5 5

Proje Grubu: MAG Sayfa Sayısı: 0 Proje No: 214M125 Proje Bitiş Tarihi: 15.04.2018 Metin Dili: Türkçe İndeks Tarihi: 11-03-2020

Grafen Sentezinde Yeni Bir Yaklaşım ve Yeni Nesil Grafen Esaslı Li-Pil Elektrotları

Öz:
Önerilen projede, proje ekibinin görev yaptığı uluslararası projelerden elde ettiği birikimlerini kullanarak; a) yüksek saflıkta 2-4 katmanlı grafenin pilot çapta yüksek miktarlarda üretilmesi, b) üretilen grafenin ulusal araştırma kurumlarının araştırma projeleri için temin edilmesi, c) üretilen grafen esaslı elektrotlarla yüksek enerji yoğunluklu ve spesifik kapasiteye sahip Li piller geliştirilmesi amaçlanmıştır.
Anahtar Kelime: sonlu eleman modellemesi 1000 çevrim ömrü Yolk-shell yapısı Li pil Gram ölçekli Grafen

Konular: Malzeme Bilimleri, Özellik ve Test Malzeme Bilimleri, Biyomalzemeler
Erişim Türü: Erişime Açık
  • [1] Tarascon, J.M., Armand, M., 2001. “Issues and challenges facing rechargeable lithium batteries”, 414, 359-367.
  • [2] Pacala, S., Socolow, R., 2004. “Stabilization wedges: Solving the climate problem for the next 50 years with current technologies”, Science,305, 968-972.
  • [3] Vikström, H., Davidsson, S., Höök, M., 2013. “Lithium availability and future production outlooks”, Applied Energy, 110, 252-266.
  • [4] Gruber, P.W., Medina, P.A., Keoleian, G.A., Kesler, S.E., Everson, M.P., Wallington, T.J., 2011. “Global lithium availability: A constraint for electric vehicles?”, Journal of Industrial Ecology, 15, 760-775.
  • [5] Speirs, J., Contestabile, M., Houari, Y., Gross, R., 2014. “The future of lithium availability for electric vehicle batteries”, Renewable and Sustainable Energy Reviews, 35, 183-193.
  • [6] Grosjean, C., Herrera Miranda, P., Perrin, M., Poggi, P., 2012. “Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry”, Renewable and Sustainable Energy Reviews, 16, Issue 3, 1735-1744.
  • [7] Lowe, M., Tokuoka, S., Trigg, T., Gereffi, G., 2010. “Lithium-ion Batteries for Electric Vehicles: the U.S. Value Chain”, Center on Globalization, Governance & Competitiveness.
  • [8] Nelson, P.A., Gallagher, K.G., Bloom, I., Dees, D.W., 2011. “Modeling the performance and cost of lithium-ıon batteries for electric-drive vehicles”, Argonne National Laboratory.
  • [9] Greenwood, N.N., Earnshaw, A., 1997. “Chemistry of the Elements”, (2nd ed.), Butterworth-Heinemann, Burlington, MA.
  • [10] Zhou, G., Wang, D.W., Li, F., Hou, P.X., Yin, L., Liu, C., Lu, G.Q.M., Gentle, I.R., Cheng, H., 2012. “Flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries”, Energy Environ. Sci, 7, 1307-1311.
  • [11] Gwon, H., Hong, J., Kim, H., Seo, D.-H., Jeon, S., Kang, K., 2014. “Recent progress on flexible lithium rechargeable batteries”, Energy and Environmental Sci, 7, 538-551.
  • [12] Hu, Y., Sun, X., 2014. “Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies”, J. Mater. Chem. A, 2, 10712-10738.
  • [13] Wang, X., Lu, X., Liu, B., Chen, D., Tong, Y., Shen, G., 2014. “Flexible energy-storage devices: Design consideration and recent progress”, Advanced Materials, 26, 4763-4782.
  • [14] Xie, K., Wei, B., 2014. “Materials and structures for stretchable energy storage and conversion devices”, Advanced Materials, 26, 3592-3617.
  • [15] Tarascon, J.M., 2010. “Key challenges in future Li-battery research”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368, 3227-3241.
  • [16] Murphy, D.W., Trumbore, F.A., 1976. “The Chemistry of TiS3 and NbSe3 Cathodes”, Journal of the Electrochemical Society, 123, 960-964.
  • [17] Whittingham, M.S., 1976. “Electrical energy storage and intercalation chemistry”,Science, 192, 1126-1127.
  • [18] Whittingham, M.S., 2004. “Lithium batteries and cathode materials”, Chemical Reviews,104, 4271-4301.
  • [19] Mizushima, K., Jones, P.C., Wiseman, P.J., Goodenough, J.B., 1980. “LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density”, Materials Research Bulletin, 15, 783-789.
  • [20] Holzapfel, M., Alloin, F., Yazami, R., 2003. “Reactivity of the Passivation Film on Lithium and Lithiated Graphite: A Calorimetric Study”, New Trends in Intercalation Compounds for Energy Storage and Conversion: Proceedings of the International Symposium, The Electrochemical Society, vol. 2003, 317-323.
  • [21] Du Pasquier, A., Plitz, I., Menocal, S., Amatucci, G., 2003. “A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications”, Journal of Power Sources, 115, 171-178.
  • [22] Dahn, J.R., Fuller, E.W., Obrovac, M., von Sacken, U., 1994. “Thermal stability of
  • LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells”, Solid State Ionics, 69, 265-270.
  • [23] Williard, N., He, W., Hendricks, C., Pecht, M., 2013. “Lessons learned from the 787 dreamliner issue on Lithium-Ion Battery reliability” Energies, 6, 4682-4695.
  • [24] Doughty, D., Rother, E.P., 2012. “ A General discussion of Li ion battery safety”, Electrochem. Soc. Interface, 21, 35-44.
  • [13] Wang, X., Lu, X., Liu, B., Chen, D., Tong, Y., Shen, G., 2014. “Flexible energy-storage devices: Design consideration and recent progress”, Advanced Materials, 26, 4763-4782.
  • [14] Xie, K., Wei, B., 2014. “Materials and structures for stretchable energy storage and conversion devices”, Advanced Materials, 26, 3592-3617.
  • [15] Tarascon, J.M., 2010. “Key challenges in future Li-battery research”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368, 3227-3241.
  • [16] Murphy, D.W., Trumbore, F.A., 1976. “The Chemistry of TiS 3 and NbSe 3 Cathodes”, Journal of the Electrochemical Society, 123, 960-964.
  • [17] Whittingham, M.S., 1976. “Electrical energy storage and intercalation chemistry”, Science, 192, 1126-1127.
  • [18] Whittingham, M.S., 2004. “Lithium batteries and cathode materials”, Chemical Reviews, 104, 4271-4301.
  • [19] Mizushima, K., Jones, P.C., Wiseman, P.J., Goodenough, J.B., 1980. “Li x CoO 2 (0<x<-1): A new cathode material for batteries of high energy density”, Materials Research Bulletin, 15, 783-789.
  • [20] Holzapfel, M., Alloin, F., Yazami, R., 2003. “Reactivity of the Passivation Film on Lithium and Lithiated Graphite: A Calorimetric Study”, New Trends in Intercalation Compounds for Energy Storage and Conversion: Proceedings of the International Symposium, The Electrochemical Society, vol. 2003, 317-323.
  • [21] Du Pasquier, A., Plitz, I., Menocal, S., Amatucci, G., 2003. “A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications”, Journal of Power Sources, 115, 171-178.
  • [22] Dahn, J.R., Fuller, E.W., Obrovac, M., von Sacken, U., 1994. “Thermal stability of Li x CoO 2 , Li x NiO 2 and λ-MnO 2 and consequences for the safety of Li-ion cells”, Solid State Ionics, 69, 265-270.
  • [23] Williard, N., He, W., Hendricks, C., Pecht, M., 2013. “Lessons learned from the 787 dreamliner issue on Lithium-Ion Battery reliability” Energies, 6, 4682-4695.
  • [24] Doughty, D., Rother, E.P., 2012. “ A General discussion of Li ion battery safety”, Electrochem. Soc. Interface, 21, 35-44.
