19 15

Proje Grubu: MAG Sayfa Sayısı: 158 Proje No: 115M363 Proje Bitiş Tarihi: 15.05.2018 Metin Dili: Türkçe İndeks Tarihi: 22-03-2020

Depreme Duyarlı Yapıların Yarı-Aktif Manyeto-Reolojik Damperler ile Kontrolü

Öz:
Bu projede ülkemiz yapı stogunu temsil eden 5-8 katlı yapıların deprem güvenilirligini artırmak üzere yapı kontrolünü saglayacak ekonomik ve etkili bir deprem sönümleyici sisteminin tasarımı, optimizasyonu ve degisik deprem yükleri etkisi altındaki testleri gerçeklestirilmistir. Seçilen gerçek yapılarla aynı dinamik karakteristiklere sahip ölçeklenmis çelik yapı modellerinin, altı serbestlik dereceli sarsma tablası ile gerçek deprem verileri kullanılarak dinamik deneyleri yapılmıstır. Proje kapsamında kullanılan titresim sönümleyiciler manyeto-reolojik (MR) sıvılı yarı-aktif damperlerdir. Çift milli ve tek milli olmak üzere iki farklı tipte MR damperlerin optimum tasarımı, analizi ve imalatı gerçeklestirilmis, bu damperlerde dünya çapında yaygın olarak kullanılan ticari bir MR sıvı kullanılmasının yanında, proje kapsamında gelistirilen ve karakterizasyonu tanımlanmıs olan özgün bir sıvı da kullanılmıstır. Performans ölçümleri yapılan biri ticari olmak üzere dört farklı MR damperin etkinligi, sarsma tablası üzerine yerlestirilen model yapılarda El-Centro ve Kocaeli deprem yükleri etkisi altında incelenmistir. MR damperin kontrolü üç farklı kontrol algoritması kullanılarak yapılmıs ve her bir kontrol algoritmasının performansı degerlendirilmistir. Ayrıca MR damperlerin dinamik karakterizasyonunda bugüne kadar literatürde pek dikkate alınmayan sıcaklık etkileri de kontrol algoritmalarına dahil edilerek MR damper performansı sıcaklıga adaptif hale getirilmistir. MR damperlerin tasarımı, manyetik alan etkilesimli akıs alanı çözümüne dayalı optimizasyonu, alternatif bir yerli MR sıvı üretimi, Türkiye?deki yapı stogunun dinamik karakteristiklerini yansıtan ölçeklenmis çelik yapı modellerinin tasarımı ve kullanımı, sıcaklık etkilerinin dahil edildigi farklı kontrol algoritmalarının uygulanması bu projenin öne çıkan özgün yönleridir. Bu proje sonucunda, aktif deprem kusagı üzerinde bulunan ülkemizde depremin yıkıcı etkilerine karsı gerçek yapılarda uygulanabilecek ve ticarilestirme potansiyeli (Teknoloji Hazırlık Seviyesi en az 6) yüksek olan bir ürün, kontrol algoritmalarıyla beraber özgün olarak gelistirilmistir. Önerilen entegre sistem ile depremin yıkıcı etkilerinin kontrolcüsüz duruma göre %67?ye varan oranlarda azaltılabilecegi ve böylelikle can ve mal kayıplarının önüne geçilebilecegi gösterilmistir.
Anahtar Kelime: Sarsma tablası Kontrol algoritmaları HAD optimizayon MR damper MR sıvı Yapı güvenligi Deprem

Konular: İnşaat Mühendisliği Malzeme Bilimleri, Özellik ve Test İnşaat ve Yapı Teknolojisi
Erişim Türü: Erişime Açık
  • Ahamed, R., Rashid, M. M., Ferdaus, M. M., & Yusof, H. M. (2016). Design and modeling of energy generated magneto rheological damper. Korea-Australia Rheology Journal, 28(1), 67- 74.
  • Coupled Magnetic And CFD Modelling of a Structural Magnetorheological Vibration Absorber with Experimental Validation (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Aldemir, Ü., & Aydın, E. (2005). Depreme dayanıklı yapı tasarımında yeni yaklaşımlar. Türkiye Mühendislik Haberleri, 435(1), 81-89.
  • Aldemir, Ü., & Bakioğlu, M. (2000). Semiactive control of earthquake-excited structures. Turkish Journal of Engineering and Environmental Sciences, 24(4), 237-246.
