2 2

Proje Grubu: MAG Sayfa Sayısı: 142 Proje No: 214M020 Proje Bitiş Tarihi: 01.07.2017 Metin Dili: Türkçe İndeks Tarihi: 03-12-2019

Graphene Based High Efficiency Energy Storage Systems (GREENSTOR)

Öz:
Küresel olarak enerjinin çevresel olarak temiz olarak temini ve güvenilir bir şekilde dağıtımı günümüzde önemli bir problem olmuş ve birçok bilim insanının temel görevi haline gelmiştir. Temiz enerjinin sera gazlarının azaltılması ve dünya iklimi üzerinde olumlu bir etkiye sahip olduğu tartışılmazdır. Bu proje önerisi kapsamında Türkiye ve Fas?tan bir araya gelmiş bilim insanları sürdürülebilir bir toplum için enerji depolamadaki temel problemleri araştırmak üzere bir araya gelmişlerdir. Günümüzdeki pratik uygulamalar irdelendiğinde enerji yoğunluğu en yüksek şarj edilebilir piller Li-iyon ya da Li-polimer piller olduğu görülmektedir. Ticari olarak bu tip piller cep telefonlarında, taşınabilir bilgisayarlarda ya da video kaydedici cihazlarda yoğun olarak kullanılmaktadır. Bu tür pillerin daha da geliştirilmesi ile hibrit araçlar için daha büyük ya da daha da küçültülerek ?çip üzerinde pil? konseptine uygun olarak daha küçük elektronik cihazlarında üretimi içinde önemli bir sorunun ortadan kaldırılmasına yardımcı olunmuştur. Onaylanan Bütçe: Önerilen proje kapsamında düşük maliyetli ve daha yüksek kapasiteye sahip elektrot malzemelerin sentezlenmesi öncelikli konudur. Bu nedenle, olivin-yapılı fosfatlı LiMPO4 (M = Fe, Mn, Ni, vs.) elektrot malzemeleri daha zehirsiz, düşük maliyetli, gelişmiş termal ve kimyasal kararlılığa ve Fas topraklarında daha fazla bulunması nedeniyle tercih edilmiştir. Ancak fosfat esaslı malzemelerin daha düşük elektronik ve iyonik iletkenliğe sahiptir. Bu nedenle yüksek kapasite değerlerine sahip LiMPO4 (M = Fe, Mn, Ni, vs.) elektrot malzemelerinin sentezlenmesi oldukça güçtür. Bu proje önerisi kapsamında özellikle elektrokimyasal enerji depolama alanında çok bileşenli hibrit nanokompozit elektrotlar geliştirilmiştir. Proje ekibi geliştirdiği yüzey aktif madde destekli kimyasal yöntem tekniklerini kullanarak ilk kez gram mertebesinde en az 8-12 katmanlı grafen üretimini ve optimizasyonu sağlamıştır. Üretilen grafen araştırmacılara ücretsiz temin edileceği hususunda konu ile ilgili çalışan araştırmacılara bilgi verilmiştir. Bunun yanı sıra aynı zamanda proje ekibine özgün yolk-shell (yumurta tipi) karbon kaplı Si ve Sn esaslı grafen takviyeli nanokpompozit hibrit negatif ve pozitif elektrotlar geliştirilmiş ve tam elektrokimyasal testler yarım ve tam hücre bazında gerçekleştirilmiştir. Böylece hem literatüre ve hem de Li pillerin taşınabilir ve elektrikli araçlar (EV) gibi uygulamalarda ileride daha uzun süre serviste kalmasına katkı sağlandığı düşünülmektedir.
Anahtar Kelime: Nanokompozit. Sn esaslı anot Si anot LiMPO4 katot Grafen Li-iyon piller

Konular: Nanobilim ve Nanoteknoloji Malzeme Bilimleri, Kompozitler
Erişim Türü: Erişime Açık
  • Dell, R. M., Rand, D. A. J., 2001. Understanding Batteries (1. Cilt). Cambridge: The Royal Society of Chemistry.
  • Peierls, R. E., 1935. “Quelques proprietes typiques des corpses solides”, Ann. I. H. Poincare, 5, 177–222.
  • Landau, L. D., 1937. “Zur Theorie der phasenumwandlungen II”, Phys. Z. Sowjetunion, 11, 26–35.
  • Opitz, A., Badami, P., Shen, L., Vignarooban, K., Kannan, A.M., 2017. “Can Li-Ion batteries be the panacea for automotive applications?”, Renewable and Sustainable Energy Reviews, 68, 685-692.
  • Li, M., 2017. “Li-ion dynamics and state of charge estimation”, Renewable Energy, 100, 42-52.
  • Harks. P.P.R.M.L., Mulder, F.M., Notten, P.H.L., 2015. “In situ methods for Li-ion battery research: A review of recent developments”, J. Power Sources, 288, 92-105.
  • Salvadori, A., Grazioli, D., Geers, M.G.D., 2015. “Governing equations for a two-scale analysis of Li-ion battery cells”, International Journal of Solids and Structures, 59, 90- 109.