  • [25] Reimers, Jan N., Dahn, J.R., 2018. “Electrochemical and in situ x-ray diffraction studies of lithium intercalation in Li x CoO 2 ”, Journal of the Electrochemical Society, 139, 2091- 2097.
  • [26] Ceder, G., Chiang, Y.M., Sadoway, D.R., Aydinol, M.K., Jang, Y.I., Huang, B., 1998. “Identification of cathode materials for lithium batteries guided by first-principles calculations”, Nature, 392, 694-696.
  • [27] Alcántara, R., Jumas, J.C., Lavela, P., Olivier-Fourcade, J., Pérez-Vicente, C., Tirado, J.L., 1998. “X-ray diffraction, 57Fe Mössbauer and step potential electrochemical spectroscopy study of LiFe y Co 1-y O 2 compounds”, Journal of Power Sources, 81-82, 547-553.
  • [28] Madhavi, S., Subba Rao, G.V., Chowdari, B.V.R., Li, S.F.Y., 2002. “Effect of Cr dopant on the cathodic behavior of LiCoO 2 ”, Electrochimica Acta, 48, 219-226.
  • [29] Stoyanova, R., Zhecheva, E., Zarkova, L., 1994. “Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMn y Co 1-y O 2 solid solutions”, Solid State Ionics, 73, 233-240.
  • [30] Cho, J., Kim, Y.J., Kim, T.-J., Park, B. 2001. “Zero-strain intercalation cathode for rechargeable Li-ion cell”, Angew. Chem., 113, 3471-3473.
  • [31] Scott, I.D., Jung, Y.S., Cavanagh, A.S., Yan, Y., Dillon, A.C., George, S.M., Lee, S.H., 2011. “Ultrathin Coatings on Nano-LiCoO 2 for Li-Ion Vehicular Applications”, Nano Lett., 11, 414–418.
  • [32] Rougier, A., Gravereau, P., Delmas, C., 1996. “Optimization of the composition of the Li 1-z Ni 1+z O 2 electrode materials: Structural, magnetic, and electrochemical studies”, Journal of the Electrochemical Society, 143, 1168-1175.
  • [33] Arai, H., Okada, S., Sakurai, Y., Yamaki, J. I., 1998. “Thermal behavior of Li 1-y NiO 2 and the decomposition mechanism”, Solid State Ionics, 109, 295-302.
  • [34] Kalyani, P., Kalaiselvi, N., 2005. “Various aspects of LiNiO 2 chemistry: A review”, Science and Technology of Advanced Materials, 6, 689-703.
  • [35] Zheng, H., Sun, Q., Liu, G., Song, X., Battaglia, V.S., 2012. “Correlation between dissolution behavior and electrochemical cycling performance for LiNi 1/3 Co 1/3 Mn 1/3 O 2 - based cells”, Journal of Power Sources, 207, 134-140.
  • [36] Chen, C.H., Zhao, L., 1996. “Research grogress of glial cell-line derived neurotrophic factor”, Bengbu Yixueyuan Xuebao, 29, 278-280.
  • [37] Thackeray, M.M., 1997. “Manganese oxides for lithium batteries”, Progress in Solid State Chemistry, 25, 1-71.
  • [38] Thackeray, M.M., 1999. “Spinel electrodes for lithium batteries”, Journal of the American Ceramic Society, 82, 3347-3354.
  • [39] Thackeray, M.M., de Picciotto, L.A., de Kock, A., Johnson, P.J., Nicholas, V.A., Adendorff, K.T., 1987. “Spinel electrodes for lithium batteries - A review”, Journal of Power Sources, 1-8.
  • [40] Kim, D.K., Muralidharan, P., Lee, H.-W., Ruffo, R., Yang, Y., Chan, C.K., Peng, H., Huggins, R.A., Cui, Y., 2008. “Spinel LiMn 2 O 4 nanorods as lithium ion battery cathodes”, Nano Letters, 8, 3948-3952.
  • [41] Jiao, F., Bruce, P.G., 2007. “Mesoporous crystalline β-MnO 2 - A reversible positive electrode for rechargeable lithium batteries”, Advanced Materials, 19, 657-660.
  • [42] Hosono, E., Kudo, T., Honma, I., Matsuda, H., Zhou, H., 2009. “Synthesis of single crystalline spinel LiMn 2 O 4 nanowires for a lithium ion battery with high power density”, Nano Letters, 9, 1045-1051.
  • [43] Lee, H.W., Muralidharan, P., Ruffo, R., Mari, C.M., Cui, Y., Kim, D.K., 2010. “Ultrathin spinel LiMn 2 O 4 nanowires as high power cathode materials for Li-ion batteries”, Nano Letters, 10, 3852-3856.
  • [44] Ding, Y.L., Xie, J., Cao, G.S., Zhu, T.J., Yu, H.M., Zhao, X.B., 2011. “Single- crystalline LiMn 2 O 4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries”, Advanced Functional Materials, 21, 348-355.
  • [45] Sun, Y.K., Yoon, C.S., Oh, I.H., 2003. “Surface structural change of ZnO-coated LiNi 0.5 Mn 1.5 O 4 spinel as 5 V cathode materials at elevated temperatures”, Electrochimica Acta, 48, 503-506.
  • [46] Lee, M.J., Lee, S., Oh, P., Kim, Y., Cho, J., 2014. “High Performance LiMn 2 O 4 Cathode Materials Grown with Epitaxial Layered Nanostructure for Li-Ion Batteries”, Nano Lett., 14 (2), 993–999.
  • [47] Kakuda, T., Uematsu, K., Toda, K., Sato, M., 2007. “Electrochemical performance of Al-doped LiMn 2 O 4 prepared by different methods in solid-state reaction”, Journal of Power Sources, 167, 499-503.
  • [48] Deng, B., Nakamura, H., Zhang, Q., Yoshio, M., Xia, Y., 2004. “Greatly improved elevated-temperature cycling behavior of Li 1+x Mg y Mn 2-x- yO 4+δ spinels with controlled oxygen stoichiometry”, Electrochimica Acta, 49, 1823-1830.
  • [49] Numata, T., Amemiya, C., Kumeuchi, T., Shirakata, M., Yonezawa, M., 2001. “Advantages of blending LiNi 0.8 Co 0.2 O 2 into Li 1+x Mn 2-x O 4 cathodes”, Journal of Power Sources, 97-98, 358-360.
  • [50] Chen, Z., Amine, K., 2006. “Capacity fade of Li 1+x Mn 2-x O 4 -based lithium-ion cells”, Journal of the Electrochemical Society, 153, A316-A320.
  • [51] Li, B., Wang, Y., Rong, H., Wang, Y., Liu, J., Xing, L., Xu, M., Li, W., 2013. “A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn 2 O 4 /graphite battery”, Journal of Materials Chemistry A, 1, 12954-12961.
  • [52] Jiao, F., Bao, J., Hill, A.H., Bruce, P.G., 2008. “Synthesis of ordered mesoporous Li- Mn-O spinel as a positive electrode for rechargeable lithium batteries”, Angew. Chem., 120, 9857-9862.
  • [53] Xu, W., Janocha, A.J., Leahy, R.A., Klatte, R., Dudzinski, D., Mavrakis, L.A., Comhair, S.A.A., Lauer, M.E., Cotton, C.U., Erzurum, S.C., 2014. “A novel method for pulmonary research: Assessment of bioenergetic function at the air-liquid interface”, Redox Biology, 2, 513-519.
  • [54] Kaskhedikar, N.A., Maier, J., 2009. “Lithium storage in carbon nanostructures”, Advanced Materials, 21, 2664-2680.
  • [55] Zhu, G.N., Wang, Y.G., Xia, Y.Y., 2012. “Ti-based compounds as anode materials for Li-ion batteries”, Energy and Environmental Science, 5, 6652-6667.
  • [56] Aurbach, D., Markovsky, B., Weissman, I., Levi, E., Ein-Eli, Y., 1999. “On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries”, Electrochimica Acta, 45, 67-86.
  • [57] Bar-Tow, D., Peled, E., Burstein, L., 1999. “Study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries”, Journal of the Electrochemical Society, 146, 824-832.