  • Amini, F., Hazaveh, N. K., & Rad, A. A. (2013). Wavelet PSO‐based LQR algorithm for optimal structural control using active tuned mass dampers. Computer‐Aided Civil and Infrastructure Engineering, 28(7), 542-557.
  • Amini, F., Mohajeri, S. A., & Javanbakht, M. (2015). Semi-active control of isolated and damaged structures using online damage detection. Smart Materials and Structures, 24(10), 105002.
  • ANSYS Documentation (2016) ANSYS FLUENT Theory Guide. ANSYS Help.
  • Arsava, K. S., Kim, Y., Kim, K. H., & Shin, B. S. (2015). Smart fuzzy control of reinforced concrete structures excited by collision-type forces. Expert Systems with Applications, 42(21), 7929-7941.
  • Askari, M., Li, J., & Samali, B. (2016). Cost-effective multi-objective optimal positioning of magnetorheological dampers and active actuators in large nonlinear structures. Journal of Intelligent Material Systems and Structures, 28(2),230-253.
  • Askari, M., Li, J., & Samali, B. (2016b). Semi-active control of smart building-MR damper systems using novel TSK-Inv and max-min algorithms. Smart Structures and Systems, 18(5), 1005-1028.
  • Askari, M., Li, J., Samali, B., & Gu, X. (2016c). Experimental forward and inverse modelling of magnetorheological dampers using an optimal Takagi–Sugeno–Kang fuzzy scheme. Journal of Intelligent Material Systems and Structures, 27(7), 904-914.
  • Azraai, M. R., Priyandoko, G., Yusoff, A. R., & Rashid, M. F. F. A. (2015). Parametric Optimization of magneto-rheological fluid damper using particle swarm optimization. International Journal of Automotive and Mechanical Engineering, 11, 2591.
  • Bai, J. W., & Cha, Y. J. (2016). Seismic Fragility Analysis for Semi-Actively Controlled Structures Using MR Dampers. In Geotechnical and Structural Engineering Congress 2016 (pp. 1343-1353).
  • Barbat, A. H., Rodellar, J., Ryan, E. P., & Molinares, N. (1995). Active control of nonlinear base-isolated buildings. Journal of Engineering Mechanics, 121(6), 676-684.
  • Basili, M., De Angelis, M., & Fraraccio, G. (2013). Shaking table experimentation on adjacent structures controlled by passive and semi-active MR dampers. Journal of Sound and Vibration, 332(13), 3113-3133.
  • Beard, A. M., Schubert, D. W., & von Flotow, A. H. (1994, October). Practical product implementation of an active/passive vibration isolation system. In Vibration Monitoring and Control(Vol. 2264, pp. 38-50). International Society for Optics and Photonics.
  • Bhardwaj, M. K., & Datta, T. K. (2006). Semiactive fuzzy control of the seismic response of building frames. Journal of Structural Engineering, 132(5), 791-799.
  • Bitaraf, M., Hurlebaus, S., & Barroso, L. R. (2012). Active and semi‐active adaptive control for undamaged and damaged building structures under seismic load. Computer‐Aided Civil and Infrastructure Engineering, 27(1), 48-64.
  • Caicedo, J. M., Jiang, Z., & Baxter, S. C. (2016). Including Uncertainty in Modeling the Dynamic Response of a Large-Scale 200 kN Magneto-Rheological Damper. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 3(2), G4016002.
  • Casciati, S., & Chen, Z. (2012). An active mass damper system for structural control using real‐time wireless sensors. Structural Control and Health Monitoring, 19(8), 758-767.
  • Cetin, S., Zergeroglu, E., Sivrioglu, S., & Yuksek, I. (2011). A new semiactive nonlinear adaptive controller for structures using MR damper: design and experimental validation. Nonlinear Dynamics, 66(4), 731-743.
  • Cha, Y. J., Agrawal, A. K., Phillips, B. M., & Spencer Jr, B. F. (2014). Direct performancebased design with 200 kN MR dampers using multi-objective cost effective optimization for steel MRFs. Engineering Structures, 71, 60-72.
  • Chae, Y., Ricles, J. M., & Sause, R. (2012). Large-scale experimental studies of structural control algorithms for structures with magnetorheological dampers using real-time hybrid simulation. Journal of Structural Engineering, 139(7), 1215-1226.
