Meme Manyetik Rezonans Görüntülemede (MRG) Lezyon Tespiti, Yalancı Pozitif Ve Yalancı Negatif Bulguların Azaltılmasına Yönelik Yazılım Geliştirilmesi

1 1

Proje Grubu: EEEAG Sayfa Sayısı: 113 Proje No: 118E201 Proje Bitiş Tarihi: 15.10.2019 Metin Dili: Türkçe İndeks Tarihi: 05-11-2020

Meme Manyetik Rezonans Görüntülemede (MRG) Lezyon Tespiti, Yalancı Pozitif Ve Yalancı Negatif Bulguların Azaltılmasına Yönelik Yazılım Geliştirilmesi

Öz:
Projenin amacı, meme kanserinin teşhisinde yaygın olarak tercih edilen manyetik rezonans görüntüleme sistemi üzerinden alınan görüntüleri kullanarak yazılım tabanlı bir meme lezyon tespit ve sınıflandırma sistemi geliştirmektir. Geliştirilen sistem uzmanlar için yazılım tabanlı bir karar destek sistemi olarak düşünülebilir. Belirtilen amaca ulaşmak için sistemde beş temel adım gerçekleştirilmiştir. Bu adımlardan her biri çeşitli işaret işleme ve görüntü işleme yöntemleri içermektedir. Projede gerçekleştirilen beş temel adım sırasıyla veri tabanı oluşturulması, meme lezyonlarının tespit edilmesi, lezyon özelliklerinin çıkarılması, en etkili özelliklerin belirlenmesi ve karar adımlarıdır. Veri tabanı oluşturulması adımında uzman eşliğinde MRG cihazı ile yapılan çekimlerden en uygun görüntüler seçilmiştir. Ayrıca, görüntüde oluşabilecek bozunumları gidermek için filtre tabanlı bir ön işleme adımı uygulanmıştır. Daha sonra, meme lezyonlarının tespit edilmesi amacıyla iki aşamalı bir segmentasyon süreci uygulanmıştır. İlk aşama lezyon içerebilecek meme bölgesinin tespit edilmesi, ikinci aşama meme bölgesinden lezyonun bulunduğu bölgenin elde edilmesidir. Meme bölgesi tespitinde yerel adaptif eşikleme, bağlı bileşen analizi, yatay iz düşüm ve maskeleme teknikleri sırasıyla kullanılmıştır. Lezyon tespiti için Otsu, bölge büyütme, bulanık c-ortalamalar, k-ortalamalar, aktif sınırlar ve Markov rastgele alanlar yöntemleri görüntülere uygulanmıştır. Lezyonlara ait özelliklerin çıkarılması adımında ise histogram, şekil, doku ve dönüşüm uzayı özellikleri hesaplanmıştır. Toplamda her bir lezyon için 108 özellik belirlenmiş ve özellik seçme adımında etkisi az olan özellikler Fisher skoru yöntemi ile özellik vektöründen atılmıştır. Projenin son adımı karar aşaması olan sınıflandırma adımıdır. Bu adımda k en yakın komşuluk, destek vektör makineleri, rastgele orman, naif Bayes teknikleri kullanılmıştır. Elde edilen sonuçlara göre proje kapsamında hazırlanan yazılım meme lezyonlarının tespitinde %91±0,06, iyi huylu kötü huylu lezyon ayrımında %90,36±0,069, lezyon alt gruplarının ayrımında ise %84,3±0,24 doğruluk sağlamıştır.
Anahtar Kelime: lezyon sınıflandırma özellik seçme özellik çıkarma segmentasyon lezyon tespiti meme kanseri

Erişim Türü: Erişime Açık
  • [1] Dünya Sağlık Örgütü Uluslararası Ajansı, “Meme Kanseri İstatistikleri” http://www.wcrf.org/int/cancer-facts- figures/data-specific-cancers/breast- cancerstatistics. Son erişim tarihi: 06.04.2016.
  • [2] Türkiye Halk Sağlığı Kurumu Kanser Daire Başkanlığı, “Türkiye Kanser İstatistikleri”http://kanser.gov.tr/Dosya/ca_istatistik/ANA_rapor_2013v01_2. pdf. Son erişim tarihi: 06.04.2016.
