63 27

Proje Grubu: MAG Sayfa Sayısı: 91 Proje No: 315M535 Proje Bitiş Tarihi: 15.03.2019 Metin Dili: Türkçe İndeks Tarihi: 04-03-2020

Sodyum-İyon Piller: Enerji Depolama Ve Dönüşüm İçin Ucuz Bir Çözüm

Öz:
Günümüzde ?fosil? esaslı yakıtlardan daha yesil ve sürdürülebilir enerji ekonomisine geçis etkili enerji depolama sistemleri olmaksızın basarılı olamayacagı öngörülmektedir. Günes ya da rüzgar enerjisi gibi yenilebilir enerji kaynaklarından enerjinin elde edilmesi gerek günümüz gerekse gelecekteki enerji talebini basarılı bir sekilde karsılayabilecektir ve bu enerji türlerinin dogaya karsı herhangi bir tehdit olusturmayacagı da görülmektedir. Amerika Birlesik Devletleri örneginden de görülebilecegi üzere küresel ısınmanın temel nedeni olan sera etkisi gaz emisyonlarının yaklasık olarak %90?nının fosil tabanlı yakıtların kullanılmasından kaynaklandıgı raporlanmıstır. Fosil ekonomiden yesil ve sürdürülebilir ekonomiye geçis etkili depolama sistemleri olmadan mümkün degildir. Günes ve rüzgar enerjisi, dogaya ve çevreye zarar vermeden gelecekte ki enerji ihtiyaçlarını karsılamak için büyük bir potansiyele sahiptir. Örnegin Amerika?da küresel ısınmaya sebep olan sera etkisinin %90?nının fosil yakıtlarından kaynaklandıgı raporlanmıstır. Küresel olarak ortaya çıkan ciddi iklimsel degisimlerden dolayı otomobil üreticileri sıfır emisyona sahip (elektrik ya da hibrid araçlar) otomobiller üretme çabasına girmislerdir. Bunun yanı sıra mobil ve hareketsiz uygulamalar için de uyumlu çözümler için de daha etkin ve düsük maliyetli bataryalar üretmek günümüzde zaruri hale gelmistir. Günümüzde bu tür ihtiyaçlar lityum iyon piller tarafından basarılı bir sekilde kullanılmaktadır. Ancak bu teknolojinin günümüzde önemli dezavantaja sahiptir; - Ticari pillerde kullanılmakta olan oksitli bilesiklerin termal kararsızlıklarından ortaya çıkan güvenilirlik problemleri, - Dünyada lityum kaynaklarının bulundugu ülkelerde politik kararsızlıkların bulunması ve artan lityum karbonat maliyetleri. Bu önemli problemlerin ortadan kaldırılması amacıyla iki önemli faaliyetin dogrudan hayata geçirilmesi gereklidir; - Yanıcı elektrolitlerin herhangi bir yangına sebep olmasını engellemek adına kimyasal ve termal kararlılıkları oksitli elektrotlardan daha yüksek olan fosfat esaslı malzemelerin kullanılması (Güvenlik hususları). - Daha büyük boyutlarda bataryalar gerektiren özellikle hareketsiz uygulamalar için daha rekabetçi elektrot malzemeleri üreterek sarj edilebilir batarya fiyatlarını düsürmek. Sodyumun yerkabugunda yüksek oranda bulunması ve düsük maliyete üretilebilmesi genis ölçekli uygulamalar (Yenilenebilir enerji ve EV/HEV uygulamaları) için yüksek oranda temin edilebilirligi için ciddi bir avantajdır. Bu projenin temel amacı Na iyon pil esaslı fosfat esaslı elektrot malzemeleri hususunda arastırma yapmak ve endüstri için prototip bir ürün gelistirmektir.
Anahtar Kelime: Na-Iyon Maliyet Fosfat Sarj edilebilir piller Enerji Depolama

Konular: Metalürji Mühendisliği Malzeme Bilimleri, Kompozitler
Erişim Türü: Erişime Açık
  • 1] Morreale, B.D., Powell, C.A. 2008. “Materials Chanllenges in Advanced Coal Conversion Technologies”, Hardnessing Materials for Energy, 33(4), 309-315.
  • [2] Liu, J., Zhang, J.G., Yang, Z., Lemmon, J.P., Imhoff , C., Graff , G.L., Li, L., Hu, J., Wang, C., Xiao, J., Xia, G., Viswanathan, V.V., Baskaran, S., Sprenkle, V., Li, X., Shao, Y., Schwenzer, B. 2013. “Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid”, Advanced Functional Materials, 23(8), 929-946.
  • [3] Slater, M.D., Kim, D., Lee, E., Johnson, C.S. 2013. “Sodium‐Ion Batteries”, Advanced Functional Materials, 23(8), 947-958.