  • Chae, Y., Ricles, J. M., & Sause, R. (2014). Large‐scale real‐time hybrid simulation of a threestory steel frame building with magneto‐rheological dampers. Earthquake Engineering & Structural Dynamics, 43(13), 1915-1933.
  • Chang, C. M., Strano, S., & Terzo, M. (2016). Modelling of hysteresis in vibration control systems by means of the Bouc-Wen model. Shock and Vibration, 2016.
  • Chen, P., Bai, X. X., & Qian, L. J. (2016). Magnetorheological fluid behavior in high-frequency oscillatory squeeze mode: Experimental tests and modelling. Journal of Applied Physics, 119(10), 105101.
  • Cho, S. W., Jung, H. J., & Lee, I. W. (2005). Smart passive system based on magnetorheological damper. Smart Materials and Structures, 14(4), 707.
  • Choi, Y. T., & Wereley, N. M. (2009). Self-powered magnetorheological dampers. Journal of Vibration and Acoustics, 131(4), 044501.
  • Çetin, Ş., Sivrioǧlu, S., Zergeroǧlu, E. and Yüksek, I. (2011) Semi-active H∞ robust control of six degree of freedom structural system using MR damper. Turkish J. Electr. Eng. Comput. Sci., vol. 19, no. 5, pp. 797–805.
  • Fu, T. S., & Johnson, E. A. (2014). Structural health monitoring with a distributed mass damper system. Structural Control and Health Monitoring, 21(2), 189-204.
  • Ghaboussi, J., & Joghataie, A. (1995). Active control of structures using neural networks. Journal of Engineering Mechanics, 121(4), 555-567.
  • Ghaffari, A., Hashemabadi, S. H., & Ashtiani, M. (2015). A review on the simulation and modeling of magnetorheological fluids. Journal of Intelligent Material Systems and Structures, 26(8), 881-904.
  • Gołdasz, J., & Sapiński, B. (2015). Experimental Verification of an MR Monotube Damper Model. In Insight into Magnetorheological Shock Absorbers (pp. 145-171). Springer, Cham.
  • Gołdasz, J., & Sapiński, B. (2015). Insight into magnetorheological shock absorbers. Cham: Springer International Publishing.
  • Gu, Z. Q., & Oyadiji, S. O. (2008). Application of MR damper in structural control using ANFIS method. Computers & structures, 86(3-5), 427-436.
  • Guan, X. C., Guo, P. F., & Ou, J. P. (2011). Modeling and analyzing of hysteresis behavior of magneto rheological dampers. Procedia Engineering, 14, 2756-2764.
  • Ha, Q. P., Royel, S., Li, J., & Li, Y. (2016). Hysteresis modeling of smart structure MR devices using describing functions. IEEE/ASME Transactions on Mechatronics, 21(1), 44-50.
  • Heo, G., Jeon, J., & Jeon, S. (2016). Real-time Semi-active Vibration Control in Cable-stayed Bridges by Shear-type MR damper and Clipped-optimal Control Algorithm. Journal of the Earthquake Engineering Society of Korea, 20(2), 113-123.
  • Heo, G., Jeon, S., Jeon, J., Lee, C., & Seo, S. (2016). Calculating a MR Dampers Optimal Capacity for a Control of Structural Vibration. Journal of the Earthquake Engineering Society of Korea, 20(3), 163-169.
  • Hitchcock, G. H., Wang, X., & Gordaninejad, F. (2007). A new bypass magnetorheological fluid damper. Journal of Vibration and Acoustics, 129(5), 641-647.
  • Housner, G. W., Bergman, L. A., Caughey, T. K., Chassiakos, A. G., Claus, R. O., Masri, S. F., ... & Yao, J. T. (1997). Structural control: past, present, and future. Journal of engineering mechanics, 123(9), 897-971.
  • Hu, G., Liu, F., Xie, Z., & Xu, M. (2016). Design, analysis, and experimental evaluation of a double coil magnetorheological fluid damper. Shock and Vibration, 2016. Hu, W., Chang, T., Fu, L., & Xi, J. (2016, May). The establishment of dynamic model that based on magnetorheological damper. In Control and Decision Conference (CCDC), 2016 Chinese (pp. 349-354). IEEE.