  • [3] Özlük, A., “http://www.draliozluk.com/op-dr-ali-ozluk-genel-cerrahi-uzmanimeme-sagligi-memeyapisi.asp”, Son erişim tarihi: 06.11.2019.
  • [4] “http://www.breastcancer.org/symptoms/understand_bc/what_is_bc.”, Son erişim tarihi: 07.04.2017.
  • [5] M. Dolan, T. E. McEwan, R. Doley, and K. Fritzon, Risk Factors and Risk Assessment in Juvenile Fire-Setting, vol. 18, no. 3. Elsevier Inc., 2011.
  • [6] Wolfe, J.N., “Risk for Breast Cancer Development Determined by Mammographic Parenchmal Pattern”, Cancer, Vol. 37, No. 5, pp 2486-2492, May 1997.
  • [7] Pandey D, Yin X, Wang H, Su MY, Chen JH, Wu J, Zhang Y (2018) Automatic and fast segmentation of breast region-of-interest (ROI) and density in MRIs. Heliyon, 4: 1-30 https://doi.org/10.1016/j.heliyon.2018.e01042
  • [8] Illan IA, Ramirez J,Gorriz JM (2018) Automated Detection and Segmentation of Nonmass-Enhancing Breast Tumors with Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Contrast Media Mol. Imaging 2018:1-11 https://doi.org/10.1155/2018/5308517
  • [9] Shokouhi SB, Fooladivanda A, Ahmadinejad N (2017) Computer-aided detection of breast lesions in DCE-MRI using region growing based on fuzzy C-means clustering and vesselness filter. Eurasip J. Adv. Sig. Process. 2017:1-11 https://doi.org/ 10.1186/s13634-017-0476-x
  • [10] Marrone S, Piantadosi G, Fusco R, Petrillo A, Sansone M, Sansone C (2016) Breast segmentation using Fuzzy C-Means and anatomical priors in DCE-MRI. Proc. Int. Conf. Pattern Recognition 1472–1477 https://doi.org/ 1010.1109/ICPR.2016.7899845
  • [11] Waugh SA, Purdie CA, Jordan LB, Vinnicombe S, Lerski RA (2016) Magnetic resonance imaging texture analysis classification of primary breast cancer. 26: 322– 330 https://doi.org/10.1007/s00330-015-3845-6
  • [12] Tzalavra A, Dalakleidi K, Zacharaki EI, Tsiaparos N (2016) Comparison of Multiresolution Analysis Patterns for Texture Classification of Breast Tumors Based On DCE-MRI. 7th Int. Workshop on Machine Learning in Medical Imaging (MICCAI): 296-304, https://doi.org/10.1007/978-3-319-47157-0_36
  • [13] Honda E, Nakayama R, Koyama H, Yamashita A (2016) Computer-Aided Diagnosis Scheme for Distinguishing Between Benign and Malignant Masses in Breast DCE-MRI. J. Digit. Imaging, 29: 388–393 https://doi.org/10.1007/s10278- 015-9856-7.
  • [14] Antropova N, Huynh B, Giger M (2016) Predicting breast cancer malignancy on DCE-MRI data using pre-trained convolutional neural networks. Med. Phys.43: 3349–3350 https://doi.org/10.1118/1.4955674
  • [15] Mahrooghy M, Ashraf AB (2015) Pharmacokinetic tumor heterogeneity as a prognostic biomarker for classifying breast cancer recurrence risk. IEEE Trans. on Biomedical Eng. 62: 1585-1594 https://doi.org/10.1109/TBME.2015.2395812.
  • [16] Commons C, License A (2015) Automatic Segmentation in Breast Cancer Using Watershed Algorithm. International Journal of Biomedical Engineering and Science (IJBES), 2: 1-6.
  • [17] Yang Q, Li L, Zheng B (2015) A new quantitative image analysis method for improving breast cancer diagnosis using DCE-MRI examinations. Medical Physics 42:103-109 https://doi.org/10.1118/1.4903280.