  • [4] Roberts, S., Kendrick, E. 2018. “The re-emergence of sodium ion batteries: testing, processing, and manufacturability”, Nanotechnology, Science and Applications, 11, 23-33.
  • [5] Pan, H., Hu, Y.S., Chen, L. 2013. “Room-temperature stationary sodium-ion batteries for large-scale electric energy storage”, Energy Environmental Science, 6(8), 2338-2360.
  • [6] Yabuuchi, N., Kubota, K., Dahbi, M., Komaba, S. 2014. “Research Development on Sodium-Ion Batteries”, Chemical Revievs, 114(23), 11636-11682.
  • [7] Kim, S.W., Seo, D.H., Ma, X., Ceder, G., Kang, K. 2012. “Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries”, Advanced Energy Materials, 2(7), 710-721.
  • [8] Wikimedia Commons, Wikimedia. “Yer kabuğunda bulunan elementler oranı” http://commons.wikimedia.org/wiki/File:Elemental_abundances.svg, Son erişim tarihi: 13 Mayıs 2019.
  • [9] Gonzalez, C.J., Hueso, K.B., Palomares, V., Rojo, T., Serras, P., Villaluenga, I. 2012. “Naion Batteries, Recent Advances and Present Challenges to Become Low Cost Energy Storage Systems”, Energy Environ. Sci., 5, 5884-5901.
  • [10] Ellis, B.L., Nazar, L.F. 2012. “Sodium and sodium-ion energy storage batteries”, Current Opinion in Solid State Materials Science, 16(4), 168-177.
  • [11] Kucinskis, G., Bajars, G., Kleperis, J. 2010. “Graphene in lithium ion battery cathode materials: A review, Journal of Power Sources”, 240, 66-79.
  • [12] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. 2004. “Electric field effect in atomically thin carbon films”, Science, 306(5696), 666-669.
  • [13] Li, S., Wang, Y., Qui, J., Ling, M., Wang, H., Martens, W., Zhang S. 2014. “SnO2 decorated graphene nanocomposite anode materials prepared via a up-scalable wet-mechanochemical process for sodium ion batteries”, RSC Advances, 4, 50148-50152.
  • [14] Mahmood, N., Zhang, C., Yin, H., Hou, Y. 2014. “Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells”, Journal of Materials Chemistry A, 2, 15-32.
  • [15] Mahmood, N., Zhang, C., Liu, F., Zhu, J., Hou, Y. 2013. “Hybrid of Co3Sn2@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery”, ACS Nano, 7(11), 10307- 10318.
  • [16] Wu, S., Ge, R., Lu, M., Xu, R., Zhang, Z. 2015. “Graphene-based nano-materials for lithium–sulfur battery and sodium-ion battery”, Nano Energy, 15, 379–405.
  • [17] Phiri, J., Gane, P., Maloney, T.C. 2017. “General overview of graphene: Production, properties and application in polymer composites”, Materials Science and Engineering B, 215, 9–28.
  • [18] Sharon, M., Sharon, M. 2015. “Structure and properties of graphene”. Graphene, An introduction to the fundamentals and industrial applications., Canada: Scrivener Publishing.
  • [19] Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S. 2010. “Synthesis of graphene and its applications: a review”, Critical Reviews in Solid State and Materials Sciences, 35(1), 52-71.
  • [20] Rao, C.N.R., Sood, A.K. 2013. “Synthesis, characterization, and selected properties of graphene”. Graphene, Synthesis, properties and phenomena. Edited by: Rao, C.N.R., Maitra, U., Ramakrishna Matte H.S.S. Germany: John Wiley&Sons.
  • [21] Wang, Y.X., Chou, S.L., Liu, H.K., Dou, S.X. 2013. “Reduced graphene oxide with superior cycling stability and rate capability for sodium strorage”, Carbon, 57, 202-208.
  • [22] Wen, Y., He, K., Zhu, Y., Han, F., Xu, Y., Matsuda, I., Ishii, Y., Cumings, J., Wang, C. 2014. “Expanded graphite as superior anode for sodium-ion batteries”, Nature Communications, 5, 4033.
  • [23] Cha, H.A., Jeong, H.M., Kang, J.K. 2014. “Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries”, Journal of Materials Chemistry A, 2, 5182-5186.
  • [24] Ding, J., Wang H.L., Li, Z., Kohandehghan, A., Cui, K, Xu Z.W., Zahiri, B., Tan, X.H., Lotfabad, E.M., Olsen, B.C., Mitlin, D. 2013. “Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes”, ACS Nano, 7(12), 11004- 11015.
  • [25] Li, X., Zhu, X., Liang, J., Hou, Z., Wang, Y., Lin, N., Zhu, Y., Qiana, Y. 2014. “Graphenesupported NaTi2(PO4)3 as a high rate anode material for aqueous sodium ion batteries”, Journal of The Electrochemical Society, 161(6), A1181, A1187.