  • Mermin, N. D., 1968. “Crystalline order in two dimensions”, Phys. Rev., 176, 250– 254.
  • Dubonos S. V., Firsov A. A., Geim, A. K., Grigorieva, I. V., Jiang, D., Morozov S. V., Novoselov, K. S., Zhang, Y., 2004. “Electric field effect in atomically thin carbon films”, Science, 306, 666–669.
  • PAC, 1995, Recommended terminology for the description of carbon as a solid, IUPAC Recommendations, 67, 473-491.
  • Allen, M. J., Kaner, R. B., Tung, V. C., 2010. “Honeycomb Carbon: A review of graphene”, Chem. Rev., 110, 132–145.
  • An, J., Jung, I., Nguyen, S. T., Park, S., Piner, R. D., Ruoff, R. S., Velamakanni, A., Yang, D., 2008. “Aqueous suspension and characterization of chemically modified graphene sheets”, Chem. Mater., 20, 6592–6594.
  • Cheng, H., Pei, S., 2012. “The reduction of graphene oxide”, Carbon, 50, 3210–3228.
  • Chen, S., Chen, W., Huang, H., 2008. “Bottom-up growth of epitaxial graphene on 6H-SiC(0001)”, ACS Nano, 2, 2513–2518.
  • Banks, C. E., Brownson, D. A. C., 2012. “The electrochemistry of CVD graphene: progress and prospects”, Phys. Chem. Chem. Phys., 14, 8264–8281.
  • Dato, A., Frenklach, Lee, Z., Phillips, J., M., Radmilovic, V., 2008. “Substrate-free gas-phase synthesis of graphene sheets”, Nano Lett., 8, 2012–2016.
  • Flege, J., Sutter, E. A., Sutter, P. W., 2008. “Epitaxial graphene on ruthenium”, Nature Materials, 7, 406–411.
  • Koehler, F. M., Stark, W. J., 2013. “Organic Synthesis on Graphene”, Accounts of chemical research, 46, 2297–2306.
  • De, S., Jonathan N. C., U. Khan, Lotya, M., O’Neill, A., 2010. “High-concentration solvent exfoliation of graphene”, Small, 6, 864–871.
  • Andrew, P., Bower, C., Chundi, V., Grande, L., Ryhanen, T., 2012. “Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices”, Chem. Commun., 48, 1239–1241.
  • Chen, G., Fang, M., Wang, L., Wu, F., Wu, H., Zhao, W., 2010. “Preparation of graphene by exfoliation of graphite using wet ball milling”, J. Mater. Chem., 20, 5817– 5819.
  • Dimiev, A., Higginbotham, A. L., Kosynkin, D. V., Lomeda, J. R., Price, B. K., Sinitskii, A., Tour, J. M., 2009. “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons”, Nature, 458, 872-876.
  • Dhawan, S. K., Ohlan, A., Singh, K., 2012. “Nanocomposites - new trends and developments/ chapter 3: polymer-graphene nanocomposites: preparation, characterization, properties, and applications”. InTech, 37-71.
  • Blighe, F. M., Boland, J. J., Byrne, M., Colemani J. N., De, S., Duesberg, G., Ferrari, A. C., Goodhue, R., Gun'Ko, Y. K., Hernandez, Y., Holland, B., Hutchiso, J., Krishnamurthy, S., Lotya, M., McGover, I. T., Nicolosi, V., Niraj, P., Scardaci, V., Sun, Z., 2008. “High-yield production of graphene by liquid-phase exfoliation of graphite”, Nature Nanotechnology, 3, 563–568.
  • Choi, W. M., Chung, J. S., Dang, D. K., Hur, S. H., Kim, E. J., Kohl, P. A., Liu, X., Tran, V. T., Xu, J.,2014. “Liquid-phase exfoliation of graphene in organic solvents with addition of naphthalene”, Journal of Colloid and Interface Science, 418, 37–42.
  • Li, C., Li, Y., Yu, X., Zhang, Q., Zhao, X., Zhu, L., 2013. “High-quality production of graphene by liquid-phase exfoliation of expanded graphite”, Materials Chemistry and Physics, 137, 984-990.
  • Barron, A. R., Hamilton, C. E., Lomeda, J. R., Sun, Z., Tour, J. M., “High-yield organic dispersions of unfunctionalized graphene”, Nano Lett., 9, 3460-3462.
  • Blau, W. J., Coleman, J. N., Hernandez, Y., Lotya, M., Wang, J., 2009. “Broadband nonlinear optical response of graphenedispersions”, Adv. Mater., 21, 2430–2435.
  • Adamson, D. H., Asandei, A. D., Carrillo, J. Y., Dobrynin, A. V., Hire, C. C., Oyer, A. J., Schniepp, H. C., 2012. “Stabilization of Graphene Sheets by a Structured Benzene/Hexafluorobenzene Mixed Solvent”, J. Am. Chem. Soc., 134, 5018−5021.
  • Somani, P. R., Somani, S. P., Umeno, M., 2006. “Planer nano-graphenes from camphor by CVD”, Chemical Physics Letters, 430, 56–59.