  • Jancirani, J., Nanthakumar, A. J. D., & Niketh, P. (2015). Optimal current value estimation for an automotive Magneto Rheological (MR) fluid damper actuation. In Applied Mechanics and Materials(Vol. 812, pp. 93-101). Trans Tech Publications.
  • Kasai, K., & Matsuda, K. (2014). Full-scale dynamic testing of response-controlled buildings and their components: concepts, methods, and findings. Earthquake Engineering and Engineering Vibration, 13(1), 167-181.
  • Kim, Y., Kim, Y. H., & Lee, S. (2015). Multivariable nonlinear identification of smart buildings. Mechanical Systems and Signal Processing, 62, 254-271.
  • Korkmaz, S. (2011). A review of active structural control: challenges for engineering informatics. Computers & Structures, 89(23-24), 2113-2132.
  • Krishna, H., Kumar, H., & Gangadharan, K. (2017). Optimization of magneto-rheological damper for maximizing magnetic flux density in the fluid flow gap through FEA and GA approaches. Journal of The Institution of Engineers (India): Series C, 98(4), 533-539.
  • Lee, H. J., Jung, H. J., Moon, S. J., Lee, S. K., Park, E. C., & Min, K. W. (2010). Experimental investigation of MR damper-based semiactive control algorithms for full-scale five-story steel frame building. Journal of Intelligent Material Systems and Structures, 21(10), 1025-1037.
  • Lei, Y., Wu, D. T., & Lin, S. Z. (2013). Integration of decentralized structural control and the identification of unknown inputs for tall shear building models under unknown earthquake excitation. Engineering Structures, 52, 306-316.
  • Li, X., & Guo, L. (2015). Research on the Application of Neural net in the Civil Engineering Semi-active Control. 3rd International Conference on Management, Education, Information and Control, 1515-1521.
  • Li, X., Liang, X., He, F., Guo, W., & Wang, W. (2015, March). Magnetic Design and Simulation Analysis of Magneto-rheological Damper. In 2015 International Industrial Informatics and Computer Engineering Conference, Atlantis Press.
  • Li, Z. X., Chen, Y., & Shi, Y. D. (2016). Seismic damage control of nonlinear continuous reinforced concrete bridges under extreme earthquakes using MR dampers. Soil Dynamics and Earthquake Engineering, 88, 386-398.
  • Li, Z. X., Lv, Y., Xu, L. H., Ding, Y., & Zhao, Q. (2013). Experimental studies on nonlinear seismic control of a steel–concrete hybrid structure using MR dampers. Engineering Structures, 49, 248-263..
  • Londoño, J. M., Neild, S. A., & Wagg, D. J. (2015). Using a damper amplification factor to increase energy dissipation in structures. Engineering Structures, 84, 162-171.
  • Lord Technical Data (2011) MRF-132DG Magneto-Rheological Fluid. Available at: http://www.lordmrstore.com/_literature_231215/Data_Sheet_-_MRF-132DG_Magneto- Rheological_Fluid, (accessed 2 June 2018).
  • Marshall, J. D., & Charney, F. A. (2012). Seismic response of steel frame structures with hybrid passive control systems. Earthquake Engineering & Structural Dynamics, 41(4), 715-733.
  • Martinelli, P., & Mulas, M. G. (2010). An innovative passive control technique for industrial precast frames. Engineering Structures, 32(4), 1123-1132.
  • Martínez, C. A., Curadelli, O., & Compagnoni, M. E. (2013). Optimal design of passive viscous damping systems for buildings under seismic excitation. Journal of Constructional Steel Research, 90, 253-264.
  • Matsuoka, T., Yamano, S., Hiramoto, K., Sunakoda, K., Abe, N., & Lin, P. Y. (2015, July). Inertia Damper Using MR Fluid With Spiraled By-Pass Pipe. In ASME 2015 Pressure Vessels and Piping Conference (pp. V008T08A036-V008T08A036). American Society of Mechanical Engineers.
  • Matsuoka, T., Yamano, S., Hiramoto, K., Sunakoda, K., Abe, N., & Lin, P. Y. (2015, July). Inertia Damper Using MR Fluid With Spiraled By-Pass Pipe. In ASME 2015 Pressure Vessels and Piping Conference (pp. V008T08A036-V008T08A036). American Society of Mechanical Engineers.
