Yıl: 2006 Cilt: 45 Sayı: 1 Sayfa Aralığı: 25 - 30 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Sıçanlarada kimyasal simpatektominin nörotoksik etkisi

Öz:
Amaç: Guanethidine bir antihipertansif ilaç olup, beyin damarlarında yapısal değişikliklere neden olabilen yan etkileri vardır. Deneysel çalışmalarda kimyasal simpatektomi yapmak için kullanılmaktadır. Her iki durumda da özellikle etki alanları dışında nörotoksik etkisi ile ilgili bilgi bulunmamaktadır. Bu nedenle nörotoksik etkiye en duyarlı beyin bölgelerinde, histolojik yöntemle guanethidine etkisinin araştırılması amaçlandı. Gereç ve Yöntem: Erişkin sıçanlarda intraperitoneal olarak 10 mg/kg guanethidine ve kontrol grubunda aynı volümde serum fizyolojik (SF) 30 gün süre île tek doz uygulandı. Süre sonunda anestezi ile dekapite edilen denekler, kardiyak perfüzyon sonrasında beyinleri çıkartılarak parafine gömüldü. Histolojik kesitler ışık mikroskobu ile incelendi. Bulgular: SF verilen grupta toksik etkiye duyarlı truncus cerebri, cerebellum, cortex cerebri ve hippocampus alanlarında hiçbir patolojik değişikliğe rastlanmazken, Guanethidine uygulanan grupta bazı alanlarda hücre çevresindeki boşlukların arttığı, nükleusların kondanse olduğu, piknosize benzer yapının oluştuğu gözlendi. Sonuç: Guanethidine yan etkileri nedeniyle dikkatle kullanılması gereken bir ajan olarak klinikte ve olası nörotoksik etkisi nedeniyle de deneysel çalışmalarda sonuçların yorumlanmasında sorun oluşturabilecek potansiyele sahip gözükmektedir. Etki alanları dışında daha önce nörotoksik etkisi araştırılmamış bu maddenin, toksisitesi ile ilgili daha detaylı çalışmaların yapılması yararlı olacaktır.
Anahtar Kelime: Nörotoksisite sendromları Sempatektomi, kimyasal Guanetidin Histoloji Sıçan, Wistar

Konular: Biyokimya ve Moleküler Biyoloji

The neurotoxic effect of chemical sympathectomy in the rat

Öz:
Objective: Guanethidine is an antihypertensive drug which can produce structural alterations on the vessels of the brain. It has also been used for the purpose of chemical sympathectomy in experimental studies. However there is little, if any, information on the neurotoxic effects of the drug except the regions where they exert their primary effects. Therefore we have conducted this study to histologically investigate the effects of guanethidine in regions most susceptible to neurotoxicity. Material and Methods: Desympathization was induced in mature rats by daily single intraperitoneal injection of 10 mg/kg of guanethidine for 30 days. Same volume of saline was injected the same way to control animals. Rats were euthanized with cardiac perfusion and brains were removed to be fixed in formaline and embedded in paraffin. Serial sections were stained with H&E and examined under light microscope.Cell density was measured from selected vulnarable regions of the brain by morphometric methods. Findings: We fo an increase in pericytoplasmic area, nuclear condensation and picnosis-like changes in guanethidine group. There w no clear pathologic alterations in the brain stem, cerebellum, cerebral cortex and hippocampus in the control grc Results and Conclusion: Guanethidine needs to be used with caution clinically due to its side effects and experiment due to its possible neurotoxic effects which may confound interpretation of the findings. Further studies are requirei uncover the neurotoxic effects of the drug.
Anahtar Kelime: Guanethidine Histology Rats, Wistar Neurotoxicity Syndromes Sympathectomy, Chemical

Konular: Biyokimya ve Moleküler Biyoloji
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Barres C, Julien C, Sassard J. Arterial pressure control in the sympathectomized rat. Kidney Int Suppl 1992;37:19-23.
  • 2. Winquist RJ, Webb RC, Bohr DF. Relaxation to transmural nerve stimulation and exogenously added norepinephrine in porcine cerebral vessels'. A study utilizing cerebrovascular intrinsic tone. Circ Res 1982;51:769-76.