  • Chhowalla, M., Kim, H., Mattevi, C., 2011. “A review of chemical vapour deposition of graphene on copper”, J. Mater. Chem., 21, 3324–3334.
  • Liu, W.W., Chai, S.P., Mohamed, A.R., Hashim, U. 2014. “Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments”, Journal of Industrial And Engineering Chemistry, 20, 1171-1185.
  • Starke, U., Riedl, C. 2009. “Epitaxial graphene on SiC (0001) and SiC (0001): from surface reconstructions to carbon electronics”, J. Phys.: Condens. Matter, 21, 134016-134028.
  • Riedl, C., Coletti, C., Starke, U. 2010. “Structural and electronic properties of epitaxial graphene on SiC(0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation”, J. Phys. D: Appl. Phys., 43, 374009-374021.
  • Geim, A. K. 2009. “Graphene: Status and prospects”, Science, 324, 1530-1534.
  • Brodie, B.C. 1860. “Sur le poids atomique du graphite”, Ann. Chim. Phys., 59, 466- 472.
  • Staudenmaier, L. 1898. “Verfahren zur darstellung der graphitsaure”, Ber. Dtsch. Chem. Ges., 31, 1481–1499. [38] Hummers, W., Offeman, R. 1958. “Preparation of graphitic oxide”, J Am Chem Soc., 80, 1339-1347.
  • Dreyer, D. R., Park, S., Bielawski, C. W., Ruoff, R. S. 2010 “The chemistry of graphene oxide”, Chem. Soc. Rev., 39, 228-240.
  • Park, S., An, J., Potts, J. R., Velamakanni, A., Murali, S., Ruoff, R. S. 2011. “Hydrazine-reduction of graphite- and graphene oxide”, Carbon, 49, 3019-3023.
  • Özcan, Ş., Cetinkaya, T., Tokur, M., Algül, H., Guler, M. O., Akbulut, H. 2016. “Synthesis of flexible pure graphene papers and utilization as free standing cathodes for lithium-air batteries”, Int. J. Hydrogen Energy, 41, 9796-9802.
  • Akhavan, O. 2015. “Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets”, Carbon, 81, 158-166.
  • Shin, H., Kim, K. K., Benayad, A., Yoon, S., Park, H., Jung, I., Jin, M. H., Jeong, H., Kim, J. M., Choi, J., Lee, Y. H. 2009. “Efficient reduction of graphite oxide by sodiumborohydride and its effect on electrical conductance”, Adv. Funct. Mater., 19, 1987-1992.
  • Shen, J., Hu, Y., Shi, M., Lu, X., Qin, C., Li, C., Ye, M. 2009. “Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets”, Chem. Mater.,
  • 21, 3514-3520. Yang, Z., Zheng, Q., Qiu, H., LI, J., Yang, J. 2015. “A simple method for the reduction of graphene oxide by sodium borohydride with CaCl 2 as a catalyst”, New Carbon Materials, 30, 41-47.
  • Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R. S. 2007. “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon, 45, 1558-1565.
  • Pei, S., Zhao, J., Du, J., Ren, W., Cheng, H. 2010. “Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids”, Carbon, 48, 4466- 4474.
  • Cai, G., Xu, Z., Yang, M., Tang, B., Wang, X. 2017. “Functionalization of cotton fabrics through thermal reduction of graphene oxide”, Applied Surface Science, 393, 441-448.
  • Luo, D., Zhang, G., Liu, J., Sun, X. 2011. “Evaluation criteria for reduced graphene oxide”, J. Phys. Chem. C, 115, 11327-11335.
  • Chen, T., Xue, Y., Roy, A. K., Dai, L. 2014. “Transparent and stretchable high- performance supercapacitors based onwrinkled graphene electrodes”, ACS Nano 8, 1039-1046.
  • Huang, P. Y., Ruiz-Vargas, C. S., Zande, A. M., Whitney, W. S., Levendorf, M. P., Kevek, J. W., Garg, S., Alden, J. S., Hustedt, C. J., Zhu, Y., Park, J., McEuen, P. L., Muller, D. A. 2011. “Grains and grain boundaries in single-layer graphene atomic patchwork quilts”, Nature, 469, 389-392.
  • Wu, N., She, X., Yang, D., Wu, X., Su, F., Chen, Y. 2012 “Synthesis of network reduced graphene oxide in polystyrene matrix by a two-step reduction method for superior conductivity of the composite”, J. Mater. Chem., 22, 17254-17261.
  • Saner, B., Okyay, F., Yürüm, Y. 2010. “Utilization of multiple graphene layers in fuel cells. 1. An improved technique for the exfoliation of graphene-based nanosheets from graphite”, Fuel, 89, 1903-1910.
  • Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud’homme, R. K., Aksay, I. A., Car, R. 2008. “Raman spectra of graphite oxide and functionalized graphene sheets”, Nano Lett., 8, 36-41.
  • Liu, J., Li, P., Chen, Y., Wang, Z., He, J., Tian, H., Qi, F., Zheng, B., Zhou, J., Lin, W., Zhang, W. 2014. “Large-area synthesis of high-quality and uniform monolayer graphene without unexpected bilayer regions”, Journal of Alloys and Compounds, 615, 415-418.