  • Mevada, S. V., & Jangid, R. S. (2015). Seismic response of torsionally coupled building with passive and semi-active stiffness dampers. International Journal of Advanced Structural Engineering (IJASE), 7(1), 31-48.
  • Mohammadzadeh, S., & Kim, Y. (2015). PCA-based neuro-fuzzy model for system identification of smart structures. Smart Structures and Systems, 15(4), 1139-1158.
  • Morales-Beltran, M., & Paul, J. (2015). Active and Semi-Active Strategies to Control Building Structures Under Large Earthquake Motion. Journal of Earthquake Engineering, 19(7), 1086- 1111.
  • Motahari, S. A., Ghassemieh, M., & Abolmaali, S. A. (2007). Implementation of shape memory alloy dampers for passive control of structures subjected to seismic excitations. Journal of Constructional Steel Research, 63(12), 1570-1579.
  • Mualla, I. H., & Belev, B. (2002). Performance of steel frames with a new friction damper device under earthquake excitation. Engineering Structures, 24(3), 365-371.
  • Ohtori, Y., Christenson, R. E., Spencer Jr, B. F., & Dyke, S. J. (2004). Benchmark control problems for seismically excited nonlinear buildings. Journal of Engineering Mechanics, 130(4), 366-385.
  • Oliveira, F., de Morais, P. G., & Suleman, A. (2015). Semi-active control of base-isolated structures. Procedia Engineering, 114, 401-409.
  • Parlak, Z. (2010). Manyeto-Reolojik Sıvılı Yarı-Aktif Bir Sönümleyici Tasarımı Ve Analizi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Doktora tezi, Sakarya.
  • Patrascu, M. (2015). Genetically enhanced modal controller design for seismic vibration in nonlinear multi-damper configuration. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 229(2), 158-168.
  • Peng, Y., Yang, J., & Li, J. (2016). Seismic risk–based stochastic optimal control of structures using magnetorheological dampers. Natural Hazards Review, 18(1), B4016001.
  • Raizada, A., Singru, P., Krishnakumar, V., & Raj, V. (2016). Development of an experimental model for a magnetorheological damper using artificial neural networks (Levenberg-Marquardt Algorithm). Advances in Acoustics and Vibration, 2016.
  • Raut, B. R., & Jangid, R. S. (2014). Seismic analysis of benchmark building installed with friction dampers. The IES Journal Part A: Civil & Structural Engineering, 7(1), 20-37.
  • Ribakov, Y., & Agranovich, G. (2015). Using a limited set of MR dampers for improving structural seismic response. Structural Control and Health Monitoring, 22(4), 615-630.
  • Şirin, S. and Boduroğlu, H. (2010) Sürtünme sönümlü elemanlı betonarme sistemlerin sismik performansı. İTÜ dergisi, no. 9, pp. 169–177.
  • Saglam, C. O., Baran, E. A., Nergiz, A. O., & Sabanovic, A. (2011, April). Model following control with discrete time SMC for time-delayed bilateral control systems. In Mechatronics (ICM), 2011 IEEE International Conference on (pp. 997-1002). IEEE.
  • Seo, C. Y., Karavasilis, T. L., Ricles, J. M., & Sause, R. (2014). Seismic performance and probabilistic collapse resistance assessment of steel moment resisting frames with fluid viscous dampers. Earthquake Engineering & Structural Dynamics, 43(14), 2135-2154.
  • Shen, W., Zhu, S., Zhu, H., & Xu, Y. L. (2016). Electromagnetic energy harvesting from structural vibrations during earthquakes. Smart Struct. Syst, 18(3), 449-470.
  • Shiao, Y. J., Jow, M. L., Kuo, W. H., Nguyen, Q. A., & Lai, C. W. (2015). Design and experiment of the magnetorheological damper with multiple poles. In Applied Mechanics and Materials(Vol. 764, pp. 223-227). Trans Tech Publications.
  • Shrimali, M. K., Bharti, S. D., & Dumne, S. M. (2015). Seismic response analysis of coupled building involving MR damper and elastomeric base isolation. Ain Shams Engineering Journal, 6(2), 457-470.
  • Susan-Resiga, D. (2009). A rheological model for magneto-rheological fluids. Journal of Intelligent Material Systems and Structures, 20(8), 1001-1010.