  • [18] Navaei-Lavasani S, Fathi-Kazerooni A, Saligheh-Rad H, Gity M (2015) Discrimination of Benign and Malignant Suspicious Breast Tumors Based on SemiQuantitative DCE-MRI Parameters Employing Support Vector Machine. Front. Biomed. Technol. 2:87-92
  • [19] Chaudhurya B, Zhou M, Goldgof DB, Hall LO (2015) Identifying metastatic breast tumors using textural kinetic features of a contrast based habitat in DCE-MRI. Med. Imaging 2015 Comput. Diagnosis 941415 https://doi.org/10.1117/12.2081386.
  • [20] Hassanien AE, Moftah H, Azar AT, Shoman M (2014) MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perceptron neural networks classifier. Appl. Soft Comput. J. 14:62–71 https://doi.org/10.1016/j.asoc.2013.08.011
  • [21] Song H, Zhang Q, Sun F, Wang J (2014) Breast tissue segmentation on MR images using KFCM with spatial constraints. Proc. - 2014 IEEE Int. Conf. Granul. Comput. GrC :254-258 https://doi.org/10.1109/GRC.2014.6982845
  • [22] Al-faris AQ, Ngah UK, Ashidi N, Isa M, Shuaib IL (2014) Breast MRI Tumour Segmentation Using Modified Automatic Seeded Region Growing Based on Particle Swarm Optimization Image Clustering. Soft Computing in Industrial Applications 223: 49–60
  • [23] Wang TC, Huang YH, Huang CS, Chen JH (2014) Computer-aided diagnosis of breast DCE-MRI using pharmacokinetic model and 3-D morphology analysis. Magn. Reson. Imaging 32: 197–205 https://doi.org/10.1016/j.mri.2013.12.002
  • [24] Jayender J, Chikarmane S, Jolesz FA, Gombos E (2014) Automatic segmentation of invasive breast carcinomas from dynamic contrast-enhanced MRI using time series analysis. J. Magn. Reson. Imaging 40:467–475 https://doi.org/10.1002/jmri.24394
  • [25] Cai H, Peng Y, Ou C, Chen M, Li L (2014) Diagnosis of breast masses from dynamic contrast-enhanced and diffusion-weighted MR: A machine learning approach. PLoS One, 9:873-887 https://doi.org/10.1371/journal.pone.0087387
  • [26] Chen JH, Chen S, Chan S, Lin M, Su MY, Wang X (2013) Template-based automatic breast segmentation on MRI by excluding the chest region. Med. Phys. 40: 22301, https://doi.org/10.1118/1.4828837.
  • [27] Yang Q, Li L, Zhang J, Shao G, Zhang C, Zheng B (2013) Computer-aided diagnosis of breast DCE-MRI images using bilateral asymmetry of contrast enhancement between two breasts. J. Digit. Imaging, 27: 152–160, https://doi.org/10.1007/s10278-013-9617-4
  • [28] Wu S, Weinstein SP, Conant EF, Schnall MD, Kontos D (2013) Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images. Med. Phys. 40: 042301 https://doi.org/10.1118/1.4793255.
  • [29] Wang Y, Morrell G, Heibrun ME, Payne A, Parker DL (2013) 3D MultiParametric Breast MRI Segmentation Using Hierarchical Support Vector Machine with Coil Sensitivity Correction. Acad. Radiol. 20: 137–147 https://doi.org/10.1016/j.acra.2012.08.016.
  • [30] Sathya DJ, Geetha K (2013) Experimental Investigation of Classification Algorithms for Predicting Lesion Type on Breast DCE-MR Images. Int. J. Comput. Appl. 82:1-8 https://doi.org/10.5120/14101-2125
  • [31] Sathya DJ, Geetha K (2013) Mass classification in breast DCE-MR images using an artificial neural network trained via a bee colony optimization algorithm. Science Asia, 39: 294–305 https://doi.org/10.2306/scienceasia1513- 1874.2013.39.294
  • [32] Nagarajan MB, Huber MB, Schlossbauer T, Leinsinger G, Krol A, Wismüller A (2013) Classification of small lesions in dynamic breast MRI: Eliminating the need for precise lesion segmentation through spatio-temporal analysis of contrast enhancement. Mach. Vis. Appl. 24: 1371–1381 https://doi.org/10.1007/s00138-012- 0456-y.