  • [58] Billaud, D., McRae, E., Hérold, A., 1979. “Synthesis and electrical resistivity of lithium- pyrographite intercalation compounds (stages I, II and III)”, Materials Research Bulletin, 14, 857-864.
  • [59] Qi, Y., Guo, H., Hector Jr., L.G., Timmons, A., 2010. “Threefold increase in the young's modulus of graphite negative electrode during lithium intercalation”, Journal of the Electrochemical Society, 157, A558-A566.
  • [60] Nozaki, H., Nagaoka, K., Hoshi, K., Ohta, N., Inagaki, M., 2009. “Carbon-coated graphite for anode of lithium ion rechargeable batteries: Carbon coating conditions and precursors”, Journal of Power Sources, 194, 486-493.
  • [61] Tirado, J.L., 2003. “Inorganic materials for the negative electrode of lithium-ion batteries: State-of-the-art and future prospects”, Materials Science and Engineering R: Reports, 40, 103-136.
  • [62] Winter, M., Besenhard, J.O., Spahr, M.E., Novak, P., 1998. “Insertion electrode materials for rechargeable lithium batteries”, Advanced Materials, 10, 725-763.
  • [63] Mukherjee, R., Thomas, A.V., Datta, D., Singh, E., Li, J.W., Eksik, O., Shenoy, V.B., Koratkar, N., 2014. “Defect-induced plating of lithium metal within porous graphene networks”, Nature Communications, 5, 1-10.
  • [64] Dahn, J.R., Zheng, T., Liu, Y., Xue, J.S., 1995. “Mechanisms for lithium insertion in carbonaceous materials”, Science, 270, 590-593.
  • [65] Wang, J., Chen-Wiegart, Y.-C.K., Wang, J., 2014. “In-situ three-dimensional synchrotron x-ray nanotomography of the (de)lithiation processes in tin anodes”, Angewandte Chemie, 53, 4460-4464.
  • [66] Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y., 2008. “High-performance lithium battery anodes using silicon nanowires”, Nature Nanotechnology, 3, 31-35.
  • [67] Oumellal, Y., Delpuech, N., Mazouzi, D., Dupré, N., Gaubicher, J., Moreau, P., Soudan, P., Lestriez, B., Guyomard, D., 2011. “The failure mechanism of nano-sized Si- based negative electrodes for lithium ion batteries”, Journal of Materials Chemistry, 21, 6201-6208.
  • [68] Magasinski, A., Dixon, P., Hertzberg, B., Kvit, A., Ayala, J., Yushin, G., 2010. “High-performance lithium-ion anodes using a hierarchical bottom-up approach”, Nature Materials, 9, 353-358.
  • [69] Hertzberg, B., Alexeev, A., Yushin, G., 2010. “Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space”, Journal of the American Chemical Society, 132, 8548-8549.
  • [70] Wang, B., Li, X., Zhang, X., Luo, B., Zhang, Y., Zhi, L., 2013. “Contact- engineered and void-involved silicon/carbon nanohybrids as lithium-ion-battery anodes”, Advanced Materials, 25, 3560-3565.
  • [71] Liu, N., Wu, H., McDowell, M.T., Yao, Y., Wang, C., Cui, Y., 2012. “A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes”, Nano Letters, 12, 3315-3321.
  • [72] Chen, S., Gordin, M.L., Yi, R., Howlett, G., Sohn, H., Wang, D., 2012. “Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries”, Physical Chemistry Chemical Physics, 14, 12741-12745.
  • [73] Park, Y., Choi, N.-S., Park, S., Woo, S.H., Sim, S., Jang, B.Y., Oh, S.M., Park, S., Cho, J., Lee, K.T., 2013. “Si-encapsulating hollow carbon electrodes via electroless etching for lithium-ion batteries”, Advanced Energy Materials, 3, 206-212.
  • [74] Tao, H., Fan, L.-Z., Song, W.-L., Wu, M., He, X., Qu, X., 2014. “Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries”, Nanoscale, 6, 3138-3142.
  • [75] Nakai, H., Kubota, T., Kita, A., Kawashima, A., 2011. “Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes”, Journal of the Electrochemical Society, 158, A798-A801.
  • [76] Dalavi, S., Guduru, P., Lucht, B.L., 2012. “Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes”, Journal of the Electrochemical Society, 159, A642-A646.
  • [77] Bordes, A., Eom, K., Fuller, T.F., 2014. “The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li- ion full-cell employing nano Si-graphene composite anodes”, Journal of Power Sources, 257, 163-169.
  • [78] Li, J., Lewis, R.B., Dahn, J.R., 2007. “Sodium carboxymethyl cellulose”, Electrochemical and Solid-State Letters, 10, A17-A20.
  • [79] Hochgatterer, N.S., Wurm, C., Schweiger, M.R., Koller, S., Raimann, P.R., Wöhrle, T., Winter, M., 2008. “Silicon/graphite composite electrodes for high-capacity anodes: Influence of binder chemistry on cycling stability”, Electrochemical and Solid-State Letters, 11, A76-A80.
  • [80] Magasinski, A., Zdyrko, B., Kovalenko, I., Hertzberg, B., Burtovyy, R., Huebner, C.F., Fuller, T.F., Luzinov, I., Yushin, G., 2010. “Toward efficient binders for Li-ion battery Si-based anodes: Polyacrylic acid”, ACS Applied Materials and Interfaces, 2, 3004- 3010.
  • [81] Kovalenko, I., Zdyrko, B., Magasinski, A., Hertzberg, B., Milicev, Z., Burtovyy, R., Luzinov, I., Yushin, G., 2011. “A major constituent of brown algae for use in high-capacity Li-ion batteries”, Science, 334, 75-79.
  • [82] Ryou, M.H., Kim, J., Lee, I., Kim, S., Jeong, Y.K., Hong, S., Ryu, J.H., Kim, T.S., Park, J.K., Lee, H., Choi, J.W., 2013. “Mussel-inspired adhesive binders for high- performance silicon nanoparticle anodes in lithium-ion batteries”, Advanced Materials, 25, 1571-1576.
  • [83] Xu, Y., Liu, Q., Zhu, Y., Liu, Y., Langrock, A., Zachariah, M.R., Wang, C., 2013. “Uniform Nano-Sn/C Composite Anodes for Lithium Ion Batteries”, Nano Lett., 470–474.
  • [84] Liu, X.H., Huang, S., Picraux, S.T., Li, J., Zhu, T., Huang, J.Y., 2011. “Reversible nanopore formation in Ge nanowires during lithiation- delithiation cycling: An in situ transmission electron microscopy study”, Nano Letters, 11, 3991-3997.
  • [85] Liu, Y., Hudak, N.S., Huber, D.L., Limmer, S.J., Sullivan, J.P., Huang, J.Y., 2011. “In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al 2 O 3 layers during lithiation-delithiation cycles”, Nano Letters, 11, 4188-4194.
  • [86] Novoselov, K.S., Geim, A.K., Morozov, S.V., 2004." Electric field effect in atomically thin carbon flims", Science 306, 666-669.
  • [87] Geim, A.K., Novoselov, K.S., 2007. “The rise of graphene”, Nat. Mater., 6, 183-191.
  • [88] Novaselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Dubonos, S.V., Gregorievan, I.V., Firsov, A.A., 2005. “Two-dimensional gas of massless Dirac fermions in graphene”, Nature, 438, 197-200.
  • [89] Zhang, Y., 2006. ”Electronic Transport in graphene”, ProQuest Dissertations and Theses Columbia University, 67, 5815-5886.
  • [90] Wallace, P.R., 1947. “The band theory of graphite”, Physical Review., 71, 622-634.
  • [91] Ni, Z.H., Wang, H. M., Kasim, J., Fan, H.M., Yu, T., Wu, Y.H., Feng, Y.P., Shen, Z.X., 2007. ”Graphene Thickness Determination Using Reflection and Contrast Spectroscopy”, Nano Lett., 7, 2758–2763.
  • [92] Teo, G., Wang, H., Wu, Y., Guo, Z., Zhang, J.,, Ni, Z., Shen, Z., 2008. “Visibility study of graphene multilayer structures”, Journal of Applied Physics., 103, 124302-124306.
  • [93] Park, S., An, J., Potts, J.R., Velamakanni, A., Murali, S., Ruoff, R.S., 2011. “Hydrazine-reduction of graphite- and graphene oxide”, Carbon, 49, 3019-3023.