  • [26] Song, J., Yu, Z., Gordin, M.L., Hu S., Yi, R., Tang, D., Walter, T., Regula, M., Choi, D., Li, X., Manivannan, A., Wang, D. 2014. “Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries”, Nano Letters, 14, 6329–6335.
  • [27] Zhang, Y., Zhao, Y., Bakenov, Z. 2014. “A simple approach to synthesize nanosized sulfur/graphene oxide materials for high-performance lithium/sulfur batteries”, Ionics, 20(7), 1047-1050.
  • [28] Xu, M.W., Wang, L., Zhao, X., Song, J., Xie, H., Lu Y.H., Goodenough J.B. 2013. “Na3V2O2(PO4)2F/graphene sandwich structure for high-performance cathode of a sodium-ion battery” Physical Chemistry Chemical Physics, 15(31), 13032-13037.
  • [29] Wu, N., She, X., Yang, D., Wu, X., Su, F., Chen, Y. 2012. “Synthesis of network reduced graphene oxide in polystyrene matrix by a two-step reduction method for superior conductivity of the composite”, Journal of Materials Chemistry, 22(33),17254-17261.
  • [30] Saner, B., Okyay, F., Yürüm, Y. 2010. “Utilization of multiple graphene layers in fuel cells. 1. An improved technique for the exfoliation of graphene-based nanosheets from graphite”, Fuel, 89(8), 1903–1910.
  • [31] Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’homme, R.K., Aksay, I. A., Car, R. 2008. “Raman spectra of graphite oxide and functionalized graphene sheets”. Nano Letters, 8(1), 36- 41.
  • [32] Peigney, A., Laurent, C., Flahaut, E., Bacsa, R. R., Rousset, A. 2001. “Specific surface area of carbon nanotubes and bundles of carbon nanotubes”, Carbon, 39(4), 507-514.
  • [33] Yuan, D., Cheng, J., Qu, G., Li, X., Ni, W., Wang, B., Liu, H. 2016. “Amorphous red phosphorous embedded in carbon nanotubes scaffold as promising anode materials for lithium-ion batteries”, Journal of Power Sources, 301, 131-137.
  • [34] Yu, Z., Song, J., Gordin, M.L., Yi, R., Tang, D., Wang, D. 2015. “Phosphorus-graphene nanosheet hybrids as lithium-ıon anode with exceptional high temperature cycling stability”, Advanced Science, 2(1-2), 1400020-1400025.
  • [35] Wang, L., He, X., Li, J., Sun, W., Gao, J., Guo, J., Jiang, C. 2012. “Nano-structured phosphorus composite as high capacity anode materials for lithium batteries”, Angewandte Chemie International Edition, 51(36), 9034-9037.
  • [36] Sun, J., Lee, H.W., Pasta, M., Sun, Y., Liu, W., Li, Y., Lee, H.R., Liu, N., Cui, Y. 2016. “Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a highcapacity anode for sodium ion batteries”, Energy Storage Materials, 4, 130-136.
  • [37] Wang, L., Guo, H., Wang, W., Teng, K., Xu, Z., C. Chen, Li, C., Yang, C., Hu, C. 2016. “Preparation of sandwich-like phosphorus/reduced graphene oxide composites as anode materials for lithium-ion batteries”, Electrochimica Acta, 211, 499-506.
  • [38] Lotfabad, E.M., Ding, J., Cui, K., Kohandehghan, A., Kalisvaart, W.P., Hazelton, M., Mitlin, D. 2014. “High-density sodium and lithium ion battery anodes from banana peels”, ACS Nano, 8(7), 7115-7129.
  • [39] Jache, B., Adelhelm, P. 2014. “Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-ıntercalation phenomena”, Angewandte Chemie International Edition, 53(38), 10169-10173.
  • [40] Thomas, P., Billaud, D. 2002. “Electrochemical insertion of sodium into hard carbons”, Electrochimica Acta, 47(20), 3303-3307.
  • [41] Pol, V.G., Lee, E., Zhou, D., Dogan, F., Calderon-Moreno, J.M., Johnson, C.S. 2014. “Spherical carbon as a new high-rate anode for sodium-ıon batteries”, Electrochimica Acta, 127, 61-67.
  • [42] Thomas, P., Billaud, D. 2001. “Sodium electrochemical insertion mechanisms in various carbon fibres”, Electrochimica Acta 46(22), 3359-3366.
  • [43] Alcantara, R., Jimenez Mateos, J.M., Tirado, J.L. 2002. “Negative electrodes for lithiumand sodium-ion batteries obtained by heattreatment of petroleum cokes below 1000 °C”, Journal of Electrochemical Society, 149(2), A201-A205.