  • [33] McClymont D, Trakic A, Mehnert A, Crozier S, Kennedy D (2013) Fully automatic lesion segmentation in breast MRI using mean-shift and graph-cuts on a region adjacency graph. J. Magn. Reson. Imaging, 39: 795–804 https://doi.org/10.1002/jmri.24229
  • [34] Glaßer S, Niemann U, Preim B, Spiliopoulou M (2013) Can we distinguish between benign and malignant breast tumors in DCE-MRI by studying a tumor’s most suspect region only? Proc. Of 26th IEEE Int. Symp. Comput. Med. Syst.: 77- 82 https://doi.org//10.1109/CBMS.2013.6627768
  • [35] Wang L, Platel B, Ivanovskaya T, Harz M, Hahn HK (2012) Fully automatic breast segmentation in 3D breast MRI. Proc. of Int. Symp. Biomed. Imaging :1024– 1027 https://doi.org/10.1109/ISBI.2012.6235732
  • [36] Nagarajan MB, Huber MB, Schlossbauer T, Leinsinger G, Krol A, Wismüller A (2012) Classification of Small Lesions in Breast MRI: Evaluating The Role of Dynamically Extracted Texture Features Through Feature Selection. J. Med. Biol. Eng.,33: 59–68 https://doi.org/10.5405/jmbe.1183
  • [37] Hassanien AE, Kim TH (2012) Breast cancer MRI diagnosis approach using support vector machine and pulse coupled neural networks. J. Appl. Log., 10: 277– 284, 2012d. https://doi.org/10.1016/j.jal.2012.07.003
  • [38] Fusco R, Sansone M, Petrillo A, Sansone C (2012) A multiple classifier system for classification of breast lesions using dynamic and morphological features in DCE-MRI. Lect. Notes Comput. Sci. 7626 LNCS: 684–692
  • [39] Vignati A, Giannini V, De Luca M, Voral L (2011) Performance of a fully automatic lesion detection system for breast DCE-MRI. J. Magn. Reson. Imaging 34:1341–1351, 2011 https://doi.org/10.1002/jmri.22680
  • [40] Kannan SR, Ramathilagam S, Devi R, Sathya A (2011) Robust kernel FCM in segmentation of breast medical images. Expert Syst. Appl. 38: 4382–4389 https://doi.org/10.1016/j.eswa.2010.09.107
  • [41] Agner SC, Soman S, Libfeld E, McDonald M (2011) Textural kinetics: A novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification J. Digit. Imaging. 24: 446–463, 2011 https://doi.org/10.1007/s10278-010-9298-1
  • [42] Giannini V, Vignati A, Morra L, Persano D (2010) A fully automatic algorithm for segmentation of the breasts in DCE-MR images. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC: 3146–3149 https://doi.org/10.1109/IEMBS.2010.5627191
  • [43] Lee SH, Kim JH, Cho N, Yang Z (2010) Multilevel analysis of spatiotemporal association features for differentiation of tumor enhancement patterns in breast DCE-MRI. Med. Phys. 37: 3940–3956, 2010. https://doi.org/10.1118/1.3446799
  • [44] Dyck DV, Backer SD, Juntu J, Sijbers J, Rajan J (2010) Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images. J. Magn. Reson. Imaging 31: 680–689, 2010. https://doi.org/10.1002/jmri.22095
  • [45] Newstead GM, Lan L, Giger ML, Li H, Jansen SA, Bhooshan N (2010) Cancerous Breast Lesions on Dynamic Contrast-enhanced MR Images: Computerized Characterization for Image-based Prognostic Markers. Radiology, 254 :680–690 https://doi.org/10.1148/radiol.09090838
  • [46] Manuscript A, Levman J, Leung T, Causer P, Martel AL (2010) Resonance Breast Lesions by Support Vector Machines. 27: 688–696, https://doi.org/10.1109/TMI.2008.916959
  • [47] Zheng Y, Englander S (2009) STEP: Spatiotemporal enhancement pattern for MR-based breast tumor diagnosis. Med. Phys. 36: 3192–3204 https://doi.org/10.1118/1.3151811
  • [48] Newell D, Nie K, Chen JH, Hsu CC (2009) Selection of diagnostic features on MRI to differentiate between malignant and benign lesions using computer-aided diagnosis: Differences in lesions presenting as mass and non-mass-like enhancement. Eur. Radiol., 20: 771–781, https://doi.org/10.1007/s00330-009-1616- y.