  • Peigney, A., Laurent, C., Flahaut, E., Bacsa, R. R., Rousset, A. 2001. “Specific surface area of carbon nanotubes and bundles of carbon nanotubes”, Carbon, 39, 507-514.
  • Ghosh, A., Subrahmanyam, K. S., Krishna, K. S., Datta, S., Govindaraj, A., Pati, S. K., Rao, C. N. R. 2008. “Uptake of H 2 and CO 2 by Graphene”, J. Phys. Chem., 112, 15704-15707.
  • Lee, C., Wei, X. D., Kysar, J. W., Hone, J. 2008. “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science, 321, 385-388.
  • Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y. S. 2010. “Synthesis of graphene and its applications: A Review”, Critical Reviews in Solid State and Materials Sciences, 35, 52-71.
  • Geim, A. K., Novoselov, K. S., 2007. “The rise of graphene”, Nature Mater., 6, 183- 191.
  • Christopher, S. A., Jamie, H. W. 2013. Graphene: Fundamentals and Emergent Applications (1. Basım). Elsevier .
  • Bablich, A., Kataria, S., Lemme, M. C. 2016. “Graphene and two-dimensional materials for optoelectronic applications”, Electronics, 5, 13-19.
  • Chang, H., Wang, G., Yang, A., Tao, X., Liu, X., Shen, Y., Zheng, Z. 2010. “A Transparent, flexible, low-temperature, and solution-processible graphene composite electrode”, Adv. Funct. Mater., 20, 2893-2902.
  • Fan, X., White, I. M., Shopova, S. I., Zhu, H., Suter, J. D. Sun, Y. 2008. “Sensitive optical biosensors for unlabeled targets: A review”, Analytica Chimica Acta, 620, 8- 26.
  • Pumera, M., Ambrosi, A., Bonanni, A., Chng, E. L. K., Poh, H. L. 2010. “Graphene for electrochemical sensing and biosensing”, Trends in Analytical Chemistry, 29, 954- 965.
  • Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I. A., Lin, Y. 2010. “Graphene based electrochemical sensors and biosensors: A Review”, Electroanalysis, 22, 1027-1036.
  • Xia, F., Farmer, D. B., Lin, Y., Avouris, P. 2010. “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature”, Nano Lett., 10, 715-718.
  • Khan, M. F., Shehzad, M. A., Iqbal, M. Z., Iqbal, M. W., Nazir, G., Seob, Y., Eom, J. 2017. “A facile route to a high-quality graphene/MoS2 vertical field-effect transistor with gate-modulated photocurrent response”, J. Mater. Chem. C, 5,
  • 2337-2343. Stoller, M. D., Park, S., Zhu, Y., An, J., Ruoff, R. S. 2008. “Graphene-based ultracapacitors”, Nano Lett., 8, 3498-3502.
  • Yoo, E., Kim, J., Hosono, E., Zhou, H., Kudo, T., Honma, I. 2008. “Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries”, Nano Lett. 8, 2277-2282.
  • Malard, L.M., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., 2009. “Raman spectroscopy in graphene”, Phys. Rep., 473, 51–87.
  • Ferrari, A.C., Basko D.M., 2013. “Raman spectroscopy as a versatile tool for studying the properties of graphene”, Nat. Nanotechnol., 8, 235–246.
  • S. Shafraniuk Northwestorn University Pan Stanford Publishing Pte. Ltd, Singapore (2015).
  • Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K., 2006. “Raman spectrum of graphene and graphene layers” Phys. Rev. Lett., 97, 187401-187415.
  • Thomsen, C., Reich S., 2000. “Double resonent raman scattering in graphite”, Phys. Rev. Lett., 85, 5214–5217.
  • Żenkiewicz, M., 2007. “Methods for the calculation of surface free energy of solids” J. Achiev. Mater. Manuf. Eng., 24, 137–145.
  • Zenkiewicz, M., 2007. “Test Method Comparative study on the surface free energy of a solid calculated by different methods”, Polym. Test., 26, 14–19.
  • Volpe, C.D., Maniglio, D., Brugnara, M., Siboni, S., Morra, M., 2004. “The solid surface free energy calculation I. In defense of the multicomponent approach”, J. Colloid Interface Sci., 271, 434–453.
  • Wang, S.G., Tian, E.K., Lung C.W., 2000. “Surface energy of arbitrary crystal plane of bcc and fcc metals” J. Phys. Chem. Solids, 61, 1295–1300.
  • Wood, J.D., Schmucker, S.W., Lyons, A.S., Pop, E., Lyding J.W., 2011. “Effect of polycrystalline Cu substrate on graphene growth by chemical vapor deposition” Nano Lett., 11, 4547–4554.
  • Cho, J., Gao, L., Tian, H., Wu, W., Yu, Q., Yitamben, E.N., Fisher, B., Guest, J.R., Chen, Y.P, Guisinger, N.P., 2011. “Atomic –scale investigation of graphene grown on Cu foil and the effect of thermal annealing”, J. Am. Chem. Soc., 5, 3607–3613.