  • [94] Rao, C.N.R., Sood, A.K., Voggu, R., Subrahmanyam, K.S., 2010. “Some novel attributes of graphene”, J. Phys. Chem. Lett., 1, 572-580.
  • [95] Li, X., Borysenko, K.M., Buongıorno, N., Kim, K.W., 2011. “Electron transport properties of bilayer graphene”, Physical Review B, 84, 195453-5.
  • [96] Pei, S., Cheng, H.M., 2012. “The reduction of graphene oxide”, Carbon, 50, 3210-3228.
  • [97] Nonikov, D.S., 2007. “Elastik Scattering Theory and transport in graphene”, Phys. Rev. B., 76, 245435-17.
  • [98] Bayat, D., 2010. “Grafen Tabanlı Nano Yapılarda Safsızlık Etkileri”, Ankara Universitesi Fen Bilimleri Enstitusu, Yuksek Lisans Tezi, Fizik Anabilim Dalı, 3-5.
  • [99] Chua, C.K., Pumera, M.. 2014. “Chemical reduction of graphene oxide: a synthetic chemistry viewpoint”, Chemical Society Reviews, 43(1), 291-312.
  • [100] Reina, A., Jia, X.T., Ho, J., Nezich, D., Son, H.B., Bulovic, V., Kong, J., 2009. “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition”, Nano Letters, 9(1), 30-35.
  • [101] Park, S., Ruoff, R.S., 2009. “Chemical methods for the production of graphenes”, Nature Nanotechnology, 4(4), 217-224.
  • [102] Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M., 2009. “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons”, Nature, 458(7240), 872-875.
  • [103] Bianco, A., Cheng, H.M., Enoki, T., Gogotsi, Y., Hurt, R.H., Koratkar, N., Zhang, J., 2013. “All in the graphene family - A recommended nomenclature for two-dimensional carbon materials”, Carbon, 65, 1-6.
  • [104] Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S., 2010. “Synthesis of Graphene and Its Applications: A Review”, Critical Reviews in Solid State and Materials Sciences, 35(1), 52- 71.
  • [105] Arseven, M., 2011. ‘Polikristalin Bakır Folyo Üzerinde Grafen Sentezi’, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Nanoteknoloji ve Nanotıp Anabilim Dalı, 6-14.
  • [106] Hofmann, U., König, E., 1937. “Untersuchungen über graphitoxyd”, Z. Anorg. Allg. Chem., 234, 311–336.
  • [107] Staudenmaier, L., 1898. “Verfahren zur darstellung der graphitsäure”, Ber. Dtsch. Chem. Ges., 31, 1481–1487.
  • [108] Pei, S., Zhao, J., Du, J., Ren, W., Cheng, H.M., 2010. “Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids”, Carbon, 48, 4466-4474.
  • [109] Chen, W., Yan, L., Bangal, P.R., 2010. “Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds”, J. Phys. Chem. C, 114, 19885-19890.
  • [110] Ambrosi, A., Chua, C.K., Bonanni, A., Pumera, M., 2012. “Lithium Aluminum Hydride as Reducing Agent for Chemically Reduced Graphene Oxides”, Chemistry of Materials, 24(12), 2292-2298.
  • [111] Zhang, J.L., Yang, H.J., Shen, G.X., Cheng, P., Zhang, J.Y., Guo, S.W., 2010. “Reduction of graphene oxide via L-ascorbic acid.”, Chemical Communications, 46(7), 1112- 1114.
  • [112] Mattevi, C., Kim, H., Chhowalla, M., 2011. “A review of chemical vapour deposition of graphene on copper”, Journal of Materials Chemistry, 21(10), 3324-3334.
  • [113] Peng, X., Ahuja, R., 2008. “Symmetry Breaking Induced Bandgap in Epitaxial Graphene Layers on SiC”, Nano Lett., 8 (12), 4464–4468 .
  • [114] Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W. and Tour, J.M., 2010. “Improved synthesis of graphene oxide”, ACS Nano, 4 (8),4806-4814.
  • [115] Hummers, W.S., Offeman, R.E., 1958. “Preparation of Graphitic Oxide”, J. Am. Chem. Soc., 80, 1339-1339.
  • [116] Ai, K., Liu, Y., Lu, L., Cheng, X., Huo, L., 2011. “A novel strategy for making soluble reduced graphene oxide sheets cheaply by adopting an endogenous reducing agent” , J. Mater. Chem., 21, 3365-3370.
  • [117] Yang, Q., Pang, S.K., Yung, K.C., 2016. “Electrochemically reduced graphene oxide/carbon nanotubes composites as binder-free supercapacitor electrodes” , J. Power Sources, 311, 144–152.
  • [118] Alaf, M., Tocoglu, U., Kartal, M., Akbulut, H., 2016. “Graphene Supported Heterogeneous Catalysts for Li-O2 Batteries” , Appl. Surf. Sci., 380, 185-192.
  • [119] Scrosati, B., Garche, J., 2010. “Lithium batteries : Status , prospects and future” , 195, 2419–2430.
  • [120] Yoshio, M., Kugino, S., Dimov, N., 2006. “Electrochemical behaviors of silicon based anode material” , J. Power Sources, 153, 375–379.
  • [121] Wu, H., Cui, Y., 2012. “Designing nanostructured Si anodes for high energy”, 7, 414– 429,.
  • [122] Wang, W., Datta, K., Kumta, P.N., 2007. “Silicon-based composite anodes for Li-ion rechargeable batteries ”, 17, 3229–3237.
  • [123] Cho, J., 2010. “Porous Si anode materials for lithium rechargeable batteries”, 20, 4009–4014,
  • [124] Gao, B.B., Sinha, S., Fleming, L., Zhou, O., 2001. “Alloy Formation in Nanostructured Silicon “, 11, 816–819.
  • [125] Choi, N., Yew , K.H., Kim, H., Kim, S., Choi, W., 2007. “Surface layer formed on silicon thin-film electrode in lithium bis ( oxalato ) borate-based electrolyte”, 172, 404–409.
  • [126] Johnson, D.C., Mosby, J.M., Riha, S.C., Prieto, A.L., 2010. “Synthesis of copper silicide nanocrystallites embedded in silicon nanowires for enhanced transport properties”, 20, 1993–1998,
  • [127] Gao, P., Fu, J., Yang, J., Lv, R., Wang, J., Nuli, Y., 2009. “Microporous carbon coated silicon core / shell nanocomposite via in situ polymerization for advanced Li-ion battery anode material”, 11, 11101–11105,
  • [128] Wilson, A.M., Eguchi, K., 1997. “Pyrolysed silicon-containing polymers as high capacity anodes for lithium-ion batteries ” , 68, 195–200.
  • [129] Saint, B.J., Morcrette, M., Larcher, D., Laffont, L., Beattie, S., Pérès, J., Talaga, D., Couzi, M., Tarascon, J., 2007. “Towards a Fundamental Understanding of the Improved Electrochemical Performance of Silicon – Carbon Composites**”, Adv. Funct. Mater. 17, 1765–1774.
  • [130] Ozanam, F., Rosso,M., 2016. “Silicon as anode material for Li-ion batteries”, Materials Science and Engineering: B, 213, 2-11.
  • [131] Ohara, S., Suzuki, J., Sekine, K., Takamura, T., 2003. “Li insertion / extraction reaction at a Si film evaporated on a Ni foil” , 121, 591–596.
  • [132] Chan, C.K., Ruffo, R., Sae, S., Huggins, R.A., Cui, Y., 2009. “Structural and electrochemical study of the reaction of lithium with silicon nanowires,” 189, 34–39.
  • [133] Patil, A., Patil, V., Wook Shin, D., Choi, J.W., Paik, D.S., Yoon, S.J., 2008. “Issue and challenges facing rechargeable thin film lithium batteries”, Mater. Res. Bull., 43, 1913– 1942.
  • [134] Nanda, J., Kanchan, M., Remillard, J.T., Neill, A.O., Kumta, P.N., 2009. “Electrochemistry Communications In situ Raman microscopy during discharge of a high capacity silicon – carbon composite Li-ion battery negative electrode”, Electrochem. commun., 11, 235–237.