  • [49] McLaren CE, Chen WP, Nie K, Su MY (2009) Prediction of Malignant Breast Lesions from MRI Features: A Comparison of Artificial Neural Network. Acad Radiology 16: 842–851, 2009 https://doi.org/10.1016/j.acra.2009.01.029
  • [50] Lee SH, Kim JH, Park JS, Jung YS, Moon WK (2009) Characterizing timeintensity curves for spectral morphometric analysis of intratumoral enhancement patterns in breast DCE-MRI: Comparison between differentiation performance of temporal model parameters based on DFT AND SVD. IEEE Int. Symp. Biomed. Imaging from Nano to Macro, ISBI 2009: 65–68 https://doi.org/10.1109/ISBI.2009.5192984
  • [51] Furman-Haran E, Eyal E, Kirshenbaum KJ, Kelcz F, Degani H, Badikhi D (2009) Principal component analysis of breast DCE-MRI adjusted with a model-based method. J. Magn. Reson. Imaging 30: 989–998 https://doi.org/10.1002/jmri.21950
  • [52] Agner SC, Xu J, Fatakdavala H, Ganesan S (2009) Segmentation and classification of triple negative breast cancers using DCE-MRI. Proc. of 2009 IEEE Int. Symp. Biomed. Imaging from Nano to Macro, ISBI 2009: 1227–1230 https://doi.org/10.1109/ISBI.2009.5193283
  • [53] Twellmann T, Romeny BT (2008) Computer-aided classification of lesions by means of their kinetic signatures in dynamic contrast-enhanced MR images. Med. Imaging 2008 Comput. Diagnosis 6915.
  • [54] Mayerhoefer ME, Breitenseher M, Amann G, Dominkus M (2008) Are signal intensity and homogeneity useful parameters for distinguishing between benign and malignant soft tissue masses on MR images? Magn. Reson. Imaging 26: 1316– 1322, 2008. https://doi.org/ 10.1016/j.mri.2008.02.013
  • [55] Lee SH, Kim JH, Park JS, Chang CM (2008) Computerized segmentation and classification of breast lesions using perfusion volume fractions in dynamic contrastenhanced MRI. Biomed. Eng. Informatics New Dev. Futur. Proc. 1st Int. Conf. Biomed. Eng. Informatics, BMEI 2: 58–62, 2008. https://doi.org/10.1109/BMEI.2008.215
  • [56] Ertaş G, Gülçür HÖ, Osman O, Uçan ON, Tunaci M, Dursun M (2008) Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching. Comput. Biol. Med. 38: 116–126 https://doi.org/10.1016/j.compbiomed.2007.08.001
  • [57] Woods BJ, Clymer BD, Kurc T, Heverhagen JT (2007) Malignant-lesion segmentation using 4D co-occurrence texture analysis applied to dynamic contrastenhanced magnetic resonance breast image data. J. Magn. Reson. Imaging, 25: 495–501, 2007. https://doi.org/ 10.1002/jmri.20837
  • [58] Meinel LA, Stolpen AH, Berbaum KS, Fajardo LL, Reinhardt JM (2007) Breast MRI lesion classification: Improved performance of human readers with a backpropagation neural network computer-aided diagnosis (CAD) system. J. Magn. Reson. Imaging 25: 89–95 https://doi.org/10.1002/jmri.20794
  • [59] Khazen M, Leach MO, Hawkes DJ, Tanner C, Kessar P (2006) Does Registration Improve the Performance of a Computer Aided Diagnosis System for Dynamic Contrast-Enhanced MR Mammography? 3rd IEEE Int. Symp. Biomed. Imaging Nano to Macro: 466–469, https://doi.org/10.1109/ISBI.2006.1624954