  • Wmalananda, M.D.S.L., Kim, J.K., Lee, J.M., 2016. “Effect of annealing dependent surface free energy change of Cu foil during graphene growth on quality of monolayer continuous graphene”, Carbon, 108, 127–134.
  • Hu, L., Wu, F., Lin, C., Khlobystov, A. N., Li, L. 2013. “Graphene-modified LiFePO 4 cathode for lithium ion battery beyond theoretical capacity”, Nature Communications, 4, 1-7.
  • Bak, S. M., Nam, K. W., Lee, C. W., Kim, K. H., Jung, H. C., Yang, X.Q., Kim, K. B. 2011. “Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries”, J. Mater. Chem., 21, 17309-17315.
  • Girishkumar, G., Mccloskey, B., Luntz, A. C., Swanson, S., Wilcke, W. 2010. “Lithium-air battery: promise and challenges”, The Journal Of Physical Letters, 1, 2193-2203.
  • Xiao, J., Mei, D., Li, X., Xu, W., Wang, D., Graff, G. L., Bennett, W. D., Nie, Z., Saraf, L. V., Aksay, I. A., Liu, J., Zhang, J. 2011. “Hierarchically porous graphene as a lithium-air battery electrode”, Nano Lett., 11, 5071-5078.
  • Yong Zhang, Qing-yuan Huo, Pei-pei Du, Li-zhen Wang, Ai-qin Zhang, Yanhua Song, Yan Lv, Guang-yin Li, 2012, Advances in new cathode material LiFePO4 for lithium- ion batteries, Synthetic Metals 162, 1315– 1326.
  • Li, J., Yao, W., et al. , 2008, Lithium Ion Conductivity in Single Crystal LiFePO , Solid State Ionics, 179, 2016–2019.
  • Whittingham, M. S., Song, Y., et al. , 2005, Some Transition Metal (Oxy)Phosphates and Vanadium Oxides for Lithium Batteries, J. Mater. Chem., 15, 3362–3379.
  • Fang H., Pan Z., Li L.,Yang Y., Yan G., 2008, The possibility of manganese disorder in LiMnPO 4 and its effect on the electrochemical activity. Electrochem. Commun., 10, 1071–1073.
  • Rava, N., Chouinard, Y. and Magnan, J. Y., 2001, Electroactivity of Natural and Synthetis Triphylite, J. Power Sources, 97-98, 503-507.
  • Chung, S-Y., Bloking, J. T., 2002, and Chiang, Y-M., Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes, Nature Materials, 1, 123– 128.
  • Islam, M. S., Driscoll, D. J., et al., 2005, 19 Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO 4 Olivine-Type Battery Material, Chem. Mater., 17, 5085-5092.
  • Ying, Z, Yue, P., Jia, L., Guiling, W., Dianxue, C., 2015, Synthesis and Electrochemical Studies of Carbon-modified LiNiPO 4 as the Cathode Material of Li- ion Batteries, College of Material Science and Chemical Engineering, Harbin Engineering University
  • Minakshi, M., Singh, P., Appadoo, D., Martin, D.E., 2011, Synthesis and characterization of olivine LiNiPO 4 for aqueous rechargeable battery, Faculty of Minerals and Energy, Murdoch University.
  • Jiajun Wang and Xueliang Sun, 2012, Understanding and recent development of carbon coating on LiFePO 4 cathode materials for lithium-ion batteries, Energy Environ.Sci., 5, 5163.
  • Vijayan, L., Cheruku, R., Govindaraj, G., 2013, Electrical, optical and magnetic investigations on LiNiPO 4 based olivines synthesized by solution combustion technique, Department of Physics, School of Physical, Chemical and Applied Sciences, Pondicherry University, p. 1-2.
  • Karthickprabhu, S., Hirankumar, G., Maheswaran, A., Sanjeeviraja, C., Bella, R.D.S., 2012, Structural and conductivity studies on LiNiPO 4 synthesized by the polyol method, p. 1-2.
  • Wolfenstine, J., Allen, J., 2005, Ni 3+/ Ni 2+ Redox Potential in LiNiPO 4 , J. Power Sources, 142, 389–390. [ Delacourt, C., Poizot, P., et al., 2004, One-Step Low-Temperature Route for the Preparation of Electrochemically Active LiMnPO 4 Powders, Chem. Mater., 16, 93-99.
  • Yang, J., Xu, J.J., 2006, Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M= Fe, Mn, Co, Ni) prepared via a nonaqueous sol-gel route, Journal of the Electrochemical Society, A716-A718.
  • Aono, S., Urita, K., 2012, Yamada, H., Moriguch, I., Electrochemical property of LiMnPO 4 nanocrystallite-embedded porous carbons as a cathode material of Li-ion battery, Solid State Ionics, 225, 556-559.
  • Miyare, M., Savinell, R. F., Wainright, J. S., 2001. “Evaluation of a sol-gel derived nafion/silica hybrid membrane for proton electrolyte membrane fuel cell applications: ı. proton conductivity and water content”, J. Electrochem. Soc., 148, 898-904.