  • [135] Kim, H., Han, B., Choo, J., Cho, J., 2008. “Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries ”, 47, 10151–10154.
  • [136] Shimizu, B.T., Xie, T., Nishikawa, J., Shingubara, S., Senz, S., Gösele, U., 2007. “Synthesis of Vertical High-Density Epitaxial Si ( 100 ) Nanowire Arrays on a Si ( 100 ) Substrate Using an Anodic Aluminum Oxide Template”, 19, 917–920.
  • [137] Ju, H.S., Hong, Y.J., Cho, J.S., Kang, Y.C., 2016. “Strategy for yolk-shell structured metal oxide-carbon composite powders and their electrochemical properties for lithium-ion batteries”, Carbon N. Y., 100, 137–144.
  • [138] Wimalasiri, Y., Zou, L., 2013. “Carbon nanotube/graphene composite for enhanced capacitive deionization performance” , Carbon N. Y., 59, 464–471.
  • [139] Cheng, Q., Tang, J., Ma, J., Zhang, H., Shinya, N., Qin, L.C., 2011. “Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density” , Phys. Chem. Chem. Phys., 13, 17615-17624.
  • [140] Chong, W.G., Huang, J.Q., Xu, Z.L., Qin, X., Wang, X., Kim, J.K., 2017. “Lithium– Sulfur Battery Cable Made from Ultralight, Flexible Graphene/Carbon Nanotube/Sulfur Composite Fibers”, Adv. Funct. Mater., 27, 1604815-10.
  • [141] Xie, J., Tong, L., Su, L., Xu, Y., Wang, L., Wang, Y., 2017. “Core-shell yolk-shell Si @ C @ Void @ C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance” , J. Power Sources, 342, 529–536.
  • [142] Li, H., Lu, C., Zhang, B., 2014. “A straightforward approach towards Si@C/graphene nanocomposite and its superior lithium storage performance”, Electrochim. Acta, 120, 96– 101.
  • [143] Yao, D., Yang, Y., Deng, Y., Wang, C., 2018. “Flexible polyimides through one-pot synthesis as water-soluble binders for silicon anodes in lithium ion batteries”, J. Power Sources, 379, 26–32.
  • [144] Thackeray, M.M., Kock, A.D., 1988. “Synthesis of γ-MnO 2 from LiMn 2 O 4 forLi/MnO 2 battery applications”, Journal of Solid State Chemistry, 74, 414-418.
  • [145] Johnson, C.S., Mansuetto, M. F., Thackeray, M.M., SaoHorn, Y., Hackney, S.A., 1997. “Stabilized Alpha-MnO 2 Electrodes for Rechargeable 3 V Lithium Batteries”, J. Electrochem. Soc., 144, 2279 -2283.
  • [146] Johnson, C.S., Korte, S.D., Vaughey, J.T., Thackeray, M.M., Bofinger, T.E., Shao- Horn, Y., Hackney. S.A., 1999. “Structural and electrochemical analysis of layered compounds from Li2MnO3”, J. Power Sources, vol. 81, 491-495.
  • [147] http://www.infomine.com/investment/metal-prices/manganese/ (Erişim tarihi: 10/05/2018)
  • [148] Johnson, C.S., 2007. “Development and utility of manganese oxides as cathodes in lithium batterie”, Journal of Power Sources, 165, 559–565.
  • [149] Le, M.L.P., Lam, T.X.B., Pham, Q.T.P., Nguyen, T.P.T., 2011.” Investigation of positive electrode materials based on MnO2 for lithium batteries”, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2, 1-8.
  • [150] Ohzuku, T., Kitagawa, M., Harai, T., 1989. “Electrochemistry of manganese dioxide in lithium nonaqueous cell: I . X‐ray diffractional study on the reduction of electrolytic manganese dioxide”, J. Electrochem. Soc., 136, 3169-3174.
  • [151] Shao-Horn, Y., Hackney, S.A., Armstrong, A.R., Bruce, P.G., Gitzendanner, R., Johnson, C.S., Thackeray, M.M., 1999. “Structural characterization of layered LiMnO 2 electrodes by electron diffraction and lattice imaging”. J. Electrochem. Soc., 146, 2404-2412.
  • [152] Johnson, C.S., Thackeray, M.M., 2001, "Layered 1xLi 2 MnO 3x LiMO 2 M=Ni Co Cr or Mn Electrodes for Lithium Batteries”, in Interfaces, Phenomena, and Nanostructures in Lithium Batteries: Proceedings of the International Workshop on Electrochemical Systems, The Electrochemical Society Inc., 47-60.
  • [153] Thackeray, M.M., Johnson, C.S., Vaughey, J.T., Li, N., Hackney, S.A., 2005. “Advances in manganese-oxide ‘composite’electrodes for lithium-ion batteries”, J. Mater. Chem., 15, 2257-2267.
  • [154] Yamamura, K., Mizutani, M., Ishikawa, R., Miyashita, T., Chiba, N., Maeda, M., 1991. “A new chemical manganese dioxide for dry batteries”, Progress in Batteries & Solar Cells, 10 , 56-75.
  • [155] Sugantha, M., Ramakrishnan, P.A., Hermann, A.M., Warmsingh, C.P., Ginley, D.S., 2003. “Nanostructured MnO 2 for Li batteries”, International Journal of Hydrogen Energy , 28, 597-600.
  • [156] Li, Y., Ye, D., Liu, W., Shi, B., Guo, R., Pei, H., Xie. J., 2017. “A three-dimensional core-shell nanostructured composite of polypyrrole wrapped MnO 2 /reduced graphene oxide/carbon nanotube for high performance lithium ion batteries”, Journal of Colloid and Interface Science, 493, 241-248.
  • [157] Moon, I.K., Lee, J., Ruoff, R.S., Lee, H., 2010. “Reduced graphene oxide by chemical graphitization”, Nature Communications, 1, 1-11.
  • [158] Thapa, A.K., Ishihara, T., 2011. “Mesoporous Alpha-MnO 2 / Pd Catalyst Air Electrode for Rechargeable Lithium-Air Battery”, Journal of Power Sources, 196, 7016–7020.
  • [159] Thapa, A.K., Pandit, B., Thapa, R., Luitel, T., Paudel, H.S., Sumanasekera, G., Sunkara, M.K., Gunawardhana, N., Ishihara, T., Yoshio, M., 2014. “Synthesis of mesoporous birnessite-MnO 2 composite as a cathode electrode for lithium battery”, Electrochimica Acta, 116, 188– 193.
  • [160] Singh, I. B., Park, S., 2015. “Synthesis of b-MnO 2 nanowires and their electrochemical capacitive behavior”, Indian Journal of Chemistry, 54A, 46-51.
  • [161] Kim, J.M., Huh, Y.S., Han, Y.K., Cho, M.S., Kim, H.J., 2012. “Facile synthesis route to highly crystalline mesoporous γ-MnO 2 nanospheres”, Electrochemistry Communications, 14, 32–35.
  • [162] Cheng, F., Zhao, J., Song, W., Li, C., Ma, H., Chen, J., Shen, P., 2006. “Facile controlled synthesis of MnO 2 nanostructures of novel shapes and their application in batteries”, Inorganic Chemistry, 5, 2038-2044.
  • [163] Tu, F., Wu, T., Liu, S., Jin, G., Pan, C., 2013. “Facile fabrication of MnO 2 nanorod/graphene hybrid as cathode materials for lithium batteries”, Electrochimica Acta, 106, 406– 410.
  • [164] Zhen, Z., Zhu. H., 2017. “Structure and Properties of Graphene”. in Graphene Fabrication, Characterizations, Properties and Applications, 1st ed.,VOL Hongwei Zhu,Zhiping Xu, Dan Xie, Ying Fang, Ed. Chennai, India:Elsevier, 1-12.
  • [165] Papageorgiou, D.G., Kinloch, I. A., Young, R. J., 2017. “Mechanical properties of graphene and graphene-based nanocomposites”, Progress in Materials Science, 90, 75-127.
  • [166] Ren, S., Rong, P., Yu, Q., 2018. “Preparations, properties and applications of graphene in functional devices: A concise review”. Ceramics International, in press.