  • 3. Nevzorova MN, Tiatenkova NN, Filimonov VI. Morphometric characteristics of microcirculatory bed of olfactory bulbs in the desyrnpathized albino rat. Morfologia 2004; 125:86-8.
  • 4. Commins DL, Shaughnessy RA, Axt. KJ, Vosmer G, Seiden LS. Variability among brain regions in the specificity of 6-hydroxydopamine (6-OHDA)-induced lesions. Neural Transm 1989;77:197-210.
  • 5. Pappas BA, Peters DA, Sobrian AK, Blouin A, Drew B. Early behavioral and catecholaminergic effects of 6-hydroxydopamine and guanethidine in the neonatal rat. Pharmacol Biochem Behav 1975;3:681-5.
  • 6. Schenk S, Horger BA, Peltier R, Shelton K. Supersensitivity to the reinforcing effects of cocaine following 6-hydroxydopamine lesions to the medial prefrontal cortex in rats. Brain Res 1991 ;543:227-35.
  • 7. Heath J.W, Burnstock G. Selectivity of neuronal degeneration produced by chronic guanethidine treatment. J. Neurolcytol 1977:6:397-405.
  • 8. Newton BW, Melvin JE, Hamili RW. Central neurotoxic effects of guanethidine: altered serotonin and enkephalin neurons within the area postrema. Brain Res 1987; 404:151-61.
  • 9. Nomura Y, Naitoh F, Segawa T. Regional changes in brain catecholamine content following administration of guanethidine to neonatal rats. Jpn J Pharmacol 1975;25:773-9.
  • 10. Juul A, Juul P, Christensen HB, Guanethidine-induced sympathectomy in the nude rat. Pharmacol Toxicol 1989;64:20-2.
  • 11. Borisov MM, Doronin PP, Zueva LV, Kulaev BS, Rodionov IM. Age changes in rat vasomotor reflexes and sympathetic neuron ultrastructure following chemical sympathectomy Biull Eksp Biol Med 1975;79:21-4.
  • 12. Fix AS, Garman RH. Practical aspects of neuropathology: a technical guide for working with the nervous system. Toxicol Pathol 2000;28:122-131.
  • 13. Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, Kominami E, Uchiyama Y. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 1995;15:1001-101.
  • 14. Widdowson PS, Simpson MG, Wyatt I. L-2-chloropropionic acid-induced neurotoxicity in the rat: a valuable model for studying selective neuronal cell death in vivo. Gen Pharmacol 1997 Aug;29:113-9.
  • 15. Macko RF, Ameriso SF, Barndt R, Clough W, Weiner JM, Fisher M. Precipitants of brain infarction: roles of preceding infection/inflammation and recent psychological stress. Stroke 1996;27:1999-2004.
  • 16. Guerri C. Neuroanatomical and neurophysiological mechanisms involved in central nervous system dysfunctions induced by prenatal alcohol exposure. Alcohol Clin Exp Res 1998;22:304-12.
  • 17. Kohlhauser C, Kaehler S, Mosgoeller W, Singewald N, Kouvelas D, Prast H, Hoeger H, Lubec B. Histological changes and neurotransmitter levels three months following perinatal asphyxia in the rat. Life Sci 1999;64:2109-24.
  • 18. Zochodne DW, Huang ZX, Ward KK, Low PA. Guanethidine-induced adrenergic sympathectomy augments endoneurial perfusion and lowers endoneurial microvascular resistance. Brain Res 1990;519:112-7.
  • 19. Berecek KH, Work J, Mitchum TN, Ram S. Effects of chronic peripheral sympathectomy on plasma levels of, and the pressor response to, vasopressin. J Hypertens 1985:3:225-30.
  • 20. Karibe H, Zarow GJ, Graham SH, Weinstein PR. Mild intraischemic hypothermia reduces postischemic hyperperfusion, delayed postischemic hypoperfusion, blood-brain barrier disruption, brain edema, and neuronal damage volume after temporary focal cerebral ischemia in rats. J Cereb Blood Flow Metab 1994; 14: 620-627.