  • Gyoko, N., Jingrong, Y., Koji, T., Naohiro, I., 2005. “ Au/Porous silicon‐based sodium borohydride fuel cells Electrochemistry, 73 939,2005.
  • Ozanam, F., Rosso, M., 2016. “Silicon as anode material for Li-ion batteries” Materials Science and Engineering B., 213, 2-11.
  • Appleby, A. J., Kasavajjula, U., Wang, C., 2007. “Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells”, J. Power Sources, 163, 1003-1039.
  • Choi, J., Paik, D. S., Patil, A., Patil, V., Shin, D. W., Yoon, S. J., 2008. “Issue and challenges facing rechargeable thin film lithium batteries”, Mater. Res. Bull., 43, 1913-1942.
  • Datta, M. K., Kumta, P. N., Wang, W., 2007. “Silicon-based composite anodes for Li- ion rechargeable batteries”, J. Mater. Chem, 17, 3229-3237.
  • Chan, G., Choi, J. W., Cui, Y., Hu, L., Jackson, A., Lee, S. W., Mcdowell, M. T., Ryu, I., Yang, Y., Yao, Y., Wu, H., 2012. “Stable cycling of double walled silicon nanotube battery anodes through solid–electrolyte interphase control”, Nat Nanotechnol., 7, 310-315.
  • Dey, A. N., 1971. “Electrochemical alloying of lithium in organic electrolytes”, J. Electrochem. Soc., 118, 1547–1549.
  • Seefurth, R. N., Sharma, R. A., 1977. “ınvestigation of lithium utilization from a lithium‐silicon electrode”, J. Electrochem. Soc., 124, 1207–1214.
  • Chan, C. K., Cui, Y., Hong, S. S., Huggıns, R. A., Ruffo, R., 2009. “Structural and electrochemical study of the reaction of lithium with silicon nanowires”, J. Power Sources, 189, 34-39.
  • Verma, B. and Maire1, P. And Novak, P., 2010. “A review of the features and analyses of the solid electrolyte interphase in Li-ion Batteries”, Journal of Electrochimica Acta 55, 6332–6341.
  • Dahn, J. R., Fuller, E. W., Reimers J. N., Wilson, A. M., 1994. “Lithium insertion in pyrolyzed siloxane polymers”, Solid State Ion., 74, 249–254.
  • Chen, L. Q., Huang, X. J., Liang, Y., Li, H., Wu, Z. G., 1999. “A high capacity nano Si composite anode material for lithium rechargeable batteries”, Electrochem. Solid- State Lett., 2, 547–549.
  • Cho, J., Kim, H., 2008. “Superior lithium electroactive mesoporous Si@Carbon core- shell nanowires for lithium battery anode material”, Nano Lett., 8, 3688-3691.
  • Du, N., Xiao, C., Yang, D., Zhang, H., 2014. “Improved cyclic stability of Mg2Si by direct carbon coating as anode materials for lithium-ion batteries”, J. Alloy. Compd, 587, 807–811.
  • Cho, J., Kwon, Y., Park, G.S., 2007. “Synthesis and electrochemical properties of lithium-electroactive surface-stabilized silicon quantum dots”, Electrochim. Acta, 52 4663-4668.
  • Dimov, N., Fukuda, K., Kugino, S., Umeno, T., Yoshio, M., 2003. “Characterization of carbon-coated silicon: structural evolution and possible limitations”, J. Power Sources, 114, 88-95.
  • Chen, L., Huang, X., Li, H., Mo, Y. J., Pei, N., Yu, D., Zhang, Z., Zhou, G., 2000. “The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature”, Solid State Ionics, 135, 181-191.
  • Datta, M. K., Kumta, P. N., Wang, W., 2007. “Silicon-based composite anodes for Li- ion rechargeable batteries”, J. Mater. Chem., 17, 3229-3237.
  • Evans, A. G., Hepps, A. F., Kumta, P. N., Maranchi, P., Nuhfer, N. T., 2006. “Interfacial properties of the a-Si ∕ Cu :active–ınactive thin-film anode system for lithium-ıon batteries batteries, fuel cells, and energy conversion”, J. Electrochem. Soc., 153, 1246-1253.
  • Li, Y., Lu, Y., Toprakci, O., Xu, G., Xue, L., Yao, Y., Zhang, S., Zhang, X., 2013. “Enhanced rate capability by employing carbon nanotube-loaded electrospun Si/C composite nanofibers as binder-free anodes”, Electrochem. Soc., 160, 528–534.
  • Duin, A. C. T., Kim, S. P., Shenoy V. B., 2011. “Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study”, J. Power Sources, 196, 8590–8597.
  • Datta, M. K., Epur, R., Gattu, B., Hong, D. H., Jampani, P. H., Kumta, P. N., Ramanathan, M., 2015. “Scribable multi-walled carbon nanotube-silicon nanocomposites: a viable lithium-ion battery system”, Nanoscale, 7, 3504–3510.