  • [167] Liu, C., Yu, Z., Neff, D., Zhamu, A., Jang, B.Z., 2010. “Graphene-Based Supercapacitor with an Ultrahigh Energy Density”, Nano Lett., 10, 4863–4868.
  • [168] Xiong, C., Li, T., Khan, M., Li, H., Zha, Ti, 2015. “A three-dimensional MnO 2 /graphene hybrid as a binder-free supercapacitor electrode”, RSC Adv., 5, 85613-85619.
  • [169] Wang, J., Kang, F., We, B., 2015. “Engineering of MnO 2 -based nanocomposites for high-performance supercapacitors”, Progress in Materials Science, 74, 51–124.
  • [170] Yan, J., Fan, Z., Wei, T., Qian, W., Zhang, M., Wei, F., 2010. “Fast and reversible surface redox reaction of graphene–MnO 2 composites as supercapacitor electrodes”, CARBON, 48, 3825 – 3833.
  • [171] Chen, S.. Zhu, J.. Wu, X.. Han, Q.. Wang, X., 2010. “Graphene Oxide−MnO 2 Nanocomposites for Supercapacitors”, ACS Nano, 4, 2822–2830.
  • [172] Park, M., Zhang, X., Chung, M., Less, G.B., Sastry, A.M., 2010. “A review of conduction phenomena in Li-ion batteries”, Journal of Power Sources, 195, 7904–7929.
  • [173] Wang, G., Shao, G.J., Du, J., Zhang, Y., Ma. Z., 2013. “Effect of doping cobalt on the micro-morphology and electrochemical properties of birnessite MnO 2 ”, Mater. Chem. Phys., 138, 108- 113.
  • [174] Tang, C., Wei, X., Jiang, Y., Wu, X., Han, L., Wang, K., Chen, J., 2015. “Cobalt-Doped MnO 2 Hierarchical Yolk−Shell Spheres with Improved Supercapacitive Performance”, J. Phys. Chem. C, 119, 8465−8471.
  • [175] Wang, L., Wang, Y., Zhang, H., Wang, X., 2015. “Effect of thermal reduction temperature on the electrochemical performance of reduced graphene MnO 2 composites”, New Carbon Materials, 30, 48–53.
  • [176] Wang, D., Liu, L.-M., Zhao, S.-J., Li, B.-H., Liu, H., Lang, X.-F., 2013. “β-MnO 2 as a cathode material for lithium ion batteries from first principles calculations”, Phys. Chem. Chem. Phys., 15, 9075-9083.
  • [177] Luo, J., Zhang, J., Xia, Y., 2006. “Highly Electrochemical Reaction of Lithium in the Ordered Mesoporosus b-MnO2”, Chem. Mater., 18, 5618-5623.
  • [178] Chen, K., Noh, Y.D. Li, K., Komarneni, S., Xue, D., 2013. “Microwave−Hydrothermal Crystallization of Polymorphic MnO 2 for Electrochemical Energy Storage”., J. Phys. Chem. C, 117, 10770−10779.
  • [179] Xing, L., Cui, C., Ma, C., Xue, X., 2011. “Facile synthesis of α-MnO 2 /graphene nanocomposites and their high performance as lithium-ion battery anode”, Materials Letters, 65, 2104–2106.
  • [180] Ananth, M.V., Pethkar, S., Dakshinamurthi. K., 1998. “Distortion of MnO octahedra and electrochemical activity of Nstutite-based MnO polymorphs for alkaline electrolytes—an FTIR study”, Journal of Power Sources, 75, 278–282.
  • [181] David, W.I.F., Thackeray, M.M., Bruce, P.G., Goodenough, J.B., 1984. “Lithium insertion into β-MnO 2 and the rutile-spinel transformation”, Materials Research Bulletin, 19, 99-106.
  • [182] Li, Q., Yin, L., Li, Z., Wang, X., Qi, Y., Ma, J., 2013. “Copper Doped Hollow Structured Manganese Oxide Mesocrystals with Controlled Phase Structure and Morphology as Anode Materials for Lithium Ion Battery with Improved Electrochemical Performance”, ACS Appl. Mater. Interfaces, 5, 10975−10984.
  • [183] Duan, Y., Liu, Z., Jing, H., Zhang, Y., Li, S., 2012. “Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties”, J. Mater. Chem., 22, 18291–18299.
  • [184] Korosec, R.C., Umek, P., Gloter, A., Gomilsek, J. P., Bukovec, P., 2017. “Structural properties and thermal stability of cobalt- and chromium-doped α-MnO 2 nanorods”, Beilstein J. Nanotechnol., 8, 1032–1042.
  • [185] Hashem, A.M., Abuzeid, H.M., Mikhailova, D., Ehrenberg, H., Mauger, A., Julien, C.M., 2012. “Structural and electrochemical properties of a-MnO2 doped with cobalt”, J Mater Sci, 47, 2479–2485.
  • [186] Sun, Y., Xu, C., Li, B., Xu, J., He, Y., Du, H., Kang, F., 2014. “Synthesis of single‐crystalline LiMn 2 O 4 with different dimensional nanostructures for li‐ion batteries”, Int J Electrochem Sci., 9, 6387‐6401.
  • [187] Chabot, V., Farhad, S., Chen, Z., Fung, A.S., Yu, A., Hamdullahpur, F., 2013. “Effect of electrode physical and chemical properties on lithium‐ ion battery performance”, Int J Energ Res., 37(14), 1723‐1736.
  • [188] Zhao, M., Song, X., Wang, F., Dai, W., Lu, X., 2011. “Electrochemical performance of single crystalline spinel LiMn 2 O 4 nanowires in an aqueous LiNO 3 solution”, Electrochim Acta., 56(16), 5673‐ 5678.
  • [189] Li, X., Xu, Y., Wang, C., 2009. “Suppression of Jahn–teller distortion of spinel LiMn 2 O 4 cathode” , J Alloys Compd., 479(1‐2), 310‐313.
  • [190] Jung, S., Jung, H.Y., 2016. “Charge/discharge characteristics of Li‐ion batteries with two‐phase active materials: a comparative study of LiFePO 4 and LiCoO 2 cells,” Int J Energ Res., 40(11), 1541‐ 1555.
  • [191] Kai, Z., Yang, W., Shuang, Z., Yan, Y., Hao, P., Guiwei, L., Jianli, J., 2014. “Synthesis of single crystalline spinel LiMn 2 O 4 nanorods for a lithium ion battery” , Int J Electrochem Sci., 9, 5280‐5288.
  • [192] Sickafus, K.E., Hughes, R., Grimes, N.W., 1999. “Structure of spinel”, J. Amer. Ceram. Soc., 82(12), 3279-3292.
  • [193] Julien, C. M., 2006. “Local structure of lithiated manganese oxides”, Solid State Ionics, 177, 11-19.
  • [194] Thackeray, M.M., 1995. “Structural considerations of layered and spinel lithiated oxides for lithium ion batteries”, J. Electrochem. Soc., 142(8), 2558-2563.
  • [195] Li, W., Song, B., Manthiram, A., 2017. “High-voltage positive electrode materials for lithium-ion batteries”, Chem. Soc. Rev., 46, 3006-3059.
  • [196] Wu, H.C., Guo, Z.Z., Wen, H.P., Yang, M.H., 2005. “Study the fading mechanism of LiMn2O4 battery with spherical and flake type graphite as anode materials”, J. Power Sources, 146, 736-740.
  • [197] Pasquier, A.D., Blyr, A., Courjal, P., Larcher, D., Amatucci, G., Gerand, B., Tarascon, J.M., 1999. “Mechanism for limited 55°C storage performance of Li 1.05 Mn 1.95 O 4 electrodes”, J. Electrochem. Soc., 146, 428-436.
  • [198] Yunjian, L., Xinhai, L.,. Huajun, Zhixing, G,W., Qiyang, H., Wenjie, P., Yong, Y., 2009. “Performance and capacity fading reason of LiMn 2 O 4 /graphite batteries after storing at high temperature”, Rare Metals, 28, 322-327.
  • [199] Arora, P., White, R.E., 1998. “Capacity fade mechanisms and side reactions in lithium- ıon batteries”, J. Electrochem. Soc., 145, 3647-3667.