  • [60] Leinsinger G, Schlossbauer T, Scherr M, Lange O, Reiser M, Wismüller A (2006) Cluster analysis of signal-intensity time course in dynamic breast MRI: Does unsupervised vector quantization help to evaluate small mammographic lesions? Eur. Radiol., 16: 1138–1146, https://doi.org/10.1007/s00330-005-0053-9
  • [61] Chen W, Giger ML, Bick U, Newstead GM (2006) Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI. Med. Phys. 33: 2878–2887 https://doi.org/10.1118/1.2210568
  • [62] Xiaohua C, Brady M, Lo JJ (2005) Simultaneous segmentation and registration of contrast-enhanced breast MRI. Information Processing in Medical Imaging, LNCS 3565: 31–59
  • [63] Arbach L, Stolpen A, Reinhardt JM (2004) Classification of breast MRI lesions using a backpropagation neural network (BNN). IEEE Int. Symp. Biomed. Imaging Nano to Macro (IEEE Cat No. 04EX821): 253–256 https://doi.org/10.1109/ISBI.2004.1398522
  • [64] Vomweg TW, Buscema M, Kauczor HU, Teifke A (2003) Improved artificial neural networks in prediction of malignancy of lesions in contrast-enhanced MRmammography. Med. Phys. 30: 2350–2359 https://doi.org/10.1118/1.1600871 [65] Tzacheva AA, Najarian K, Brockway JP (2003) Breast cancer detection in gadolinium-enhanced MR images by static region descriptors and neural networks. J. Magn. Reson. Imaging 17: 337–342 https://doi.org/10.1002/jmri.10259
  • [66] Lucht R, Delorme S, Brix G (2002) Neural network-based segmentation of dynamic MR mammographic images. Magnetic Res. Imaging 20: 147–154 https://doi.org/10.1016/S0730-725X(02)00464-2
  • [67] Abdolmaleki P, Buadu LD, Naderimansh H (2001) Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network. Cancer Lett., 171: 183–191. https://doi.org/10.1016/s0304- 3835(01)00508-0
  • [68] Vergnaghi D, Monti A, Setti E, Musumeci R (2001) A use of a neural network to evaluate contrast enhancement curves in breast magnetic resonance images. J. Digit. Imaging, 14:58-59 https://doi.org/10.1007/bf03190297.
  • [69] Haralick RM, Dinstein I, and Shanmugam K, “Textural Features for Image Classification,” IEEE Trans. Syst. Man Cybern., vol. SMC-3, no. 6, pp. 610–621, 1973.
  • [70] Fooladivanda A, Shokouhi SB, Ahmadinejad N, and Mosavi MR, “Automatic segmentation of breast and fibroglandular tissue in breast MRI using local adaptive thresholding,” 2014 21st Iran. Conf. Biomed. Eng. ICBME 2014, no. Icbme, pp. 195– 200, 2014.
  • [71] Pratt WK, Processing Digital Image Processing, vol. 5, no. 11. 2001.
  • [72] Renukalatha S and Suresh KV, “Automatic Roi Extraction in Noisy Medical Images,” ICTACT J. Image Video Process., vol. 7, no. 4, pp. 1505–1514, 2018.
  • [73] Gonzalez R and Woods R, Digital image processing. 2014.
  • [74] Gül S, Çetinel G, “Detection of Lesion Boundaries in Breast Magnetic Resonance Imaging with Otsu Thresholding and Fuzzy C-Means”, 3rd International Conference on Advanced Technology & Sciences (ICAT), 2017.
  • [75] Otsu N, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man. Cybern., vol. 9, no. 1, pp. 62–66, 1979.
  • [76] Norouzi N, “Medical image segmentation methods, algorithms, and applications,” IETE Tech. Rev., vol. 31, no. 3, pp. 199–213, 2014.