  • Chung, O. H., Hieu, N. T., Kang, Y., Kim, D. W., Park, J. S., Suk, J., 2014. “Synth. Silicon nanoparticle and carbon nanotube loaded carbon nanofibers for use in lithium- ion battery anodes”, Met., 198, 36–40.
  • Cai, T., Chen, H., Guan, S., Pu, T., Wang, Z., Zhang, H., Zhou, M., 2013. “Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries”, ACS Appl. Mater. Interfaces, 5, 3449–3455.
  • Appleby, A. J., Kasavajjula, U., Wang, C., 2007. “Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells”, J. Power Sources, 163, 1003-1039.
  • Chan, C. K., Cui, Y., Huggins, R. A., Liu, G., Mcilwrath, K., Peng, H., Zhang, X. F., 2008. “High-performance lithium battery anodes using silicon nanowires”, Nature Nanotechnology, 3, 31-35.
  • Chou, S. L., Liu, H. K., Wang J. Z., Zhong, C., 2010. “Flexible free-standing graphene-siliconcomposite film for lithium-ion batteries”, Electrochemistry Communications, 12, 1467–1470.
  • Cui, Y., Liu, N., McDowell, M. T., Yao, Y., Wang, C., Wu, H., 2012. “A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes”, Nano Letters, 12, 3315-3321.
  • Wang D. P., Zeng H. C., 2009. “Chemistry of materials, nanocomposites of anatase- polyaniline prepared via self-assembly”, Journal of Pysical Chemistry, 21, 4811– 4823.
  • Chou, S. L., Dou, S. X., Fan, J., Liu, K. H., Wang, X. Y., Xu, Y., Yang, J., Zhang, R., Zhang W. X., Zhao, D., 2015. “Yolk-shell silicon mesoporous carbon anode with compact solid electrolyte interphase film for superiorlithiumionbatteries”, Nano Energy, 18, 133–142.
  • Aragones, M. C., Cornelissen, J. J. L. M., Elemans, J. A. A. W., Nolte, R. J. M., Rowan, A. E., Vriezema, D. M., 2005. “Self-assembled nanoreactors”, Chemical Reviews, 105, 1445–1489.
  • Fang, X. L., Huang, R. B., Jiang, Z. Y., Kuang, Q., Wu, B. H., Xie, Z. X., Zheng, J., Zheng, L. S., 2010. ‘‘Rattle-type silica colloidal particles prepared by a surface- protected etching process”, Chemistry – An Asian Journal, 5, 1439–1444.
  • John, W., Huggıns, R. A., 1981. “Thermodynamic study of the lithium-tin system”, J. Electrochem. Soc., 128, 1181-1187.
  • Courtney, I. A., Tse, J. S., Mao, O., Hafner, J., Dahn, J. R., 1998. “Ab initio calculation of the lithium-tin voltage profile”, Phys. Rev. B., 58, 15583-15588.
  • Mukkerjee, R., Krishan, R., Lu, T. H., Koratkar, N., 2012. “Nnostructured electrodes for high-power lithium-ion batteries”, Nano Energy, 1, 518-533.
  • Saito, G., Zhu, C., Akiyama, T., 2014. “Surfactant-assisted synthesis of Sn nanoparticles via solution plasma technique”, Advanced Powder Technology, 25, 728-732.
  • Zhang, W., Zhao, B., Zou, C., Zhai, Q., Gao, Y. F. S., Acquah, A., 2013. “Investigating the formation process of Sn-based lead-free nanoparticles with a chemical reduction method”, Journal of Nanomaterials, 2013, 193725-193734.
  • Ha, Y. C., Kang, C., Cho, C., 2011. “Wire explosion synthesis of a Sn/C nanocomposite as an anode material for Li secondary batteries”, Journal of the Korean Physical Society, 59, 3458-3462.
  • Bresser, D., Mueller, F., Buchholz, D., Paillard E., Passerini, S., 2014. “Embedding tin nanoparticles in micron sized disordered carbon for lithium and sodium ion anodes”, Electrochimica Acta, 128, 163-171.
  • Chen, J., Yang, L., Fang, S., Zhang, Z., Hirano, S., 2013. “Facile fabrication of graphene/Cu 6 Sn 5 nanocomposite as the high performance anode material for lithium ion batteries”, Electrochimica Acta, 105, 629-634.
  • Wang, K. K., Gan, D., Hsieh, K. C., 2010. “Orientation relationships, and microstructere of -Cu 6 Sn 5 formed in the early-stage reaction between Cu and molten Sn”, Thin Solid Films, 519, 1380-1386.
  • Mladenov, M., Zlatilova, P., Dragieva, I., Klabunde, K., 2006. “Low tempature synthesis and characterization of nanoscale Cu 6 Sn 5 particles as lithium anode material”, Journal of Power Sources, 162, 803-808.
  • Thorne, J. S., Dahn, J. R., Obrovac, M. N., Dunlap, R. A., 2012. “A comparison of sputtered and mechanically miled Cu 6 Sn 5 +C materials for Li-ion battery negative electrodes”, Journal of Power Sources, 216, 139-144.