  • [200] Choi, W., Manthiram, A., 2006. “Comparison of metal ıon dissolutions from lithium ıon battery cathodes”, J. Electrochem. Soc., 153, 1760-1764.
  • [201] Jang, D.H., Shin, Y.J., Oh, S.M., 1996. “Dissolution of spinel oxides and capacily losses in 4 V Li/LiMn 2 O 4 cells”, J. Electrochem. Soc., 143, 2204-2211.
  • [202] J.-K. Park, 2012, “Principles and Applications of Lithium Secondary Batteries”, Germany, Wiley-VCH, 21-23.
  • [203] Goodenough, J.B., 2014. “Electrochemical energy storage in a sustainable modern society”, Energy Environ. Sci., 7, 14-18.
  • [204] G. P. Gholam and A. Nazri, 2003. “Lithium Batteries: Science and Technology”, Kluwer Academic Publishers, USA,
  • [205] Goodenough, J.B., Park, K.S., 2013. “The Li-ion rechargeable battery: a perspective”, J. Am. Chem. Soc., 135 (4), 1167-1176.
  • [206] Ouyanga, C.Y., Shi, S.Q., Lei, M.S., 2009. “Jahn–Teller distortion and electronic structure of LiMn 2 O 4 ”, Journal of Alloys and Compounds, 474, 370–374.
  • [207] Liu, C., Neale, Z.G., Cao, G., 2016. “Understanding electrochemical potentials of cathode materials in rechargeable batteries”, Materials Today, 19, 109-123.
  • [208] Chung, K.Y., Lee, H.S., Yoon, W.S., McBreen, J., Yang, X.Q., 2006. “Studies of LiMn 2 O 4 capacity fading at elevated temperature using ın situ synchrotron X-ray diffraction”, J. Electrochem. Soc., 153, A774-A780.
  • [209] Gummow, R.J., Kock, A., Thackeray, M.M., 1994. “Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells”, Solid State Ionics, 69, 59- 67.
  • [210] Cho, J., Kim, T.J., Kim, Y.J., Park, B., 2001. “Complete blocking of Mn 3+ ion dissolution from a LiMn 2 O 4 spinel intercalation compound by Co 3 O 4 coating” , Chem. Commun., 1074–1075.
  • [211] Waller, G.H., Brooke, P.D., Rainwater, B.H., Lai, S.Y., Hu, R., Ding, Y., Alamgir, F.M., Sandhage, K.H., Liu, M.L., 2016. “Structure and surface chemistry of Al 2 O 3 coated LiMn 2 O 4 nanostructured electrodes with improved lifetime”, J. Power Sources, 306, 162-170.
  • [212] Zhang, W., Zeng, Y., Xu, C., Xiao, N., Gao, Y., Li, L.J., Chen, X., Hng, H.H., Yan, Q., 2012. “A facile approach to nanoarchitectured three-dimensional graphene-based Li-Mn-O composite as high-power cathodes for Li-ion batteries”, J. Beilstein, Nanotechnol., 3, 513- 523.
  • [213] Ding, Y.L., Xie, J., Cao, G.S., Zhu, T.J., Yu, H.M., Zhao, X.B., 2011. “Enhanced elevated‐temperature performance of al‐doped single crystalline LiMn 2 O 4 nanotubes as cathodes for lithium ion batteries”, J Phys Chem C., 115(19), 9821‐9825.
  • [214] Xia, H., Luo, Z., Xie, J., 2012. “Nanostructured LiMn 2 O 4 and their composites as high‐performance cathodes for lithium‐ion batteries” , Prog Nat Sci., 22(6), 572‐584.
  • [215] Guler, M.O., Akbulut, A., Cetinkaya, T., Akbulut, H., 2013. “The effect of MWCNT reinforcing on the electrochemical performance of LiMn 2 O 4 /MWCNT nanocomposite cathode”, Int J Energ Res., 38, 509‐517.
  • [216] Zhana, D., Yanga, F., Zhanga, Q., Hua, X., Peng, T., 2014. “Effect of solid‐ state reaction temperature on electrochemical performance of LiMn 2 O 4 submicro‐rods as cathode material for li‐ion battery by using ‐MnOOH submicro‐rods as self‐template,” Electrochim Acta., 129, 364‐372.
  • [217] Li, J., Zhang, X., Peng, R., Huang, Y., Guo, L., Qi, Y., 2016. “LiMn 2 O 4 / graphene composites as cathodes with enhanced electrochemical performance for lithium‐ion capacitors”, RSC Adv., 6 (60), 54866‐54873.
  • [218] Sigala, C., Verbaere, A,, Mansot, J.L., Guyomard, D., Piffard, Y., Tournoux, M., 1997. “The Cr‐substituted spinel Mn oxides LiCr y Mn 2−y O 4 (0≤y≤1): Rietveld analysis of the structure modifications induced by the electrochemical lithium deintercalation”, J Solid ‐ State Chem., 132(2), 372‐381.
  • [219] Spahr, M.E., Novak, P., Haas, O., Nespar, R., 1997. “Cycling performance of novel lithium insertion electrode materials based on the Li‐Ni‐Mn‐O system”, J Power Sources., 68(2), 629‐633.
  • [220] Eli, Y.E., Howard, W.F., Lu, S.H., 1998. “LiMn 2 − x Cu x O 4 Spinels (0.1 ⩽x⩽ 0.5): a new class of 5 V cathode materials for li batteries: I. Electrochemical, structural, and spectroscopic studies”, J Electrochem Soc., 145(4), 1238‐1244.
  • [221] Hayashi, N., Ikuta, H., Wakihara, M.J., 1999. “Cathode of LiMg y Mn 2−y O 4 and LiMg y Mn 2−y O 4 − δ spinel phases for lithium secondary batteries,” J Electrochem Soc., 146(4), 1351‐1354.
  • [222] Taniguchi, I., Song, D., Wakihara, M., 2002. “Electrochemical properties of LiM 1/6 Mn 11/6 O 4 (M = Mn, co, al and Ni) as cathode materials for li‐ion batteries prepared by ultrasonic spray pyrolysis method,” J Power Sources., 109(2), 333‐339.
  • [223] Sun, Y.K., Kim, D.W., Choi, Y.M., 1999. “Synthesis and characterization of spinel LiMn 2−x Ni x O 4 for lithium/polymer battery applications”, J Power Sources., 79(2), 231‐237.
  • [224] Wu, S.H., Su, H.J., 2002. “Electrochemical characteristics of partially cobalt‐substituted LiMn 2−y Co y O 4 spinels synthesized by Pechini process,” Mater Chem Phys., 78, 189‐195.
  • [225] Wu, C., Wu, F., Chen, L., Huang, X., 2002. “X‐ray diffraction and X‐ray photoelectron spectroscopy analysis of Cr‐doped spinel LiMn 2 O 4 for lithium ion batteries”, Solid State Ion., 152‐153(152), 335‐339.
  • [226] Capsoni, D., Bini, M., Chiodelli, G., Massarotti, V., Azzoni, C.B., Mozzati, M.C., Comin, A., 2001.“ Inhibition of Jahn–teller cooperative distortion in LiMn 2 O 4 spinel by transition metal ion doping,” Phys Chem Chem Phys., 3(11), 2162‐2166.
  • [227] Wei, Y.J., Yan, L.Y., Wang, C.Z., Xu, X.G., Wu, F., Chen, G., 2004. “Effects of Ni Doping on [MnO6] Octahedron in LiMn 2 O 4 ”, J. Phys. Chem. B, 108, 18547-18551.
  • [228] Li, C.Y., Jing, B.W., Zheng, Y., Chao, Z.Q., Zhi, S., 2011. “Electrochemical Performance Ni Doped Spinel LiMn 2 O 4 Cathode for Lithium Ion Batteries” , Advanced Materials Research, 347-353, 290-300..
  • [229] Mao, M., Hu, J., Liu, H., 2014. “Graphene‐based materials for flexible electrochemical energy storage” , Int J Energ Res., 39, 727‐740.
  • [230] Bak, S.M., Nam, K.W., Lee, C.W., Kim, K.H., Jung, H.C., Yang, X.Q., Kim, K.B., 2011. “Spinel LiMn 2 O 4 /reduced graphene oxide hybrid for high rate lithium ion batteries” , J Mater Chem., 21(43), 17309‐17315.