  • [77] Pham DL, Xu C, and Prince JL, “A survey of current methods in medical image segmentation,” Annu. Rev. Biomed. Eng., vol. 2, no. 315–337, pp. 315–337, 2000.
  • [78] Maintz T, “Chapter 10. Segmentation,” Digit. Med. Image Process., 2005.
  • [79] Deng H, Clausi DA, “Unsupervised image segmentation using a simple MRF model with a new implementation scheme”. Pattern Recognition, 37: 2323-2335. https://doi.org/10.1016/j.patcog.2004.04.015, 2004.
  • [80] Geman S, Geman D, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images”, IEEE Trans. Pattern Anal. Mach. Intell. 6 (6) 721– 741,1984.
  • [81] Kass M, Witkin A, Terzopoulos D, “Snakes: Active Contour Models”, International Journal of computer Visions, Vol1. 4, pp. 321-331, 1987.
  • [82] Gray SB, “Local Properties of Binary Images in Two Dimensions,” IEEE Trans. Comput., vol. C-20, no. 5, pp. 551–561, 1971.
  • [83] Surendiran B, and Vadivel A, “Mammogram mass classification using various geometric shape and margin features for early detection of breast cancer,” Int. J. Med. Eng. Inform., vol. 4, no. 1, p. 36, 2012.
  • [84] Yaşar H, and Ceylan M, Investigation of image representation and denoising performances of real and complex valued fast finite shearlet transform, Signal Processing and Communications Applications Conference (SIU), 2015 23th. IEEE, 2015.
  • [85] Guo K, Gitta K, Demetrio L, Sparse multidimensional representations using anisotropic dilation and shear operators, International Conference on the Interaction between Wavelets and Splines, 189201, 2005.
  • [86] Türkoğlu M and Hanbay D, “Plant recognition system based on extreme learning machine by using shearlet transform and new geometric features,” J. Fac. Eng. Archit. Gazi Univ., vol. 34, no. 4, pp. 2097–2112, 2019.
  • [87] Zhou S, Shi J, Zhu J, Cai Y, and Wang R, “Shearlet-based texture feature extraction for classification of breast tumor in ultrasound image,” Biomed. Signal Process. Control, vol. 8, no. 6, pp. 688–696, 2013.
  • [88] Chen YW, Lin CJ, “Combining SVMs with Various Feature Selection Strategies Studies in Fuzziness and Soft Computing” 207: 315-324, 2006.
  • [89] Evgeniou T, Pentil M, “Support vector machines: theory and applications”, Machine Learning and Its Applications Advanced Lectures, 249-257, 2001.
  • [90] Duda RO, Hart PE, Stark DG, “Pattern Classification”, Second Edition, New York, USA, 2001.
  • [91] Chunninghan P, Delany SJ, “k-Nearest neighbor classifiers” Technical Report UCD-CSI-2007-4, 2007.
  • [92] Haykin S, “Neural Networks and Learning Machines”, Upper Saddle River, New Jersey, 2009.
  • [93] Bishop CM, “Pattern Recognition and Machine Learning”, New York, USA, 2006.
  • [94] Vaithinathan K, Parthiban L, “A Novel Texture Extraction Technique with T1 Weighted MRI for the Classification of Alzheimer’s Disease”, Journal of Neuroscience Methods, vol no 318, pp. 84-99, 2019.
  • [95] Piantadosi G, Marrone S, Fusco R, Sansone M, Sansone C “Comprehensive computer-aided diagnosis for breast T1-weighted DCE-MRI through quantitative dynamical features and spatio-temporal local binary patterns.”, IET Comput. Vis.12: 1007–1017, 2018.
APA ÇETİNEL G, AYGÜN F (2019). Meme Manyetik Rezonans Görüntülemede (MRG) Lezyon Tespiti, Yalancı Pozitif Ve Yalancı Negatif Bulguların Azaltılmasına Yönelik Yazılım Geliştirilmesi. , 1 - 113.
Chicago ÇETİNEL Gökçen,AYGÜN Fuldem Mutlu Meme Manyetik Rezonans Görüntülemede (MRG) Lezyon Tespiti, Yalancı Pozitif Ve Yalancı Negatif Bulguların Azaltılmasına Yönelik Yazılım Geliştirilmesi. (2019): 1 - 113.