  • [44] Yabuuchi, N., Kajiyama, M., Iwatate, J., Nishikawa, H., Hitomi, S., Okuyama, R., Usui, R., Yamada, Y., Komaba, S. 2012. “P2-Type NaX[Fe1/2Mn1/2]O made from earth-abundant elements for rechargeable Na batteries”, Nature Materials, 11(6), 512-517.
  • [45] Dahbi, M., Yabuuchi, N., Kubota, K., Tokiwa, K., Komaba, S. 2014. “Negative electrodes for Na-ion batteries”, Physical Chemistry Chemical Physics, 16(29), 15007-15028.
  • [46] Palomares, V., Casas-Cabanas, M., Castillo-Martinez, E., Han, M.H., Rojo, T. 2013. “Update on Na-based battery materials. A growing research path” Energy Environmental Science 6(8), 2312-2337.
  • [47] Komaba, S., Murata, W., Ishikawa, T., Yabuuchi, N., Ozeki, T., Nakayama, T., Ogata, A., Gotoh, K., Fujiwara, K. 2011. “Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries”, Advanced Functional Materials, 21(20), 3859-3867.
  • [48] Ponrouch, A., Goni, A.R., Palacín, M.R. 2013. “High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte”, Electrochemistry Communications, 27, 85-88.
  • [49] Stevens, D.A., Dahn, J.R. 2000. “High Capacity anode materials for rechargeable sodiumion batteries”, Journal of The Electrochemical Society, 147(4), 1271-1273.
  • [50] Keyes, R.W. 1953. “The electrical properties of black phosphorus”, Physical Review, 92(3), 580-584.
  • [51] Pauling, L., Simonetta, M. 1952. “Bond orbitals and bond energy in elementary phosphorus”, The Journal of Chemical Physics, 20(1), 29-34.
  • [52] Kim, Y., Park, Y., Choi, A., Choi, N.S., Kim, J., Lee, J., Ryu, J.H., Oh, S.M., Lee, K.T. 2013. “An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries”, Advanced Materials, 25(22), 3045-3049.
  • [53] Qian, J., Wu, X., Cao, Y., Ai, X., Yang, H. 2013. “High Capacity and rate capability of amorphous phosphorus for sodium ion batteries”, Angewandte Chemie, 125(17), 4731-4734.
  • [54] Sun, L.Q., Li, M.J., Sun, K., Yu, S.H., Wang, R.S., Xie, R.H. 2012. “Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries”, The Journal of Physical Chemistry C, 116(28), 14772-14779.
  • [55] Park, C.M., Sohn, H.J. 2007. “Black Phosphorus and its composite for lithium rechargeable batteries”, Advanced Materials 19(18), 2465-2468.
  • [56] Li, W.J., Chou, S.L., Wang, K.Z., Liu, H.K., Dou, S.X. 2013. “Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage”, Nano Letters, 13(11), 5480–5484.
  • [57] Qian, J., Wu, X., Cao, Y., Ai, X., Yang, H. 2013. “High capacity and rate capability of amorphous phosphorus for sodium ion batteries”, Angewandte Chemie International Edition, 52(17), 4633–4636.
  • [58] Yabuuchi, N., Matsuura, Y., Ishikawa, T., Kuze, S., Son, J.Y., Cui, Y.T., Oji, H., Komaba, S. 2014. “Phosphorus electrodes in sodium cells: small volume expansion by sodiation and the surface-stabilization mechanism in aprotic solvent”, ChemElectroChem, 1(3), 580-589.
  • [59] Zhu, Y., Wen, Y., Fan, X., Gao, T., Han, F., Luo, C., Liou, S.C., Wang, C. 2015. “Red phosphorus_single-walled carbon nanotube composite as a superior anode for sodium ion batteries”, ACS Nano, 9(3), 3254-3264.
  • [60] Sun, J., Zheng, G., Lee, H.W., Liu, N., Wang, H., Yao, H., Yang, W., Cui, Y. 2014. “Formation of stable phosphorus -carbon bond for enhanced performance in black phosphorus nanoparticle graphite composite battery anodes”, Nano Letters, 14(8), 4573-4580.
  • [61] Ellis, L.D., Hatchard, T.D., Obrovac, M.N. 2012. “Reversible Insertion of Sodium in Tin”, Journal of The Electrochemical Society, 159(11), A1801-A1805.
  • [62] Chevrier, V.L., Ceder, G. 2011. “Challenges for Na-ion Negative Electrodes”, Journal of The Electrochemical Society, 158(9), A1011-A1014.
  • [63] Wang, J.W., Liu, X.H., Mao, S.X., Huang, J.Y. 2012. “Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction”, Nano Letters, 12(11), 5897-5902.
