22 11

Proje Grubu: MAG Sayfa Sayısı: 410 Proje No: 113M407 Proje Bitiş Tarihi: 15.09.2016 Metin Dili: Türkçe İndeks Tarihi: 17-10-2018

Kırılma ve Çatlak İlerleme Analiz Sistemi – Aşama 2

Öz:
2008-2011 yılları arasında gerçekleştirilen 108M283 nolu ve “Kırılma ve Çatlak İlerleme Analiz Sistemi – Aşama 1” adlı projede, lisansüstü çalışmaları boyunca Dr. Ali O. Ayhan tarafından geliştirilmiş olan FRAC3D programı, mod-I yüklemesi altında levha ve silindir gibi basit geometrilerdeki yorulmalı çatlak ilerleme problemlerine uygulanmış ve analizlerin doğru bir şekilde yapılabilmesi için kullanıcı ara yüzü geliştirilerek tüm sistem FCPAS.(Fracture and Crack Propagation Analysis System) olarak adlandırılmıştı. Bu projede, FCPAS içerisinde mevcut olan yetenekler yeni endüstriyel problemlere uygulanmış ve karışık modlu yüklemeler altında üç boyutlu kırılma olgusunun deneysel olarak incelenmesi ve sayısal olarak modellenmesi için yeni çalışmalar gerçekleştirilmiştir. Bu çalışmalar, aşağıda verilen dört temel kategoride gruplandırılmaktadır; 1. FCPAS mod-I analiz kabiliyetlerinin enerji, ulaştırma, havacılık ve savunma alanlarında karşılaşılan kırılma ve çatlak ilerleme problemlerine uygulanması ve doğrulamalarının yapılması. Bu kapsamda, değişik uygulamalar yapılarak çatlak ilerleme profilleri ve ömürleri açısından FCPAS tarafından tahmin edilen çatlak ilerleme davranışları doğrulanmıştır. 2. Üç boyutlu karışık modlu yükler altında kırılma ve çatlak ilerleme deneysel kabiliyetlerinin geliştirilmesi. Basit karışık modlu kırılma problemlerinden başlayarak, en genel hal olan mod-I, II ve III yüklerinin tamamımın aktif olduğu durumlar için deneysel kabiliyetler ve yeni test sistemleri geliştirilmiştir. 3. Üç boyutlu karışık modlu yükler altında kırılma ve çatlak ilerleme sayısal analiz kabiliyetlerinin ve iyileştirilmiş kırılma kriterlerinin geliştirilmesi. Karışık modlu yükler altında ve düzlemsel olmayan bir şekilde ilerleyen çatlağın sayısal olarak FRAC3D ve FCPAS ile analizleri gerçekleştirilmiş, iyileştirilmiş kırılma kriterleri oluşturulmuş ve deneylerle doğrulamaları yapılmıştır. 4. FCPAS grafiksel kullanıcı ara yüzünün (GUI) güncellenmesi. Yukarıda tanımlanan gelişmeler çerçevesinde kullanıcı ara yüzünde güncellemeler yapılmıştır. Proje kapsamında yapılan çalışmalar ile FCPAS’in enerji, ulaştırma, havacılık ve savunma alanlarındaki kırılma problemlerine uygulanabilir bir program olduğunun ispatı yapılmış ve projenin 3. aşaması olarak planlanan Prognostik/Yapısal Sağlık Kontrolü alanlarında yeni çalışmalar yapılabilmesinin zemini hazırlanmıştır.