  • Chen, T., Xue, Y., Roy, A. K., Dai, L., 2014. “Transparent and stretchable high- performance supercapacitors based onwrinkled graphene electrodes”, ACS Nano 8, 1039-1046.
  • Huang, P. Y., Ruiz-Vargas, C. S., Zande, A. M., Whitney, W. S., Levendorf, M. P., Kevek, J. W., Garg, S., Alden, J. S., Hustedt, C. J., Zhu, Y., Park, J., McEuen, P. L., Muller, D. A., 2011. “Grains and grain boundaries in single-layer graphene atomic patchwork quilts”, Nature 469, 389–392.
  • Wu, N., She, X., Yang, D., Wu, X., Su, F., Chen, Y., 2012. “Synthesis of network reduced graphene oxide in polystyrene matrix by a two-step reduction method for superior conductivity of the composite”, J. Mater. Chem., 22, 17254-17261.
  • Saner, B., Okyay, F., Yürüm, Y., 2010. “Utilization of multiple graphene layers in fuel cells. 1. An improved technique for the exfoliation of graphene-based nanosheets from graphite”, Fuel 89, 1903–1910.
  • Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud’homme, R. K., Aksay, I. A., Car, R., 2010. “Raman spectra of graphite oxide and functionalized graphene sheets”. Nano Lett., 8, 36-41.
  • Liu, J., Li, P., Chen, Y., Wang, Z., He, J., Tian, H., Qi, F., Zheng, B., Zhou, J., Lin, W., Zhang, W., 2014. “Large-area synthesis of high-quality and uniform monolayer graphene without unexpected bilayer regions”, Journal of Alloys and Compounds 615, 415–418.
  • Jiang, H., Moon, K. S., Dong, H., Hua, F., Wong, C. P., 2006. “Size-dependent melting properties of tin nanoparticles” Chemical Physics Letters, 429, 492-497.
  • Zhang, H. X., Feng, C., Zhai, Y. C., Jiang, K. L., Li, Q.Q., Fan, S. S., 2009. “Cross- stacked carbon nanotube sheets uniformly loaded with SnO 2 nanoparticles: a novel binder-free and high-capacity anode material for lithium-ion batteries” Advanced Materials, 21, 2299-2305.
  • Chee, S. S., Lee, J. H., 2012. “Reduction synthesis of tin nanoparticles using various precursors and melting behaviour” Electronic Materials Letters, 8, 587-594.
  • Hsu, Y. J., Lu, S. Y., Lin, Y. F., 2006. “Nanostructures of Sn and their enhanced, shape-dependent superconducting properties” Small, 2, 268-275.
  • Yang, C. S., Liu Y. Q., Kauzlarich, S. M., 2000. “Synthesis and Characterization of Sn/R, Sn/Si−R, and Sn/SiO 2 Core/Shell Nanoparticles” Chemistry of Materials, 12, 983-982.
  • Winter, M., Besenhard, J.O., 1999. “Electrochemical lithiation of tin and tin-based intermetallics and composites”, Electrochimica Acta, 45, 31–50.
APA GÜLER M (2017). Graphene Based High Efficiency Energy Storage Systems (GREENSTOR). , 1 - 142.
Chicago GÜLER MEHMET OĞUZ Graphene Based High Efficiency Energy Storage Systems (GREENSTOR). (2017): 1 - 142.
MLA GÜLER MEHMET OĞUZ Graphene Based High Efficiency Energy Storage Systems (GREENSTOR). , 2017, ss.1 - 142.
AMA GÜLER M Graphene Based High Efficiency Energy Storage Systems (GREENSTOR). . 2017; 1 - 142.
Vancouver GÜLER M Graphene Based High Efficiency Energy Storage Systems (GREENSTOR). . 2017; 1 - 142.
IEEE GÜLER M "Graphene Based High Efficiency Energy Storage Systems (GREENSTOR)." , ss.1 - 142, 2017.
ISNAD GÜLER, MEHMET OĞUZ. "Graphene Based High Efficiency Energy Storage Systems (GREENSTOR)". (2017), 1-142.
APA GÜLER M (2017). Graphene Based High Efficiency Energy Storage Systems (GREENSTOR). , 1 - 142.
Chicago GÜLER MEHMET OĞUZ Graphene Based High Efficiency Energy Storage Systems (GREENSTOR). (2017): 1 - 142.
MLA GÜLER MEHMET OĞUZ Graphene Based High Efficiency Energy Storage Systems (GREENSTOR). , 2017, ss.1 - 142.
AMA GÜLER M Graphene Based High Efficiency Energy Storage Systems (GREENSTOR). . 2017; 1 - 142.
Vancouver GÜLER M Graphene Based High Efficiency Energy Storage Systems (GREENSTOR). . 2017; 1 - 142.
IEEE GÜLER M "Graphene Based High Efficiency Energy Storage Systems (GREENSTOR)." , ss.1 - 142, 2017.
ISNAD GÜLER, MEHMET OĞUZ. "Graphene Based High Efficiency Energy Storage Systems (GREENSTOR)". (2017), 1-142.