  • Symans, M. D., & Constantinou, M. C. (1999). Semi-active control systems for seismic protection of structures: a state-of-the-art review. Engineering structures, 21(6), 469-487.
  • Şahin, İ., Öz, H. R., Engin T., İlhan, A. and Akpolat, A. (2005). Manyetik Sıvılı Damperlerin Yapısal Analizi. Mühendis ve Makina, 46(551), 41–49.
  • Takin, K., Hashemi, B. H., & Nekooei, M. (2015). Response Controlling of Corner Lateral Displacements of Structures due to Time-Varying Torsion by using MR Damper. Indian Journal of Science and Technology, 8(22).
  • Thirupathi, P., Janaki Ramulu, P., Venukumar, S., Saikiran Reddy, P., Krishna Reddy, B., & Battacharya, S. (2015). Experimental Analysis of MR Fluid by Magneto-Rheological (MR) Damper. In Applied Mechanics and Materials (Vol. 813, pp. 1002-1006). Trans Tech Publications.
  • Uppatthangkul, Y., & Ohmori, H. (2015, May). Optimizing vehicle MR damper semi-active suspension control system by L 1 adaptive control with linear time invariant controller. In Control Conference (ASCC), 2015 10th Asian (pp. 1-6). IEEE.
  • Uz, M. E., & Hadi, M. N. (2014). Optimal design of semi active control for adjacent buildings connected by MR damper based on integrated fuzzy logic and multi-objective genetic algorithm. Engineering Structures, 69, 135-148.
  • Vadtala, I. H., Soni, D. P., & Panchal, D. G. (2013). Semi-active control of a benchmark building using neuro-inverse dynamics of MR damper. Procedia Engineering, 51, 45-54.
  • Velinsky, S. A., & White, R. A. (1980). Vehicle energy dissipation due to road roughness. Vehicle System Dynamics, 9(6), 359-384.
  • Xu, B., He, J., & Masri, S. F. (2015). Data‐based model‐free hysteretic restoring force and mass identification for dynamic systems. Computer‐Aided Civil and Infrastructure Engineering, 30(1), 2-18.
  • Xu, F. H., Xu, Z. D., Zhang, X. C., Guo, Y. Q., & Lu, Y. (2016). A compact experimentally validated model of magnetorheological fluids. Journal of Vibration and Acoustics, 138(1), 011017.
  • Xu, L. H., Li, Z. X., & Lv, Y. (2013). Numerical study on nonlinear semiactive control of steelconcrete hybrid structures using MR dampers. Mathematical Problems in Engineering, 2013.
  • Xu, Z. D., Shen, Y. P., & Guo, Y. Q. (2003). Semi-active control of structures incorporated with magnetorheological dampers using neural networks. Smart materials and structures, 12(1), 80.
  • Yang, M. G., & Cai, C. S. (2016). Longitudinal vibration control for a suspension bridge subjected to vehicle braking forces and earthquake excitations based on magnetorheological dampers. Journal of Vibration and Control, 22(17), 3659-3678.
  • Yang, Z., Xu, Y. L., & Lu, X. L. (2003). Experimental seismic study of adjacent buildings with fluid dampers. Journal of Structural Engineering, 129(2), 197-205.
  • Yu, G., Du, C., & Sun, T. (2015). Thermodynamic behaviors of a kind of self-decoupling magnetorheological damper. Shock and Vibration, 2015.
  • Zhang, Y., & Zhu, S. (2008). Seismic response control of building structures with superelastic shape memory alloy wire dampers. Journal of engineering mechanics, 134(3), 240-251.
  • Zheng, J., Li, Y., & Wang, J. (2017). Design and multi-physics optimization of a novel magnetorheological damper with a variable resistance gap. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(17), 3152- 3168.
  • Zheng, J., Li, Y., Li, Z., & Wang, J. (2015). Transient multi-physics analysis of a magnetorheological shock absorber with the inverse Jiles–Atherton hysteresis model. Smart Materials and Structures, 24(10), 105024.
  • Zheng, J., Li, Z., Koo, J. H., & Wang, J. (2015). Analysis and compensation methods for time delays in an impact buffer system based on magnetorheological dampers. Journal of Intelligent Material Systems and Structures, 26(6), 690-700.