Anahtar Kelime: sonlu elemanlar yöntemi gerilme şiddet faktörü karışık mod Yorulma çatlak ilerlemesi

Konular: Mühendislik, Makine Malzeme Bilimleri, Özellik ve Test

Kırılma ve Çatlak İlerleme Analiz Sistemi – Aşama 2

Öz:
In the 108M283 project (Fracture and Crack Propagation Analysis System – Phase 1, 2008-2011), FRAC3D, which had been developed by Dr. Ali O. Ayhan during his graduate studies, was applied to mode-I fatigue crack propagation problems on simple geometries such as plates and cylinders, a graphical user interface was developed to perform the analyses correctly and more efficiently, and the whole system was names as FCPAS.(Fracture and Crack Propagation Analysis System). In this project, the capabilities existing within FCPAS were applied to new industrial problems. Moreover, new studies were performed to experimentally analyze and numerically model three-dimensional fracture problems under mixed mode loading conditions. These studies are grouped into four categories given below; 1. Applications of mode-I analysis capabilities of FCPAS to fracture problems seen in energy, transportation, aviation and defense areas and their validations. In this context, various applications are performed and crack propagation behaviors predicted by FCPAS were validated in terms of crack propagation profiles and lives. 2. Development of experimental capabilities for three-dimensional fracture and crack propagation problems. Starting with simple mixed-mode fracture problems, for the most general case, in which all mode-I, II and III loads are active, experimental capabilities and new test systems were developed. 3. Development of numerical analysis capabilities and improved fracture criteria for threedimensional fracture and crack propagation problems. Analyses of cracks under mixedmode loads, propagating in a non-planar manner were performed using FRAC3D and FCPAS, improved fracture criteria were developed and experimental validations were performed. 4. Updating of FCPAS graphical user interface (GUI). Updates were made on the graphical user interface based on the developments defined above. Based on the studies performed on this project, applicability of FCPAS’s capabilities in energy, transportation, aviation and defense areas was proved and foundation of new studies using FCPAS in the Prognostic/Structural Health Management area was prepared
Anahtar Kelime:

Konular: Mühendislik, Makine Malzeme Bilimleri, Özellik ve Test
Erişim Türü: Erişime Açık
  • ANSYS Version 12.0. 2009. Ansys Inc., Canonsburg, PA, USA.
  • Investigation of mixed mode-I/II fracture problems - Part 2: evaluation and development of mixed mode-I/II fracture criteria (Makale - Diğer Hakemli Makale)
  • Aliha, M. R. M., Bahmani, A., Akhondi, S. 2015. “Numerical analysis of a new mixed mode I/III fracture test specimen”. Engineering Fracture Mechanics,134, 95-110.
  • Multiple and non-planar crack propagation analyses in thin structures using FCPAS (Makale - Diğer Hakemli Makale),
  • Arora, P., Singh, P. K., Bhasin, V., Vaze, K. K., Ghosh, AK,. Pukazhendhi, D. M., Gandhi, P., Raghava, G. 2011. “Predictions for fatigue crack growth life of cracked pipes and pipe welds using RMS SIF approach and experimental validation”, International Journal of Pressure Vessels and Piping, 88 (10), 384-394.
  • Finite element modeling and experimental studies on mixed mode-I/III fracture specimens (Makale - Diğer Hakemli Makale),
  • ASM Aerospace Specification Metals Inc., http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA2024T4, Son erişim tarihi: 2016.
  • Investigation of mixed mode - I/II fracture problems - Part 1: computational and experimental analyses (Makale - Diğer Hakemli Makale),
  • ASTM International, “E399 − 12, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials". 2013.
  • Three-dimensional fracture and fatigue crack propagation analysis in structures with multiple cracks (Makale - Diğer Hakemli Makale),
  • ASTM International, “E647 − 13, Standard Test Method for Measurement of Fatigue Crack Growth Rates", 2014.
  • Fracture and Crack Propagation Analysis System (FCPAS) (Bildiri - Uluslararası Konferans - Davetli Konuşmacı),
  • Awaji, H., Sato, S. 1978. “Combined mode fracture toughness measurement by the disk test”. Journal of Engineering Materials and Technology, 100(2), 175-182.
  • Three-Dimensional Fracture Analyses of Compact Tension Shear Specimen Under In- Plane Mixed Mode Loading (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Ayatollahi, M. R., Saboori, B. 2015. “A new fixture for fracture tests under mixed mode I/III loading”. European Journal of Mechanics-A/Solids, 51, 67-76.
  • Finite Element Modeling of Growing Multiple Cracks Under Cyclic Loads (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Ayhan, A. O., & Demir, O. 2016. “Investigation of mixed mode-I/II fracture problems-Part 2: evaluation and development of mixed mode-I/II fracture criteria”. Frattura ed Integritá Strutturale, (35), 340.
  • Numerical Simulation of Three-Dimensional Mode-I Crack Propagation Using FCPAS: First Set of Practical Case Studies (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Beretta, S., Carboni, M., Conte, A. L., Regazzi, D., Trasatti, S., Rizzi, M. 2011. “Crack growth studies in railway axles under corrosion fatigue: Full-scale experiments and model validation”. Procedia Engineering, 10, 3650-3655.
  • Case Studies on Mode-I Fatigue Crack Propagation Using Fully Unstructured Finite Elements (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Boljanovic, S. Maksimovic, S. 2014. “Fatigue crack growth modeling of attachment lugs”, International Journal of Fatigue, 58, 66-74.