  • [64] Komaba, S., Matsuura, Y., Ishikawa, T., Yabuuchi, N., Murata, W., Kuze, S. 2012. “Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell”, Electrochemistry Communications, 21, 65-68.
  • [65] Xu, Y., Zhu, Y., Liu, Y., Wang, C. 2013. “Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium-Ion and Lithium-Ion Batteries”, Advanced Energy Materials, 3(1), 128-133.
  • [66] Liu, Y., Xu, Y., Zhu, Y., Culver, J.N., Lundgren, C.A., Xu, K., Wang, C. 2013 “Tin-coated viral nanoforests as sodium-ion battery anodes”, ACS Nano, 7(4), 3627-3634.
  • [67] Zhu, H., Jia, Z., Chen, Y., Weadock, N., Wan, J., Vaaland, O., Han, X., Li, T., Hu, L. 2013. “Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir”, Nano Letters, 13(7), 3093-3100.
  • [68] Bresser, D., Mueller, F., Buchholz, D., Paillard, E., Passerini, S. 2014. “Embedding tin nanoparticles in micron-sized disordered carbon for lithium-and sodium-ion anodes”, Electrochimica Acta, 128, 163-171.
  • [69] Jang, Y.S., Kim, J.H., Choi, S.H., Yang, K.M., Kang. Y.C. 2012. “Electrochemical properties of Cu6Sn5-C composite powders with mixture of Cu5Sn6@Void@C yolk-shell, Cu5Sn6 alloy, and hollow carbon”, International Journal of Electrochemical Science, 7, 12531- 12544.
  • [70] Maier, J. 2013. “Thermodynamics of electrochemical lithium storage”, Angewandte Chemie International Edition, 52(19), 4998-5026.
  • [71] Choi, N.S., Chen, Z., Freunberger, S.A., Ji, X., Sun, Y.K., Amine, K., Yushin, G., Nazar, L.F., Cho, J., Bruce, P.G. 2012. “Challenges facing lithium batteries and electrical double-layer capacitors”, Angewandte Chemie International Edition, 51(40), 9994-10024.
  • [72] Li, X., Dhanabalan, A., Gu, L., Wang, C. 2012. “Three-dimensional porous core-shell Sn@Carbon composite anodes for high-performance lithium-ion battery applications”, Advanced Energy Materials, 2(2), 238-244.
  • [73] Yu, Y., Gu, L., Zhu, C., Aken, P.A., Maier, J., 2009. “Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries”, Journal of the American Chemical Society, 131(44), 15984-15985.
  • [74] Yu, Y., Gu, L., Wang, C., Dhanabalan, A., Aken, P.A., Maier, J. 2009. “Encapsulation of Sn @ carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries”, Angewandte Chemie International Edition, 48(35), 6485-6489.
  • [75] Yu, Y., Gu, L., Lang, X., Zhu, C., Fujita, T., Chen, M.W., Maier, J. 2011. “Li Storage in 3D nanoporous Au‐supported nanocrystalline tin”, Advanced Materials, 23(21), 2443-2447.
  • [76] Han, X., Liu, Y., Jia, Z., Chen, Y.C., Wan, J., Weadock, N., Gaskell, K.J., Li, T., Hu, L. 2014. “Atomic-layer-deposition oxide nanoglue for sodium ion batteries”, Nano Letters, 14, 139-147.
  • [77] Gonzalez, J.R., Nacimiento, F., Alcantara, R., Ortiz, G.F., Tirado, J.L. 2013. “Electrodeposited CoSn2 on nickel open-cell foam: advancing towards high power lithium ion and sodium ion batteries”, CrystEngComm, 15(44), 9196-9202.
  • [78] Liu, J., Wen, Y., Aken, P.A., Maier, J., Yu, Y. 2014. “Facile synthesis of highly porous Ni−Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage”, Nano Letters, 14(11), 6387-6392.
  • [79] Jiang, H., Moon, K.S., Dong, H., Hua, F., Wong, C.P. 2006. “Size-dependent melting properties of tin nanoparticles”, Chemical Physics Letters, 429(4), 492-496.
  • [80] Zhang, H.X., Feng, C. Zhai, Y.C., Jiang, K.L., Li, Q.Q., Fan, S.S. 2009. “Cross-Stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: a novel binder-free and high-capacity anode material for lithium-ion batteries”, Advanced Materials, 21, 2299-2304.
  • [81] Wang, S., Zhao, W., Wang, Y., Liu, X., Li, L. 2013. “Characteristic performance of SnO/Sn/Cu6Sn5 three-layer anode for Li-ion battery”, Electrochimica Acta, 109, 46-51.
  • [82] Pu, W., He, X., Ren, J., Wan, C., Jiang, C. 2005. “Electrodeposition of Sn–Cu alloy anodes for lithium batteries”, Electrochimica Acta, 50(20), 4140-4145.