  • [231] Xu, H., Cheng, B., Wang, Y., Zheng, L., Duan, X., Wang, L., Yang, J., Qian, Y., 2012. “Improved electrochemical performance of LiMn 2 O 4 /graphene composite as cathode material for lithium ıon battery”, Int J Electrochem Sci., 7, 10627‐10632.
  • [232] Ozcan, S., Tokur, M., Cetinkaya, T., Guler, A., Uysal, M., Guler, M.O., Akbulut, H., 2016. “Free standing flexible graphene oxide + α‐MnO 2 composite cathodes for li–air batteries,” Solid State Ion., 286, 34‐39.
  • [233] Su, X., Yu, L., Cheng, G., Zhang, H., Sun, M., Zhang, X., 2015. “High‐performance α‐MnO 2 nanowire electrode for supercapacitors” , Appld Energ., 153, 94‐100.
  • [234] Li, W., Cui, X., Zeng, R., Du, G., Sun, Z., Zheng, R., Ringer, S.P., Dou, S.X., 2015. “Performance modulation of a‐MnO 2 nanowires by crystal facet engineering”, Sci Rep., vol. 5, 1‐8.
  • [235] Okubo, M., Mizuno, Y., Yamada, H., Kim, J., Hosono, E., Zhou, H., Kudo, T., Honma, I., 2010. “Fast li‐ion ınsertion into nanosized LiMn 2 O 4 without domain boundaries”, Am Chem Soc., 4(2), 4741‐4752.
  • [236] Song, D., Ikuta, H., Uchida, T., Wakihara, M., 1999. “The spinel phases LiAl y Mn 2−y O 4 (y=0, 1/12, 1/9, 1/6, 1/3) and Li(al,M) 1/6 Mn 11/6 O 4 (M=Cr, Co) as the cathode for rechargeable lithium batteries”, Solid State Ion., 117(1‐2), 151‐156.
  • [237] Ni, Z.H., Wang, H.M., Ma, Y., Kasim, .J, Wu, Y.H., Shen, Z.X., 2008. “Tunable stress and controlled thickness modification in graphene by annealing”, ACS Nano, 2(5),1033‐1039.
  • [238] Stankovich S, Dikin D.A., Piner R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.B.T., Ruoff, R.S., 2007. “Synthesis of graphene‐based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon, 45(7),1558‐1565.
  • [239] Gupta, A., Chen, G., Joshi, P., Tadigadapa, S., Eklund, P.C., 2006. “Raman scattering from high‐frequency phonons in supported n‐ graphene layer films”, Nano Lett., 6(12), 2667‐2673.
  • [240] Rangappa, D., Mohan, E.H., Siddhartha, V., Gopalan, R., Rao, T.N., 2014. “Preparation of LiMn 2 O 4 graphene hybrid nanostructure by combustion synthesis and their electrochemical properties”, Mater Sci., 1, 174‐183.
  • [241] Ott, A., Endres, P., Klein, V, Fuchsa, B., Jägera, A., Mayera, H.A., Sacka, S.K., Praasb, H.W., Brandtb, K., Filotic, G., Kunczerc, V., Rosenbergd, M., 1998. “Electrochemical performance and chemical properties of oxidic cathode materials for 4 V rechargeable li‐ion batteries”, J Power Sources., 72(1), 1‐8.
  • [242]Amatucci, G., Tarascon, J.M., 2002. “Optimization of insertion compounds such as LiMn 2 O 4 for li‐Iion batteries”, J Electrochem Soc., 149(12), K31‐K46.
  • [243] Fang, H., Li, L., Yang, Y., Yan, G., Li, G., 2008. “Low‐temperature synthesis of highly crystallized LiMn 2 O 4 from alpha manganese dioxide nanorods”, J Power Sources, 184(2), 494‐497.
  • [244] Wang, Y., Wang, Y., Jia, D., Peng, Z., Xia, Y., Zheng, G., 2014. “All nanowire based li‐ion full cells using homologous Mn 2 O 3 and LiMn 2 O 4 ”, Nano Lett.,14(2), 1080‐1084.
  • [245] Chen, Z., Huang, K.L., Liu, S.Q., Wang. H.Y., 2010. “Preparation and characterization of spinel LiMn 2 O 4 nanorods as lithium‐ion battery cathodes”, Trans Nonferrous Met Soc Chin. 20(12), 2309‐ 2313.
  • [246] Bang, H.J., Donepudi, V.S., Prakash, J., 2002. “Preparation and characterization of partially substituted LiM y Mn 2−y O 4 (M=Ni, Co, Fe) spinel cathodes for li‐ion batteries”, Electrochim Acta., 48(4), 443‐ 451.
APA Akbulut H, METE O, GÜLER M, BULUT E (2018). Grafen Sentezinde Yeni Bir Yaklaşım ve Yeni Nesil Grafen Esaslı Li-Pil Elektrotları. , 1 - 0.
Chicago Akbulut Hatem,METE Osman Hamdi,GÜLER MEHMET OĞUZ,BULUT Emrah Grafen Sentezinde Yeni Bir Yaklaşım ve Yeni Nesil Grafen Esaslı Li-Pil Elektrotları. (2018): 1 - 0.
MLA Akbulut Hatem,METE Osman Hamdi,GÜLER MEHMET OĞUZ,BULUT Emrah Grafen Sentezinde Yeni Bir Yaklaşım ve Yeni Nesil Grafen Esaslı Li-Pil Elektrotları. , 2018, ss.1 - 0.
AMA Akbulut H,METE O,GÜLER M,BULUT E Grafen Sentezinde Yeni Bir Yaklaşım ve Yeni Nesil Grafen Esaslı Li-Pil Elektrotları. . 2018; 1 - 0.
Vancouver Akbulut H,METE O,GÜLER M,BULUT E Grafen Sentezinde Yeni Bir Yaklaşım ve Yeni Nesil Grafen Esaslı Li-Pil Elektrotları. . 2018; 1 - 0.
IEEE Akbulut H,METE O,GÜLER M,BULUT E "Grafen Sentezinde Yeni Bir Yaklaşım ve Yeni Nesil Grafen Esaslı Li-Pil Elektrotları." , ss.1 - 0, 2018.
ISNAD Akbulut, Hatem vd. "Grafen Sentezinde Yeni Bir Yaklaşım ve Yeni Nesil Grafen Esaslı Li-Pil Elektrotları". (2018), 1-0.
APA Akbulut H, METE O, GÜLER M, BULUT E (2018). Grafen Sentezinde Yeni Bir Yaklaşım ve Yeni Nesil Grafen Esaslı Li-Pil Elektrotları. , 1 - 0.
Chicago Akbulut Hatem,METE Osman Hamdi,GÜLER MEHMET OĞUZ,BULUT Emrah Grafen Sentezinde Yeni Bir Yaklaşım ve Yeni Nesil Grafen Esaslı Li-Pil Elektrotları. (2018): 1 - 0.
MLA Akbulut Hatem,METE Osman Hamdi,GÜLER MEHMET OĞUZ,BULUT Emrah Grafen Sentezinde Yeni Bir Yaklaşım ve Yeni Nesil Grafen Esaslı Li-Pil Elektrotları. , 2018, ss.1 - 0.
AMA Akbulut H,METE O,GÜLER M,BULUT E Grafen Sentezinde Yeni Bir Yaklaşım ve Yeni Nesil Grafen Esaslı Li-Pil Elektrotları. . 2018; 1 - 0.
Vancouver Akbulut H,METE O,GÜLER M,BULUT E Grafen Sentezinde Yeni Bir Yaklaşım ve Yeni Nesil Grafen Esaslı Li-Pil Elektrotları. . 2018; 1 - 0.
IEEE Akbulut H,METE O,GÜLER M,BULUT E "Grafen Sentezinde Yeni Bir Yaklaşım ve Yeni Nesil Grafen Esaslı Li-Pil Elektrotları." , ss.1 - 0, 2018.
ISNAD Akbulut, Hatem vd. "Grafen Sentezinde Yeni Bir Yaklaşım ve Yeni Nesil Grafen Esaslı Li-Pil Elektrotları". (2018), 1-0.