  • SAKARYA ÜNİVERSİTESİ FCPAS PROJE EKİBİ 10. ULUSLARARASI KIRILMA KONFERANSI?NA KATILDI (Yayılım - Ulusal - Medyada Haber),
  • Bousquet, A., Marie, S., Bompard, P. 2012. “Propagation and arrest of cleavage cracks in a nuclear pressure vessel steel”. Computational Materials Science, 64, 17-21.
  • FCPAS ile Üç Boyutlu Çoğul Çatlakların Kırılma Analizleri ve İlerleme Simülasyonları (Tez (Araştırmacı Yetiştirilmesi) - Yüksek Lisans Tezi),
  • Buchholz, F. G., Chergui, A., Richard, H. A. 2004. “Fracture analyses and experimental results of crack growth under general mixed mode loading conditions”. Engineering Fracture Mechanics, 71(4), 455-468.
  • Non-planar crack growth analyses of multiple cracks in thin-walled structures (Makale - İndeskli Makale),
  • Buchholz F. G, Chergui A, Richard H. A. 2001. “Fracture analyses and experimental results on crack growth under general mixed mode loading conditions”. Advances in Fracture and Damage Mechanics II. Proceedings of the 2nd International Conference, 451-6, Milan, Italy.
  • Kırılma ve Çatlak İlerleme Analiz Sistemi - Aşama 2 (Bildiri - Ulusal Konferans - Davetli Konuşmacı),
  • Campbell, F. C., 2008. Sf. 238. Elements of metallurgy and engineering alloys. Ohio: ASM International.
  • Carpinteri, A., Paggi, M. 2007. “Are the PARIS' law parameters dependent on each other?”, Atti del Congresso IGF19 Milano, 2-4.
  • Chang, K. J. 1981. “On the maximum strain criterion—a new approach to the angled crack problem”. Engineering Fracture Mechanics, 14(1), 107-124.
  • Citarella, R., Lepore, M., Shlyannikov, V., Yarullin, R. 2014. “Fatigue surface crack growth in cylindrical specimen under combined loading”. Engineering Fracture Mechanics, 131, 439- 453.
  • Cowles, B. A. 1996. "High cycle fatigue in aircraft gas turbines-an industry perspective". International Journal of Fracture, 80(2-3), 147-163.
  • DataFit 9. Oakdale Engineering, Oakdale, 2015; PA 15071.
  • Demir, O., Siriç, S., Ayhan, A. O., Lekesiz, H. 2016. “Investigation of mixed mode-I/II fracture problems-Part 1: computational and experimental analyses”.Frattura ed Integritá Strutturale, (35), 330.
  • Demir O., 2016, “Karışık Modlu Yükler Altında Bulunan Üç-Boyutlu Çatlakların Deneysel ve Sayısal Analizi”, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi (yazım aşamasında).
  • Derya M., 2016, “FCPAS ile Endüstriyel Problemlerdeki Çatlakların Kırılma ve İlerleme Simülasyonları”, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (yazım aşamasında).
  • Desimone, H., Beretta, S. 2006. “Mechanisms of mixed mode fatigue crack propagation at rail butt-welds”. International journal of fatigue, 28(5), 635-642.
  • Desmukh, N., Pandey R. K., Mukhopadhyay, A. K. 2005. “Influence of Scandium on The Kinetics of Fatigue Crack Growth in 7010 Al – Alloy”, International Conference on Fracture.
  • Dündar H., 2015, “FCPAS ile Üç Boyutlu Çoğul Çatlakların Kırılma Analizleri ve İlerleme Simülasyonları”, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Erdogan, F., Sih, G. C. 1963. “On the crack extension in plates under plane loading and transverse shear”. Journal of basic engineering, 85(4), 519-525.
  • Fulland, M., Sander, M., Kullmer, G., Richard, H. A. 2008. “Analysis of fatigue crack propagation in the frame of a hydraulic press”. Engineering Fracture Mechanics, 75(3), 892- 900.
  • Gagnon, M., Tahan, A., Bocher, P., Thibault, D. 2013. “A probabilistic model for the onset of High Cycle Fatigue (HCF) crack propagation: Application to hydroelectric turbine runner”. International Journal of Fatigue, 47, 300-307.
  • Griffith, A. A. 1921. “The phenomena of flow and rupture in solids”.Philosophical Transactions of the Royal Society of London, Series A, Mathematical, Physical and Engineering Sciences, 221, 163-198.
  • Guagliano, M., Pau, M. 2007. “Analysis of internal cracks in railway wheels under experimentally determined pressure distributions”. Tribology International,40(7), 1147-1160.
  • Haile, M., Chen, T. K., Sediles, F., Shiao, M., Le, D. 2012. "Estimating crack growth in rotorcraft structures subjected to mission load spectrum". International Journal of Fatigue, 43, 142-149.