  • [83] Chee, S.S., Lee, J.H. 2012. “Reduction Synthesis of Tin Nanoparticles Using Various Precursors and Melting Behavior”, Electronic Materials Letters., 8, 587–593.
  • [84] Hsu, Y.J., Lin, Y.F., Lu, S.Y. 2006. “Nanostructures of Sn And Their Enhanced, Shape- Dependent Superconducting Properties”, Small, 2, 268–273.
  • [85] Kauzlarich, S.M., Liu, Y.Q., Yang, C.S. 2002. “Synthesis and Characterization of Sn/R, Sn/Si−R, and Sn/SiO2 Core/Shell Nanoparticles”, Chemistry of Materials., 12, 983-988.
  • [86] Caillon, G., Cuevas, F., Edfouf, Z., Georges, C.F., Hezeque, T., Jordy, C., Jumas, J.C., Latroche, M., Sougrati, M.T. 2013. “Nanostructured Ni3.5Sn4 İntermetallic Compound: An Efficient Buffering Material for Si-Containing Composite Anodes in Lithium Ion Batteries”, Electrochimica Acta, 89, 365-371.
  • [87] Palacin, M.R. 2009. “Recent Advances İn Rechargeable Battery Materials: A Chemist's Perspective”, Chemical Society Reviews, 38, 2565-2575
  • [88] Ozanam, F., Rosso, M., 2016. “Silicon as anode material for Li-ion batteries”, Materials Science and Engineering B, 213, 2-11.
  • [89] Thorne, J.S., Ferguson, P.P., Dunlap, R.A., Dahn, J.R. 2009. “Effect of annealing on nanostructured Sn30Co30C40 prepared by mechanical attrition”, Journal of Alloys and Compounds, 472(1-2), 390-394.
  • [90] Park, M.S, Arroyave, R. 2011. “Computational investigation of intermetallic compounds (Cu6Sn5 and Cu3Sn) growth during solid-state aging process”, Computational Materials Science, 50, 1692-1700.
  • [91] Su, L., Fu, J., Zhang, P., Wang, L., Wang, Y., Ren M. 2017. “Uniform core–shell Cu6Sn5@C nanospheres with controllable synthesis and excellent lithium storage performances” RSC Advances, 7, 28399-28406.
  • [92] Han, Q.G., Yi, Z., Cheng, Y., Wu, Y., Wang, L.M. 2016. “Simple preparation of Cu6Sn5/Sn composites as anode materials for lithium-ion batteries”, RSC Advances, 6, 15279-15285.
  • [93] Kim, I.T., Allcorn, E., Manthiram, A. 2015. “Cu6Sn5-TiC-C nanocomposite anodes for highperformance sodium-ion batteries”, Journal of Power Sources, 281, 11-17.
  • [94] Tarascon, J.M., Armand, M. 2001. “Issues and challenges facing rechargeable lithium batteries”, Nature Materials, 414(6861),359-367.
  • [95] Su, H., Jaffer, S., Yu, H. 2016. “Transition metal oxides for sodium-ion batteries”, Energy Storage Materials, 5, 116-131.
  • [96] Berthelot, R., Carlier, D., Delmas, C. 2011. “Electrochemical investigation of the P2– NaxCoO2 phase diagram”, Nature Materials ,10(1), 74-80.
  • [97] Doubaji, S., Valvo, M., Saadoune, I., Dahbi, M., Edström, K. 2014. “Synthesis and characterization of a new layered cathode material for sodium ion batteries”, Journal of Power Sources, 266, 275-281.
  • [98] Shacklette, L.W., Jow T.R., Townsend L. 1988. “Rechargeable Electrodes from Sodium Cobalt Bronzes”, Electrochem. Society, 135(11), 2669-2674.
  • [99] Mo, Y., Ong, S.P., Ceder, G. 2014. “Insights into Diffusion Mechanisms in P2 Layered Oxide Materials by First-Principles Calculations”, Chemistry Materials, 26, 5208- 5214.
  • [100] Kubota, K., Ikeuchi, I., Nakayama, T., Takei, C., Yabuuchi, N., Shiiba, H., Nakayama, M., Komaba, S. 2015. “New Insight into Structural Evolution in Layered NaCrO2 during Electrochemical Sodium Extraction”, The Journal of. Physıcal Chemistry C, 119, 166-175.
  • [101] Billaud, J., Clément, R.J., Armstrong, A.R., Canales-Vázquez, J., Rozier, P., Grey, C.P., Bruce, P.G. 2014. “β-NaMnO2: a high-performance cathode for sodium-ion batteries”, Journal of the American Chemical Society, 136(49), 17243-17252.
