.025
  • 38. Osorio A, Silveira I, Bueno V, Bergmann C. H2SO4/HNO3/HCl—Functionalization and its effect on dispersion of carbon nanotubes in aqueous media. Applied Surface Science 2008; 255 (5): 2485-2489. doi: 10.1016/j.apsusc.2008.07.144
  • 39. Hayati I, Bailey A, Tadros TF. Investigations into the mechanisms of electrohydrodynamic spraying of liquids: I. Effect of electric field and the environment on pendant drops and factors affecting the formation of stable jets and atomization. Journal of Colloid and Interface Science 1987; 117 (1): 205-221. doi: 10.1016/0021-9797(87)90185-8
  • 40. Baumgarten PK. Electrostatic spinning of acrylic microfibers. Journal of Colloid and Interface Science 1971; 36 (1): 71-79. doi: 10.1016/0021-9797(71)90241-4
  • 41. Ji L, Yao Y, Toprakci O, Lin Z, Liang Y et al. Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. Journal of Power Sources 2010; 195 (7): 2050-2056. doi: 10.1016/j.jpowsour.2009.10.021
  • 42. Ince Yardimci A, Aypek H, Ozturk O, Yilmaz S, Ozcivici E et al. CNT incorporated polyacrilonitrile/polypyrrole nanofibers as keratinocytes scaffold. Journal of Biomimetics, Biomaterials and Biomedical Engineering 2019; 41: 69-81. doi: 10.4028/www.scientific.net/JBBBE.41.69
  • 43. Zheng J, He A, Li J, Xu J, Han CC. Studies on the controlled morphology and wettability of polystyrene surfaces by electrospinning or electrospraying. Polymer 2006; 47 (20): 7095-7102. doi: 10.1016/j.polymer.2006.08.019
  • 44. Ji L, Medford AJ, Zhang X. Electrospun polyacrylonitrile/zinc chloride composite nanofibers and their response to hydrogen sulfide. Polymer 2009; 50 (2): 605-612. doi: 10.1016/j.polymer.2008.11.016
  • 45. Kaur N, Kumar V, Dhakate SR. Synthesis and characterization of multiwalled CNT–PAN based composite carbon nanofibers via electrospinning. SpringerPlus 2016; 5 (1): 483.
  • 46. Giray D, Balkan T, Dietzel B, Sarac AS. Electrochemical impedance study on nanofibers of poly (m-anthranilic acid)/polyacrylonitrile blends. European Polymer Journal 2013; 49 (9): 2645-2653. doi: 10.1016/j.eurpolymj.2013.06.012
APA ince yardimci a, Tanoğlu M, Yilmaz S, SELAMET Y (2020). Effect of CNT incorporation on PAN/PPy nanofibers synthesized by electrospinning method. , 1002 - 1015. 10.3906/kim-1911-49
Chicago ince yardimci atike,Tanoğlu Metin,Yilmaz Selahattin,SELAMET Yusuf Effect of CNT incorporation on PAN/PPy nanofibers synthesized by electrospinning method. (2020): 1002 - 1015. 10.3906/kim-1911-49
MLA ince yardimci atike,Tanoğlu Metin,Yilmaz Selahattin,SELAMET Yusuf Effect of CNT incorporation on PAN/PPy nanofibers synthesized by electrospinning method. , 2020, ss.1002 - 1015. 10.3906/kim-1911-49
AMA ince yardimci a,Tanoğlu M,Yilmaz S,SELAMET Y Effect of CNT incorporation on PAN/PPy nanofibers synthesized by electrospinning method. . 2020; 1002 - 1015. 10.3906/kim-1911-49
Vancouver ince yardimci a,Tanoğlu M,Yilmaz S,SELAMET Y Effect of CNT incorporation on PAN/PPy nanofibers synthesized by electrospinning method. . 2020; 1002 - 1015. 10.3906/kim-1911-49
IEEE ince yardimci a,Tanoğlu M,Yilmaz S,SELAMET Y "Effect of CNT incorporation on PAN/PPy nanofibers synthesized by electrospinning method." , ss.1002 - 1015, 2020. 10.3906/kim-1911-49
ISNAD ince yardimci, atike vd. "Effect of CNT incorporation on PAN/PPy nanofibers synthesized by electrospinning method". (2020), 1002-1015. https://doi.org/10.3906/kim-1911-49
APA ince yardimci a, Tanoğlu M, Yilmaz S, SELAMET Y (2020). Effect of CNT incorporation on PAN/PPy nanofibers synthesized by electrospinning method. Turkish Journal of Chemistry, 44(4), 1002 - 1015. 10.3906/kim-1911-49
Chicago ince yardimci atike,Tanoğlu Metin,Yilmaz Selahattin,SELAMET Yusuf Effect of CNT incorporation on PAN/PPy nanofibers synthesized by electrospinning method. Turkish Journal of Chemistry 44, no.4 (2020): 1002 - 1015. 10.3906/kim-1911-49
MLA ince yardimci atike,Tanoğlu Metin,Yilmaz Selahattin,SELAMET Yusuf Effect of CNT incorporation on PAN/PPy nanofibers synthesized by electrospinning method. Turkish Journal of Chemistry, vol.44, no.4, 2020, ss.1002 - 1015. 10.3906/kim-1911-49
AMA ince yardimci a,Tanoğlu M,Yilmaz S,SELAMET Y Effect of CNT incorporation on PAN/PPy nanofibers synthesized by electrospinning method. Turkish Journal of Chemistry. 2020; 44(4): 1002 - 1015. 10.3906/kim-1911-49
Vancouver ince yardimci a,Tanoğlu M,Yilmaz S,SELAMET Y Effect of CNT incorporation on PAN/PPy nanofibers synthesized by electrospinning method. Turkish Journal of Chemistry. 2020; 44(4): 1002 - 1015. 10.3906/kim-1911-49
IEEE ince yardimci a,Tanoğlu M,Yilmaz S,SELAMET Y "Effect of CNT incorporation on PAN/PPy nanofibers synthesized by electrospinning method." Turkish Journal of Chemistry, 44, ss.1002 - 1015, 2020. 10.3906/kim-1911-49
ISNAD ince yardimci, atike vd. "Effect of CNT incorporation on PAN/PPy nanofibers synthesized by electrospinning method". Turkish Journal of Chemistry 44/4 (2020), 1002-1015. https://doi.org/10.3906/kim-1911-49