  • Hakimi, A., Le Grognec, P., & Hariri, S. 2008. “Numerical and analytical study of severity of cracks in cylindrical and spherical shells”. Engineering Fracture Mechanics, 75(5), 1027- 1044.
  • Hu, D., Wang, R., Fan, J., Shen, X. 2012. “Probabilistic damage tolerance analysis on turbine disk through experimental data”. Engineering Fracture Mechanics, 87, 73-82.
  • Huang, J. Y., Yeh, J. J., Kuo, R. C., Jeng, S. L., Young, M. C. 2008. “Fatigue crack growth behavior of reactor pressure vessel steels in air and high-temperature water environments”. International Journal of Pressure Vessels and Piping, 85(11), 772-781.
  • Hussain, M. A., Pu, S. L., Underwood, J. 1974. “Strain energy release rate for a crack under combined mode I and mode II”. In Fracture Analysis: Proceedings of the 1973 National Symposium on Fracture Mechanics, Part II. ASTM International.
  • Irwin, G. R. 1997. “Analysis of stresses and strains near the end of a crack traversing a plate”. Spie Milestone series MS, 137(167-170), 16.
  • Isobe, N., Nogami, S. 2009. “Micro-crack growth behavior and life in high temperature low cycle fatigue of blade root and disc joint for turbines”. International Journal of Pressure Vessels and Piping, 86(9), 622-627.
  • Jeong, D. Y. 2005. “Mixed Mode Fatigue Crack Growth Using the Strain Energy Density Theory for Widespread Fatigue Damage”, U.S. Department of Transportation, Volpe National Transportation Systems Center, Cambridge, Massachusetts 02142, USA.
  • Jin, Y., Cai, P., Wen, W., Nagaumi, H., Xu, B., Zhang, Y., & Zhai, T. , 2015. The anisotropy of fatigue crack nucleation in an AA7075 T651 Al alloy plate. Materials Science and Engineering: A, 622, 7-15.
  • Jones, R., Pitt, S., Peng, D. 2008. The generalised Frost–Dugdale approach to modelling fatigue crack growth". Engineering Failure Analysis, 15(8), 1130-1149.
  • Jones, R., Tamboli, D. 2013. "Implications of the lead crack philosophy and the role of short cracks in combat aircraft". Engineering Failure Analysis, 29, 149-166.
  • Judt, O. P., Ricoeur, A. 2015. “Crack growth simulation of multiple cracks systems applying remote contour interaction integrals”, Theoretical and Applied Fracture Mechanics, 75, 78– 88.
  • Jung, A., Schnell, A. 2008. “Crack growth in a coated gas turbine superalloy under thermo- mechanical fatigue”. International Journal of Fatigue, 30(2), 286-291.
  • Kamat, S. V., Srinivas, M., Rao, P. R. 1998. “Mixed mode I/III fracture toughness of Armco iron”, Acta materialia, 46(14), 4985-4992.
  • Kikuchi, M., Wada, Y., Ohdama, C. 2012. “Effect of KIII on fatigue crack growth behavior”. Journal of Engineering Materials and Technology, 134(4), 041009.
  • Koo, J. M., Choy, Y. S. 1991. “A new mixed mode fracture criterion: maximum tangential strain energy density criterion”. Engineering fracture mechanics, 39(3), 443-449.
  • Kotsikos, G., Grasso, M. 2012. “Assessment of Fatigue Cracks in Rails”, Procedia Social and Behavioral Sciences, 48, 1395-1402.
  • Kumar, A. M., Hirth, J. P., Hoagland, R., Feng, X. 1994. “A Suggested Test Procedure to Measure Mixed Mode I–III Fracture Toughness of Brittle Materials”. Journal of testing and evaluation, 22(4), 327-334.
  • Kurt E., 2016, “Basınçlı Küresel Kaplarda Bulunan Eğik Üç-Boyutlu Çatlakların FCPAS ile Analizi”, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (yazım aşamasında).
  • Larsen, J. M., Worth, B. D., Annis Jr, C. G., Haake, F. K. 1996. "An assessment of the role of near-threshold crack growth in high-cycle-fatigue life prediction of aerospace titanium alloys under turbine engine spectra". International journal of fracture, 80(2-3), 237-255.
  • Leek, T. H., Howard, I. C. 1996. “An Examination of Methods of Assessing Interacting Surface Cracks by Comparison with Experimental Data”, International Journal of Pressure Vessels and Piping, 68 (2), 181-201.
  • Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H. A., Maier, H. J. 2013. “On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance”. International Journal of Fatigue, 48, 300-307.
  • Liaw, P. K., Yang, C. Y., Palusamy, S. S., Ren, W. 1997. “Fatigue crack initiation and propagation behavior of pressure vessel steels”. Engineering fracture mechanics, 57(1), 85- 104.
  • Microsoft Office 2013, Excel Version 15.0, Microsoft
  • Misak, H. E., Perel, V. Y., Sabelkin, V., Mall, S. 2013. “Crack growth behavior of 7075-T6 under biaxial tension–tension fatigue”. International Journal of Fatigue, 55, 158-165.
  • Molent, L., Barter, S. A. 2007." A comparison of crack growth behaviour in several full-scale airframe fatigue tests". International Journal of Fatigue, 29(6), 1090-1099.
  • Molent, L., Barter, S. A. 2010. "The lead fatigue crack concept for aircraft structural integrity". Procedia Engineering, 2(1), 363-377.
  • Molent, L., Barter, S. A., Wanhill, R. J. H. 2011. "The lead crack fatigue lifing framework". International Journal of Fatigue, 33(3), 323-331.
  • Natsume, M., Hayashi, Y., Akebono, H., Kato, M., Sugeta, A. 2010. “Fatigue properties and crack propagation behavior of stainless cast steel for turbine runner of hydraulic power generation”. Procedia Engineering, 2(1), 1273-1281.
  • Newman Jr, J. C., & Raju, I. S. 1986. “Stress-intensity factor equations for cracks in three- dimensional finite bodies subjected to tension and bending loads”. Computational methods in the mechanics of fracture, 2, 311-334.
  • Nicholas, T., Zuiker, J. R. 1996. "On the use of the Goodman diagram for high cycle fatigue design". International Journal of Fracture, 80(2-3), 219-235.
  • Nicholson, G. L., Davis, C. L. 2012. “Modelling of the response of an ACFM sensor to rail and rail wheel RCF cracks”. NDT & E International, 46, 107-114.
  • Nishimura, T., Noguchi, Y., Uchimoto, T. 1990. "Damage Tolerance Analysis of Multiple-Site Cracks Emanating from Hole Array", Journal of Testing and Evaluation, 18 (6), 401-407.
  • Nuismer, R. J. 1975. “An energy release rate criterion for mixed mode fracture”.International journal of fracture, 11(2), 245-250.
  • Padula Ii, S. A., Shyam, A., Ritchie, R. O., Milligan, W. W. 1999. “High frequency fatigue crack propagation behavior of a nickel-base turbine disk alloy”. International journal of fatigue, 21(7), 725-731.
  • Pang, H. T., Reed, P. A. S. 2003. “Fatigue crack initiation and short crack growth in nickel- base turbine disc alloys—the effects of microstructure and operating parameters”. International Journal of Fatigue, 25(9), 1089-1099.
  • Park, C. Y., Grandt Jr., A. F., Suh, J. J. 2006. “Stress intensity factors for surface cracks at countersunk holes”, Engineering Fracture Mechanics, 73 (13), 1878–1898.
  • Peng, D., Jones, R., Constable, T. 2012. “A study into crack growth in a railway wheel under thermal stop brake loading spectrum”. Engineering Failure Analysis, 25, 280-290.
  • Peng, D., Jones, R., Constable, T., Lingamanaik, S. N., Chen, B. K. 2012. “The tool for assessing the damage tolerance of railway wheel under service conditions”. Theoretical and Applied Fracture Mechanics, 57(1), 1-13.
  • Peng, D., Jones, R., Constable, T. 2013. “An investigation of the influence of rail chill on crack growth in a railway wheel due to braking loads”. Engineering Fracture Mechanics, 98, 1-14.
  • Pook, L. P. 2000. “Linear elastic fracture mechanics for engineers: theory and applications”. Computational Mechanics.
  • Pook, L.P. 1980. In: Fracture and Fatigue: Elasto-Plasticity, Thin Sheet and Micromechanism Problems, pp. 143-153, Radon, J.C. (Ed.) Pergamon Press,Oxford.
  • Pook LP. The significance of mode I branch cracks for mixed mode fatigue crack growth threshold behaviour. In: Brown MW, Miller KJ (eds) Biaxial and multiaxial fatigue. Mech. Eng. Publ. London. 1989; 247-263.
  • Pook, L.P. (1985). Multiaxial Fatigues, pp. 249-263 In: Miller, K.J., Brown, M.W. (Eds.), ASTM STP853, American Society for Testing and Materials, Philadelphia.