  • Zhu, X., Jing, X., & Cheng, L. (2012). Magnetorheological fluid dampers: A review on structure design and analysis. Journal of Intelligent Material Systems and Structures, 23(8), 839-873.
  • Zhu, X., Wang, W., Yao, B., Cao, J., & Wang, Q. (2015, July). Analytical modeling and optimal design of a MR damper with power generation. In Advanced Intelligent Mechatronics (AIM), 2015 IEEE International Conference on (pp. 1531-1536). IEEE.
APA ENGİN T, Parlak Z, sahin i, GENÇ S, Turan G, ÇAĞLAR N (2018). Depreme Duyarlı Yapıların Yarı-Aktif Manyeto-Reolojik Damperler ile Kontrolü. , 1 - 158.
Chicago ENGİN Tahsin,Parlak Zekeriya,sahin ismail,GENÇ SEVAL,Turan Gürsoy,ÇAĞLAR Naci Depreme Duyarlı Yapıların Yarı-Aktif Manyeto-Reolojik Damperler ile Kontrolü. (2018): 1 - 158.
MLA ENGİN Tahsin,Parlak Zekeriya,sahin ismail,GENÇ SEVAL,Turan Gürsoy,ÇAĞLAR Naci Depreme Duyarlı Yapıların Yarı-Aktif Manyeto-Reolojik Damperler ile Kontrolü. , 2018, ss.1 - 158.
AMA ENGİN T,Parlak Z,sahin i,GENÇ S,Turan G,ÇAĞLAR N Depreme Duyarlı Yapıların Yarı-Aktif Manyeto-Reolojik Damperler ile Kontrolü. . 2018; 1 - 158.
Vancouver ENGİN T,Parlak Z,sahin i,GENÇ S,Turan G,ÇAĞLAR N Depreme Duyarlı Yapıların Yarı-Aktif Manyeto-Reolojik Damperler ile Kontrolü. . 2018; 1 - 158.
IEEE ENGİN T,Parlak Z,sahin i,GENÇ S,Turan G,ÇAĞLAR N "Depreme Duyarlı Yapıların Yarı-Aktif Manyeto-Reolojik Damperler ile Kontrolü." , ss.1 - 158, 2018.
ISNAD ENGİN, Tahsin vd. "Depreme Duyarlı Yapıların Yarı-Aktif Manyeto-Reolojik Damperler ile Kontrolü". (2018), 1-158.
APA ENGİN T, Parlak Z, sahin i, GENÇ S, Turan G, ÇAĞLAR N (2018). Depreme Duyarlı Yapıların Yarı-Aktif Manyeto-Reolojik Damperler ile Kontrolü. , 1 - 158.
Chicago ENGİN Tahsin,Parlak Zekeriya,sahin ismail,GENÇ SEVAL,Turan Gürsoy,ÇAĞLAR Naci Depreme Duyarlı Yapıların Yarı-Aktif Manyeto-Reolojik Damperler ile Kontrolü. (2018): 1 - 158.
MLA ENGİN Tahsin,Parlak Zekeriya,sahin ismail,GENÇ SEVAL,Turan Gürsoy,ÇAĞLAR Naci Depreme Duyarlı Yapıların Yarı-Aktif Manyeto-Reolojik Damperler ile Kontrolü. , 2018, ss.1 - 158.
AMA ENGİN T,Parlak Z,sahin i,GENÇ S,Turan G,ÇAĞLAR N Depreme Duyarlı Yapıların Yarı-Aktif Manyeto-Reolojik Damperler ile Kontrolü. . 2018; 1 - 158.
Vancouver ENGİN T,Parlak Z,sahin i,GENÇ S,Turan G,ÇAĞLAR N Depreme Duyarlı Yapıların Yarı-Aktif Manyeto-Reolojik Damperler ile Kontrolü. . 2018; 1 - 158.
IEEE ENGİN T,Parlak Z,sahin i,GENÇ S,Turan G,ÇAĞLAR N "Depreme Duyarlı Yapıların Yarı-Aktif Manyeto-Reolojik Damperler ile Kontrolü." , ss.1 - 158, 2018.
ISNAD ENGİN, Tahsin vd. "Depreme Duyarlı Yapıların Yarı-Aktif Manyeto-Reolojik Damperler ile Kontrolü". (2018), 1-158.