MLA ÇETİNEL Gökçen,AYGÜN Fuldem Mutlu Meme Manyetik Rezonans Görüntülemede (MRG) Lezyon Tespiti, Yalancı Pozitif Ve Yalancı Negatif Bulguların Azaltılmasına Yönelik Yazılım Geliştirilmesi. , 2019, ss.1 - 113.
AMA ÇETİNEL G,AYGÜN F Meme Manyetik Rezonans Görüntülemede (MRG) Lezyon Tespiti, Yalancı Pozitif Ve Yalancı Negatif Bulguların Azaltılmasına Yönelik Yazılım Geliştirilmesi. . 2019; 1 - 113.
Vancouver ÇETİNEL G,AYGÜN F Meme Manyetik Rezonans Görüntülemede (MRG) Lezyon Tespiti, Yalancı Pozitif Ve Yalancı Negatif Bulguların Azaltılmasına Yönelik Yazılım Geliştirilmesi. . 2019; 1 - 113.
IEEE ÇETİNEL G,AYGÜN F "Meme Manyetik Rezonans Görüntülemede (MRG) Lezyon Tespiti, Yalancı Pozitif Ve Yalancı Negatif Bulguların Azaltılmasına Yönelik Yazılım Geliştirilmesi." , ss.1 - 113, 2019.
ISNAD ÇETİNEL, Gökçen - AYGÜN, Fuldem Mutlu. "Meme Manyetik Rezonans Görüntülemede (MRG) Lezyon Tespiti, Yalancı Pozitif Ve Yalancı Negatif Bulguların Azaltılmasına Yönelik Yazılım Geliştirilmesi". (2019), 1-113.
APA ÇETİNEL G, AYGÜN F (2019). Meme Manyetik Rezonans Görüntülemede (MRG) Lezyon Tespiti, Yalancı Pozitif Ve Yalancı Negatif Bulguların Azaltılmasına Yönelik Yazılım Geliştirilmesi. , 1 - 113.
Chicago ÇETİNEL Gökçen,AYGÜN Fuldem Mutlu Meme Manyetik Rezonans Görüntülemede (MRG) Lezyon Tespiti, Yalancı Pozitif Ve Yalancı Negatif Bulguların Azaltılmasına Yönelik Yazılım Geliştirilmesi. (2019): 1 - 113.
MLA ÇETİNEL Gökçen,AYGÜN Fuldem Mutlu Meme Manyetik Rezonans Görüntülemede (MRG) Lezyon Tespiti, Yalancı Pozitif Ve Yalancı Negatif Bulguların Azaltılmasına Yönelik Yazılım Geliştirilmesi. , 2019, ss.1 - 113.
AMA ÇETİNEL G,AYGÜN F Meme Manyetik Rezonans Görüntülemede (MRG) Lezyon Tespiti, Yalancı Pozitif Ve Yalancı Negatif Bulguların Azaltılmasına Yönelik Yazılım Geliştirilmesi. . 2019; 1 - 113.
Vancouver ÇETİNEL G,AYGÜN F Meme Manyetik Rezonans Görüntülemede (MRG) Lezyon Tespiti, Yalancı Pozitif Ve Yalancı Negatif Bulguların Azaltılmasına Yönelik Yazılım Geliştirilmesi. . 2019; 1 - 113.
IEEE ÇETİNEL G,AYGÜN F "Meme Manyetik Rezonans Görüntülemede (MRG) Lezyon Tespiti, Yalancı Pozitif Ve Yalancı Negatif Bulguların Azaltılmasına Yönelik Yazılım Geliştirilmesi." , ss.1 - 113, 2019.
ISNAD ÇETİNEL, Gökçen - AYGÜN, Fuldem Mutlu. "Meme Manyetik Rezonans Görüntülemede (MRG) Lezyon Tespiti, Yalancı Pozitif Ve Yalancı Negatif Bulguların Azaltılmasına Yönelik Yazılım Geliştirilmesi". (2019), 1-113.