  • Prasad, K., Babu, N. C., Kumar, V. 2012. “Effect of frequency and orientation on fatigue crack growth behavior of forged turbine disc of IN 718 superalloy”. Materials Science and Engineering: A, 544, 83-87.
  • Price, R. J., & Trevelyan, J. 2014. “Boundary element simulation of fatigue crack growth in multi-site damage”. Engineering Analysis with Boundary Elements, 43, 67-75.
  • Rayes, M, Darwish, S. 2006. "Effect of Heat Treatment on Fatigue and Toughness Properties of Steel", King Saud Unıversity College of Engineering Research Center.
  • Richard, H.A., 1984. Some theoretical and experimental aspects of mixed mode fractures. In: Valluri SR et al., editors. Advances in fracture research. Oxford: Pergamon Press. p. 3337- 44.
  • Richard HA. Fracture mechanical predictions for cracks with superimposed normal and shear loading. Düsseldorf: VDI-Verlag [in German] 1985.
  • Richard, H.A. 1987. "In: Structural failure, product liability and technical insurance", Rossmanith (Ed.), Inderscience Enterprises Ltd., Genf.
  • Richard, H. A. 1989. “Spercimens for investigating biaxial fracture and fatigue processes”, Biaxial and Multiaxial Fatigue. Brown W, Miller K. J. London.
  • Richard, H. A., Sander, M., Schramm, B., Kullmer, G., Wirxel, M. 2013. “Fatigue crack growth in real structures”. International Journal of Fatigue, 50, 83-88.
  • Richard, H. A., Sander, M., Fulland, M., Kullmer, G. 2008. “Development of fatigue crack growth in real structures”. Engineering Fracture Mechanics, 75(3), 331-340.
  • Richard, H. A., Sander, M., Fulland, M. 2013. Fatigue Crack Paths under Complex Loading”. FCP2003.
  • Richard, H. A., Fulland, M., Sander, M.,Kullmer, G. 2005. “Fracture in a rubber-sprung railway wheel”. Engineering Failure Analysis, 12(6), 986-999.
  • Richard H A. 2003. “Theoretical crack path determination”. Int Conf on Fatigue Crack Paths, Parma (Italy).
  • Richard, H. A., Schramm, B., Schirmeisen, N. H. 2014. “Cracks on mixed mode loading– theories, experiments, simulations”. International Journal of Fatigue, 62, 93-103.
  • Richard H. A., Schirmeisen N., Eberlein A. 2012 "Experimental investigations on mixed- mode-loaded cracks" The 4th International Conference on Crack Paths, 19-21 September, Gaeta, Italy, 219-226.
  • Rigby, R. Aliabadi, M. H. 1997. “Stress intensity factors for cracks at attachment lugs”, Engineering Failure Analysis, 4 (2), 133-146.
  • Rikards, R., Buchholz, F. G., Wang, H., Bledzki, A. K., Korjakin, A., Richard, H. A. 1998. “Investigation of mixed mode I/II interlaminar fracture toughness of laminated composites by using a CTS type specimen”. Engineering Fracture Mechanics, 61(3), 325-342.
  • Ritter, S., Seifert, H. P. 2008. “Effect of corrosion potential on the corrosion fatigue crack growth behaviour of low-alloy steels in high-temperature water”.Journal of Nuclear Materials, 375(1), 72-79.
  • Rollett, A. D., Campman, R., & Saylor, D., 2006. Three dimensional microstructures: statistical analysis of second phase particles in AA7075-T651. In Materials science forum (Vol. 519, pp. 1-10). Trans Tech Publications.
  • Salam, I., Tauqir, A., Khan, A. Q. 2002. "Creep-fatigue failure of an aero engine turbine blades". Engineering Failure Analysis, 9(3), 335-347.
  • Sander, M., Richard, H. A. 2011. “Investigations on fatigue crack growth under variable amplitude loading in wheelset axles”. Engineering Fracture Mechanics, 78(5), 754-763.
  • Sander, M., Richard, H. A. 2003. “Lifetime predictions for real loading situations—concepts and experimental results of fatigue crack growth”. International journal of fatigue, 25(9), 999- 1005.
  • Sander, M., Richard, H. A. 2005. “Finite element analysis of fatigue crack growth with interspersed mode I and mixed mode overloads”. International Journal of Fatigue, 27(8), 905-913.
  • Sander, M., Richard, H. A. 2006. “Experimental and numerical investigations on the influence of the loading direction on the fatigue crack growth”.International Journal of Fatigue, 28(5), 583-591.