  • [102] Yabuuchi, N., Yoshida, H., Komaba, S. 2012. “Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries”, Electrochemistry, 80(10), 716-719.
  • [103] Vassilaras, P., Ma, X., Li, X., Ceder, G. 2013. “Electrochemical Properties of Monoclinic NaNiO2”, Journal of the Electrochemical Society, 160(2), A207-A211.
  • [104] Talaie, E., Duffort, V., Smith, H.L., Fultz, B., Nazar, L.F. 2015. “Structure of the high voltage phase of layered P2-Na2/3−z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability”, Energy & Environmental Science, 8, 2512-2523.
  • [105] Thorne, J.S., Dunlap, R.A., Obrovac, M.N.J.S. 2014. “Investigation of P2- Na2/3Mn1/3Fe1/3Co1/3O2 for Na-Ion Battery Positive Electrodes”, Journal of The Electrochemical Society, 161(14), 2232-2236.
  • [106] Chen, X., Zhou, X., Hu, M., Liang, J., Wu, D., Wei, J., Zhou, Z. 2015. “Stable layered P3/P2 Na0.66Co0.5Mn0.5O2 cathode materials for sodium-ion batteries” Journal of Materials Chemistry A, 3, 20708-20714.
  • [107] Wen, Y., Wang, B., Zeng, G., Nogita, K., Ye, D., Wang, L. 2015. “Electrochemical and Structural Study of Layered P2‐Type Na2/3Ni1/3Mn2/3O2 as Cathode Material for Sodium‐Ion Battery”, Chemistry – An Asian Journal, 10(3), 661-666.
  • [108] Su, J., Pei, Y., Yang, Z., Wang, X. 2015. “First-principles investigation on crystal, electronic structures and Diffusion barriers of NaNi1/3Co1/3Mn1/3O2 for advanced rechargeable Na-ion batteries”, Computational Materials Science, 98, 304-310.
  • [109] Yabuuchi, N., Yano, M., Yoshida, H., Kuze, S., Komaba, S. 2013. “Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries”, Journal of The Electrochemical Society, 160(3), 3131-3137.
  • [110] Doubaji, S., Philippe, B., Saadoune, I., Gorgoi, M., Gustafsson, T., Solhy, A., Valvo, M., Rensmo, H., Edstrom, K. 2016. “Passivation Layer and Cathodic Redox Reactions in Sodium- Ion Batteries Probed by HAXPES”, ChemSusChem, 9(1), 97-108.
  • [111] Yoshida, H., Yabuuchi, N., Komaba, S. 2013. “NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries”, Electrochemistry Communications, 34, 60-63.
  • [112] Vassilaras, P., Toumar, A. J., Ceder, G. 2014. “Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries”, Electrochemistry Communications, 38, 79-81.
  • [113] Sabi, N., Doubaji, S., Hashimoto, K., Komaba, S., Amine, K., Solhy, A., Manoun, B., Bilal, E., Saadoune, I. 2017. “Layered P2-Na2/3Co1/2Ti1/2O2 as a high-performance cathode material for sodium-ion batteries”, Journal of Power Sources, 342, 998-1005.
  • [114] Wang, P.F., Yao, H.R., Liu, X.Y., Zhang, J.H., Gu, L., Yu, X.Q. Yin, X.Y.Y., Guo, Y.G. 2017. “Ti‐Substituted NaNi0.5Mn0.5‐xTixO2 Cathodes with Reversible O3−P3 Phase Transition for High‐Performance Sodium‐Ion Batteries”, Advanced Materials, 29(19), 1700210.
  • [115] Yoshida, H., Yabuuchi, N., Kubota, K., Ikeuchi, I., Garsuch, A., Schulz-Dobrick, M., Komaba, S., 2014. “P2-type Na2/3Ni1/3Mn2/3−xTixO2 as a new positive electrode for higher energy Na-ion batteries”, Chemical Communications, 50(29), 3677-3680.
  • [116] Fauth, F., Peral, I., Popescu, P., Knapp, M. 2013. “The new Material Science Powder Diffraction beamline at ALBA Synchrotron”, Powder Diffraction, 28, S360-S370.
  • [117] Herklotz, M., Weiß, J., Ahrens, E., Yavuz, M., Mereacre, L., Kiziltas-Yavuz, N., Dräger, C., Ehrenberg, H., Eckert, J., Fauth, F., Giebeler, L., Knapp, M. 2016. “A novel high-throughput setup for in situ powder diffraction on coin cell batteries”, Journal of Applied Crystallography, 49(2), 340-345.
  • [118] Huang, F.T., Chu, M.W., Shu, G.J., Sheu, H.S., Chen, C.H., Liu, L-K., Lee, P.A. Chou, F.C. 2009. “X-ray and electron diffraction studies of superlattices and long-range threedimensional Na ordering in γ-NaxCoO2 (x=0.71 and 0.84)”, Physıcal Revıew B: Covering Condensed Matter and Materials Physics, 79(1), 014413.