  • 21. Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 1986 ;17:1304-8.
  • 22. Maier CM, Ahern KV, Cheng ML, Lee JE, Yenari MA, Steinberg GK. Optimal depth and duration of mild hypothermia in a focal model of transient cerebral ischemia: effects on neurologic outcome, infarct size, apoptosis, and inflammation. Stroke 1998; 29: 2171-2180 .
  • 23. Duffell SJ, Soames AR, Gunby S. Morphometyric analysis of the developing rat brain. Toxicol Pathol 2000; 28:157-163.
  • 24. Sadowski M, Morys J, Berdel B, Maciejewska B. Influence of fixation and histological procedure on the morphometric parameters of neuronal cells. Folia Morphol 1995; 54:219-226.
  • 25. Lindstrom H, Luthman J, Oskarsson A, Sundberg J, Olson L. Effects of long-term treatment with methyl mercury on the developing rat brain. Environ Res 19910:56:158-69.
  • 26. Yentür, E.A., Mirzai, I.T., Mirzai, H., Ateş, U. , Baka, M. ve Yurtseven, M.Repeated Epidural Injections of Ketamine with Preservative Benzethonium Chloride Produce Evidence for Neurotoxicity in Rabbits. The Pain Clinic 2003;15: 299-308.
  • 27. Yaksh TL, Collins JG. Studies in animals should precede human use of spinaliy administered drugs. Anesthesiology 1989; 70: 4-6.
  • 28. Coombs DW, Fratkin JD. Neurotoxicology of spinal agents. Anesthesiology 1987; 66:724-725.
  • 29. Hall E, Oostveen J, Dunn E, Carter D. Increased amyloid protein precursor and apolipoprotein E immunoreactivity in the selectively vulnerable hippocampus following transient forebrain ischemia in gerbiis. Exp. Neurol 1995;135: 17-27.
  • 30. Balaban CD. Central neurotoxic effects of intraperitoneally administered 3-acetylpyridine, harmaline and niacinamide in Sprague-Dawley and Long-Evans rats: a critical review of central 3-acetylpyridine neurotoxicity. Brain Res 1985;356:21-42 Toxicol Pathol 2000;28(1):84-90 .
  • 31. Welsh JP, Yuen G, Placantonakis DG, Vu TQ, Haiss F, O'Hearn E, Molliver ME, Aicher SA. Why do Purkinje cells die so easil;after global brain ischemia? Aldolase C, EAAT4, and the cerebellar contribution to posthypoxic myoclonus. Adv Neurol 2002; 89 331-59.
  • 32. Fonnum F, Lock EA. The contributions of excitotoxicity, glutathione depletion and DNA repair in chemically induced injury to neurones: exemplified with toxic effects on cerebellar granule cells. J Neurochem 2004;88:513-31.
  • 33. Bayer SA, Altman J, Russo RJ, Zhang X. Timetables of neurogenesis in the human brain based on experimentally determine patterns in the rat. Neurotoxicology 1993; 14:83-144.
  • 34. Rice DC, Barone S. Critical periods of vulnerability for the developing nervous system: evidence from humans and anima models. Environ Health Perspect 2000; 108:511-533.
  • 35. Hossmann KA. Experimental principles of tolerance of the brain to ischemia. Z Kardiol 1987; 76: 47-66.
  • 36. Mink, J.W., Blumenschine, R.J. and Adams, D.B. Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am. J. Physiology 1981; 241:203-212 .
  • 37. Culver B, Inzana K, Jones J, et al. Technique and complications attributable to, repeated hyperosmotic blood-brain barrie distruption in dogs. Am J Vet Res 1998; 59:1503-1510.
  • 38. Muller M, Ballanyi K. Dynamic recording of cell death in the in vitro dorsal vagal nucleus of rats in response to metabolic arrest. J Neurophysiol 2003;89:551-61.
  • 39. Jacobson M. The germinal cell, histogenesis, and lineages of nerve cells. Developmental Neurobiology, 3rd edition (Jacobson M, ed). New York: Plenum Pres 1991;41-93.