  • Schütze, M., Wieser, D., & Bender, R. , 2010. Corrosion resistance of aluminium and aluminium alloys. Frankfurt: John Wiley & Sons.
  • Schöllmann, M., Fulland, M., Richard, H. A. 2003. “Development of a new software for adaptive crack growth simulations in 3D structures”. Engineering Fracture Mechanics, 70(2), 249-268.
  • Schöllmann, M., Kullmer, G., Fulland, M., Richard, H. A. 2001. “A new criterion for 3D crack growth under mixed-mode (I+ II+ III) loading”. InProceedings of the 6th International Conference on Biaxial/Multiaxial Fatigue and Fracture, Lisbon, Portugal, June (pp. 25-28).
  • Schöllmann, M., Richard, H. A., Kullmer, G., Fulland, M. 2002. “A new criterion for the prediction of crack development in multiaxially loaded structures”. International Journal of Fracture, 117(2), 129-141.
  • Seifert, H. P., Ritter, S. 2008. “Corrosion fatigue crack growth behaviour of low-alloy reactor pressure vessel steels under boiling water reactor conditions”.Corrosion Science, 50(7), 1884-1899.
  • Seifi, R., Omidvar, N. 2013. “Fatigue crack growth under mixed mode I+ III loading”, Marine Structures, 34, 1-15.
  • Shlyannikov, V. N., Iltchenko, B. V., Stepanov, N. V. 2001. “Fracture analysis of turbine disks and computational–experimental background of the operational decisions”. Engineering Failure Analysis, 8(5), 461-475.
  • Sih, G. C., Macdonald, B. 1974. “Fracture mechanics applied to engineering problems-strain energy density fracture criterion”. Engineering Fracture Mechanics, 6(2), 361-386.
  • Sih, G. C. 1974. “Strain-energy-density factor applied to mixed mode crack problems”. International Journal of fracture, 10(3), 305-321.
  • Sih, G. C. 2012. “Mechanics of fracture initiation and propagation: surface and volume energy density applied as failure criterion” (Vol. 11). Springer Science & Business Media.
  • Sriharsha, H. K., Pandey, R. K., Chatterjee, S. 1999. “Towards standardising a sub-size specimen for fatigue crack propagation behaviour of a nuclear pressure vessel steel”. Engineering Fracture Mechanics, 64(5), 607-624.
  • Steigemann, M., Specovius-Neugebauer, M., Fulland, M., Richard, H. A. 2010. “Simulation of crack paths in functionally graded materials”. Engineering Fracture Mechanics, 77(11), 2145- 2157.
  • Svoboda, J. 1982. “Fatigue and Fracture Toughness of Five Carbon or Low Slloy Cast Steels at Room or Low Climate Temperature”. Carbon and Low Alloy Steel Technical Research Committee Steel Founders’ Society of America, (94A).
  • Tan J. T., Chen, B. K. 2013. “A new method for modelling the coalescence and growth of two coplanar short cracks of varying lengths in AA7050-T7451 aluminium alloy”, International Journal of Fatigue, 49, 73–80.
  • Tanaka, K. 1974. “Fatigue crack propagation from a crack inclined to the cyclic tensile axis”. Engineering Fracture Mechanics, 6(3), 493-507.
  • Tiong, U. H., Jones, R. 2009. “Damage tolerance analysis of a helicopter component”, International Journal of Fatigue, 31 (6), 1046–1053.
  • TUSAŞ-TAI (2014)
  • Wang, H., Buchholz, F. G., Richard, H. A., Jägg, S., Scholtes, B. 1999. “Numerical and experimental analysis of residual stresses for fatigue crack growth”. Computational Materials Science, 16(1), 104-112.
  • Wei, Z, Deng X, Sutton MA, Yan J, Cheng CS, Zavattieri P. 2011. “Modeling of mixed-mode crack growth in ductile thin sheets under combined in-plane and out-of-plane loading”. Engineering Fracture Mechanics, 78:3082–3101.
  • Yan, X. 2007. “Automated simulation of fatigue crack propagation for two-dimensional linear elastic fracture mechanics problems by boundary element method”, Engineering Fracture Mechanics, 74 (14), 2225–2246.
  • Yee, R. K., Sidhu, K. S. 2005. "Innovative laser heating methodology study for crack growth retardation in aircraft structures". International journal of fatigue, 27(3), 245-253.
  • Zencrack, http://www.zentech.co.uk
  • Zhao, J., Guo, W. 2012. “Three-parameter K–T–Tz characterization of the crack-tip fields in compact-tension-shear specimens”. Engineering Fracture Mechanics, 92, 72-88.