  • [119] Jung, Y.H., Christiansen, A.S., Johnsen, R.E., Norby, P., Kim, D.K. 2015. “In Situ X‐Ray Diffraction Studies on Structural Changes of a P2 Layered Material during Electrochemical Desodiation/Sodiation”, Advanced Functional Materials, 25, 3227-3237.
  • [120] Ma, C., Alvarado, J., Xu, J., Clément, J.R., Kodur, M., Tong, W., Grey, C.P., Meng, Y.S. 2017. “Exploring Oxygen Activity in the High Energy P2-Type Na0.78Ni0.23Mn0.69O2 Cathode Material for Na-Ion Batteries”, Journal of the American Chemical Society, 139(13), 4835-4845.
  • [121] Berthelot, R., Pollet, M., Carlier, D., Delmas, C. 2011. “Reinvestigation of the OP4- (Li/Na)CoO2-Layered System and First Evidence of the (Li/Na/Na)CoO2 Phase with OPP9 Oxygen Stacking”, Inorganic Chemistry, 50(6), 2420-2430.
  • [122] Mortemard de Boisse, B., Carlier, D., Guignard, M., Bourgeois, L., Delmas, C., 2014. “P2-NaxMn1/2Fe1/2O2 Phase Used as Positive Electrode in Na Batteries: Structural Changes Induced by the Electrochemical (De)intercalation Process”, Inorganic Chemistry, 53(27), 11197-11205.
APA GÜLER M, ALAF M, Akbulut H (2019). Sodyum-İyon Piller: Enerji Depolama Ve Dönüşüm İçin Ucuz Bir Çözüm. , 1 - 91.
Chicago GÜLER MEHMET OĞUZ,ALAF MIRAÇ,Akbulut Hatem Sodyum-İyon Piller: Enerji Depolama Ve Dönüşüm İçin Ucuz Bir Çözüm. (2019): 1 - 91.
MLA GÜLER MEHMET OĞUZ,ALAF MIRAÇ,Akbulut Hatem Sodyum-İyon Piller: Enerji Depolama Ve Dönüşüm İçin Ucuz Bir Çözüm. , 2019, ss.1 - 91.
AMA GÜLER M,ALAF M,Akbulut H Sodyum-İyon Piller: Enerji Depolama Ve Dönüşüm İçin Ucuz Bir Çözüm. . 2019; 1 - 91.
Vancouver GÜLER M,ALAF M,Akbulut H Sodyum-İyon Piller: Enerji Depolama Ve Dönüşüm İçin Ucuz Bir Çözüm. . 2019; 1 - 91.
IEEE GÜLER M,ALAF M,Akbulut H "Sodyum-İyon Piller: Enerji Depolama Ve Dönüşüm İçin Ucuz Bir Çözüm." , ss.1 - 91, 2019.
ISNAD GÜLER, MEHMET OĞUZ vd. "Sodyum-İyon Piller: Enerji Depolama Ve Dönüşüm İçin Ucuz Bir Çözüm". (2019), 1-91.
APA GÜLER M, ALAF M, Akbulut H (2019). Sodyum-İyon Piller: Enerji Depolama Ve Dönüşüm İçin Ucuz Bir Çözüm. , 1 - 91.
Chicago GÜLER MEHMET OĞUZ,ALAF MIRAÇ,Akbulut Hatem Sodyum-İyon Piller: Enerji Depolama Ve Dönüşüm İçin Ucuz Bir Çözüm. (2019): 1 - 91.
MLA GÜLER MEHMET OĞUZ,ALAF MIRAÇ,Akbulut Hatem Sodyum-İyon Piller: Enerji Depolama Ve Dönüşüm İçin Ucuz Bir Çözüm. , 2019, ss.1 - 91.
AMA GÜLER M,ALAF M,Akbulut H Sodyum-İyon Piller: Enerji Depolama Ve Dönüşüm İçin Ucuz Bir Çözüm. . 2019; 1 - 91.
Vancouver GÜLER M,ALAF M,Akbulut H Sodyum-İyon Piller: Enerji Depolama Ve Dönüşüm İçin Ucuz Bir Çözüm. . 2019; 1 - 91.
IEEE GÜLER M,ALAF M,Akbulut H "Sodyum-İyon Piller: Enerji Depolama Ve Dönüşüm İçin Ucuz Bir Çözüm." , ss.1 - 91, 2019.
ISNAD GÜLER, MEHMET OĞUZ vd. "Sodyum-İyon Piller: Enerji Depolama Ve Dönüşüm İçin Ucuz Bir Çözüm". (2019), 1-91.