  • 40. De Groot DM, Hartgring S, van de Horst L, Moerkens M, Otto M, Bos-Kuijpers MH, Kaufmann WS, Lammers JH, O'callaghar JP, Waalkens-Berendsen ID, Pakkenberg B, Gundersen HG. 2D and 3D assessment of neuropathology in rat. brain after prenatal exposure to methylazoxymethanol, a model for developmental neurotoxicty. Reprod Toxicol 2005; 20:417-32.
  • 41. Kohlhauser C, Kaehler S, Mosgoeller W, Singewald N, Kouvelas D, Prast H, Hoeger H, Lubec B. Histological changes and neurotransmitter levels three months following perinatal asphyxia in the rat. Life Sci 1999; 64:2109-24.
APA TUÇ YÜCEL A, Tuğlu M, YAVAŞOĞLU A, VAROL T (2006). Sıçanlarada kimyasal simpatektominin nörotoksik etkisi. , 25 - 30.
Chicago TUÇ YÜCEL AYSE,Tuğlu Mehmet İbrahim,YAVAŞOĞLU Altuğ,VAROL TUNCAY Sıçanlarada kimyasal simpatektominin nörotoksik etkisi. (2006): 25 - 30.
MLA TUÇ YÜCEL AYSE,Tuğlu Mehmet İbrahim,YAVAŞOĞLU Altuğ,VAROL TUNCAY Sıçanlarada kimyasal simpatektominin nörotoksik etkisi. , 2006, ss.25 - 30.
AMA TUÇ YÜCEL A,Tuğlu M,YAVAŞOĞLU A,VAROL T Sıçanlarada kimyasal simpatektominin nörotoksik etkisi. . 2006; 25 - 30.
Vancouver TUÇ YÜCEL A,Tuğlu M,YAVAŞOĞLU A,VAROL T Sıçanlarada kimyasal simpatektominin nörotoksik etkisi. . 2006; 25 - 30.
IEEE TUÇ YÜCEL A,Tuğlu M,YAVAŞOĞLU A,VAROL T "Sıçanlarada kimyasal simpatektominin nörotoksik etkisi." , ss.25 - 30, 2006.
ISNAD TUÇ YÜCEL, AYSE vd. "Sıçanlarada kimyasal simpatektominin nörotoksik etkisi". (2006), 25-30.
APA TUÇ YÜCEL A, Tuğlu M, YAVAŞOĞLU A, VAROL T (2006). Sıçanlarada kimyasal simpatektominin nörotoksik etkisi. Ege Tıp Dergisi, 45(1), 25 - 30.
Chicago TUÇ YÜCEL AYSE,Tuğlu Mehmet İbrahim,YAVAŞOĞLU Altuğ,VAROL TUNCAY Sıçanlarada kimyasal simpatektominin nörotoksik etkisi. Ege Tıp Dergisi 45, no.1 (2006): 25 - 30.
MLA TUÇ YÜCEL AYSE,Tuğlu Mehmet İbrahim,YAVAŞOĞLU Altuğ,VAROL TUNCAY Sıçanlarada kimyasal simpatektominin nörotoksik etkisi. Ege Tıp Dergisi, vol.45, no.1, 2006, ss.25 - 30.
AMA TUÇ YÜCEL A,Tuğlu M,YAVAŞOĞLU A,VAROL T Sıçanlarada kimyasal simpatektominin nörotoksik etkisi. Ege Tıp Dergisi. 2006; 45(1): 25 - 30.
Vancouver TUÇ YÜCEL A,Tuğlu M,YAVAŞOĞLU A,VAROL T Sıçanlarada kimyasal simpatektominin nörotoksik etkisi. Ege Tıp Dergisi. 2006; 45(1): 25 - 30.
IEEE TUÇ YÜCEL A,Tuğlu M,YAVAŞOĞLU A,VAROL T "Sıçanlarada kimyasal simpatektominin nörotoksik etkisi." Ege Tıp Dergisi, 45, ss.25 - 30, 2006.
ISNAD TUÇ YÜCEL, AYSE vd. "Sıçanlarada kimyasal simpatektominin nörotoksik etkisi". Ege Tıp Dergisi 45/1 (2006), 25-30.