  • Zhuang, W., Molent, L. 2010. "Analytical study of fatigue crack growth in AA7050 notched specimens under spectrum loading". Engineering Fracture Mechanics, 77(11), 1884-1895.
  • Zhuang, W., Barter, S., Molent, L. 2007. "Flight-by-flight fatigue crack growth life assessment". International Journal of Fatigue, 29(9), 1647-1657.
APA AYHAN A, IRIÇ S, LEKESİZ H, DÜNDAR H, DEMIR O, YAREN M, DERYA M, KURT E, Bozkurt M (2016). Kırılma ve Çatlak İlerleme Analiz Sistemi – Aşama 2. , 1 - 410.
Chicago AYHAN Ali Osman,IRIÇ SEDAT,LEKESİZ Hüseyin,DÜNDAR Hakan,DEMIR OGUZHAN,YAREN M. Faruk,DERYA Mürsel,KURT Emre,Bozkurt Murat Kırılma ve Çatlak İlerleme Analiz Sistemi – Aşama 2. (2016): 1 - 410.
MLA AYHAN Ali Osman,IRIÇ SEDAT,LEKESİZ Hüseyin,DÜNDAR Hakan,DEMIR OGUZHAN,YAREN M. Faruk,DERYA Mürsel,KURT Emre,Bozkurt Murat Kırılma ve Çatlak İlerleme Analiz Sistemi – Aşama 2. , 2016, ss.1 - 410.
AMA AYHAN A,IRIÇ S,LEKESİZ H,DÜNDAR H,DEMIR O,YAREN M,DERYA M,KURT E,Bozkurt M Kırılma ve Çatlak İlerleme Analiz Sistemi – Aşama 2. . 2016; 1 - 410.
Vancouver AYHAN A,IRIÇ S,LEKESİZ H,DÜNDAR H,DEMIR O,YAREN M,DERYA M,KURT E,Bozkurt M Kırılma ve Çatlak İlerleme Analiz Sistemi – Aşama 2. . 2016; 1 - 410.
IEEE AYHAN A,IRIÇ S,LEKESİZ H,DÜNDAR H,DEMIR O,YAREN M,DERYA M,KURT E,Bozkurt M "Kırılma ve Çatlak İlerleme Analiz Sistemi – Aşama 2." , ss.1 - 410, 2016.
ISNAD AYHAN, Ali Osman vd. "Kırılma ve Çatlak İlerleme Analiz Sistemi – Aşama 2". (2016), 1-410.
APA AYHAN A, IRIÇ S, LEKESİZ H, DÜNDAR H, DEMIR O, YAREN M, DERYA M, KURT E, Bozkurt M (2016). Kırılma ve Çatlak İlerleme Analiz Sistemi – Aşama 2. , 1 - 410.
Chicago AYHAN Ali Osman,IRIÇ SEDAT,LEKESİZ Hüseyin,DÜNDAR Hakan,DEMIR OGUZHAN,YAREN M. Faruk,DERYA Mürsel,KURT Emre,Bozkurt Murat Kırılma ve Çatlak İlerleme Analiz Sistemi – Aşama 2. (2016): 1 - 410.
MLA AYHAN Ali Osman,IRIÇ SEDAT,LEKESİZ Hüseyin,DÜNDAR Hakan,DEMIR OGUZHAN,YAREN M. Faruk,DERYA Mürsel,KURT Emre,Bozkurt Murat Kırılma ve Çatlak İlerleme Analiz Sistemi – Aşama 2. , 2016, ss.1 - 410.
AMA AYHAN A,IRIÇ S,LEKESİZ H,DÜNDAR H,DEMIR O,YAREN M,DERYA M,KURT E,Bozkurt M Kırılma ve Çatlak İlerleme Analiz Sistemi – Aşama 2. . 2016; 1 - 410.
Vancouver AYHAN A,IRIÇ S,LEKESİZ H,DÜNDAR H,DEMIR O,YAREN M,DERYA M,KURT E,Bozkurt M Kırılma ve Çatlak İlerleme Analiz Sistemi – Aşama 2. . 2016; 1 - 410.
IEEE AYHAN A,IRIÇ S,LEKESİZ H,DÜNDAR H,DEMIR O,YAREN M,DERYA M,KURT E,Bozkurt M "Kırılma ve Çatlak İlerleme Analiz Sistemi – Aşama 2." , ss.1 - 410, 2016.
ISNAD AYHAN, Ali Osman vd. "Kırılma ve Çatlak İlerleme Analiz Sistemi – Aşama 2". (2016), 1-410.