Yeni 6-metilpiridin-2-karboksilik Asit İçeren Karışık Ligantlı Farklı Metal Komplekslerin Sentezi, Yapılarının Detaylı Analizi ve α-Glukozidaz Enzim İnhibisyonunun in vitro İncelenmesi

27 0

Proje Grubu: MFAG Sayfa Sayısı: 0 Proje No: 117F234 Proje Bitiş Tarihi: 01.01.2019 Metin Dili: Türkçe İndeks Tarihi: 18-03-2020

Yeni 6-metilpiridin-2-karboksilik Asit İçeren Karışık Ligantlı Farklı Metal Komplekslerin Sentezi, Yapılarının Detaylı Analizi ve α-Glukozidaz Enzim İnhibisyonunun in vitro İncelenmesi

Öz:
Bu projenin amacı, yeni 6-metilpiridin-2-karboksilik asit içeren karışık ligantlı farklı metal komplekslerinin sentezi, deneysel ve kuramsal olarak yapılarının belirlenmesi ve bu komplekslerin antidiyabetik özelliklerinin alfa-glukozidaz enzim aktivite yöntemiyle araştırılmasıdır. Bu proje kapsamında, daha önce sentezlenmemiş olan 6-metilpiridin-2-karboksilik asit (6- mpa) içeren karışık ligantlı farklı metal kompleksleri sentezlenerek elde edilen komplekslerin antidiyabetik özellikleri alfa-glukozidaz enzimi üzerine etkileri incelenerek araştırılmıştır. Yapılan sentez çalışmaları sonucunda, 30 adet yeni kompleks yapıdan 12 tanesi tek kristal yapı olarak elde edilmiştir. Ayrıca, daha önce literatürde olmayan 6-mpa?nın kendisi ile Mn, Hg, Cr ve Fe?li metal kompleksleri ve 3-metilpiridin-2-karboksilik asit (3-mpa) içeren Co, Cr, V ve Fe metal kompleksleri sentezlenmiştir. Bu proje kapsamında, toplamda 40 adet kompleks yapının 18 adeti tek kristal olup, bunların yapıları X-ışını kırınımı yöntemi ile diğer 22 adet toz olarak elde edilen komplekslerin yapıları da kütle spektroskopisi ile belirlenmiştir. Bu komplekslerin yapısal, titreşimsel, elektronik özellikler hem deneysel hem de hibrit DFT metodu olan HSEh1PBE yöntemi kullanılarak detaylı olarak incelenmiştir. Alfa-glukozidaz enzim aktivite sonuçlarına göre, sentezlenen kompleksler (1-40) arasında en iyi inhibe edici yapıların liganda bakılmaksızın Hg metali içeren kompleksler olduğu sonucuna varılmıştır. Cu içeren tüm kompleks yapılarda (2, 11, 15, 19, 20, 23) aktivite sonuçları ligantlara bağlı olarak sırasıyla 4(5)MeI, NCS, Py, dipya, bpy azalan inhibisyon değerlerinde gözlenmiştir. Bu değişimin kullanılan diğer metaller için aynı olmadığı belirlenmiştir. Elde edilen sonuçlara göre farklı metal içeren ligandların yapı aktivite ilişkileri karşılaştırıldığında, Hg, Cu ve Fe içeren metal komplekslerin in vitro sonuçları kayda değer olarak bulunmuştur. Bu metalleri içeren komplekslerin iyi inhibitör özelliği göstermesi, in vivo araştırmalar için yeni çalışma ve akademik iş birliği alanlarının ortaya çıkmasına olanak sağlamaktadır. Ayrıca, in vivo araştırma sonuçlarına göre yeni iş birliği alanlarında ticari olarak yeni alfa-glukozidaz inhibitörlerinin ülkemize kazandırılması hedeflenmektedir.
Anahtar Kelime: DFT IR ve UV-vis Antidiyabetik Geçiş metalleri Kristal yapı 6-metilpiridin-2-karboksilik asit

Konular: Fizik, Uygulamalı Fizik, Atomik ve Moleküler Kimya
Erişim Türü: Erişime Açık
  • Adams, H. Bailey, N. A., Crane, J. D., Fenton, D. E., Latour, J. M., Williams, J. M. 1990. “Manganese (II) and iron (III) complexes of the tridentate ligands bis (benzimidazol−2−ylmethyl)−amine (L1) and−methylamine (L2). Crystal structures of [MnL1 (CH3CO2)2],[FeL2Cl3], and [Fe2L12 (μ−O){μ−(CH3)3 CCO2}2][ClO4]2”, J. Chem. Soc., Dalton Transactions, 5, 1727−1735.
  • 1- A new dinuclear copper (II) complex of 2,5?Furandicarboxyclic acid with 4(5)?Methylimidazole as ahigh potential ??glucosidase inhibitor: Synthesis, Crystalstructure, Cytotoxicity study, and TD/DFT calculations (Makale - Diğer Hakemli Makale),
  • Adant C., Dupuis M., Bredas J.L. 2004. “Ab initio study of the nonlinear optical properties of urea: electron correlation and dispersion effects”, Int. J. Quantum Chem. 56, 497–507.
  • 2- Three novel Cu(II), Cd(II) and Cr(III) complexes of 6-Methylpyridine-2-carboxylic acid with thiocyanate: Synthesis, crystal structures, DFT calculations, molecular docking and alphaGlucosidase inhibition studies (Makale - İndeksli Makale),
  • Adisakwattana, S., Charoenlertkul, P., Yıbchok−Anun, S. 2009. “α−Glucosidase inhibitory activity of cyanidin−3−galactoside and synergistic effect with acarbose”, J Enzym Inhib. Med. Chem., 24(1), 65–69.
  • 3- SYNTHESIS, CRYSTAL STRUCTURE, SPECTRALCHARACTERIZATION, ??GLUCOSIDASE INHIBITIONAND TD/DFT STUDY OF THE Cu (II) COMPLEX (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Albert, I. D. L., Marks, T. J., Ratner, M. A. 1997. “Large Molecular Hyperpolarizabilities. Quantitative Analysis of Aromaticity and Auxiliary Donor-Acceptor Effects”, J. Am. Chem. Soc., 119, 6575-6582.
  • 4- SYNTHESIS, CRYSTAL STRUCTURE, DFT CALCULATIONS,MOLECULAR DOCKING AND ??GLUCOSIDASE INHIBITION STUDY OFTHE Zn(II) COMPLEX (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Alkorta, I., Perez, J.J. 1996. “Molecular polarization potential maps of the nucleic acid base”, Int. J. Quantum Chem. 57, 123‒135.
  • 5- SYNTHESIS, SPECTRAL CHARACTERIZATION, ??GLUCOSIDASE INHIBITION AND TD/DFT STUDY OF THE Ni(II) COMPLEXES (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • Altürk, S., Avcı, D., Tamer, Ö., Atalay, Y., Şahin, O. 2016. “A cobalt (II) complex with 6−methylpicolinate: Synthesis, characterization, second− and third−order nonlinear optical properties, and DFT calculations”, J. Phys. Chem. Solids, 98, 71−80.
  • Altürk, S., Tamer, Ö., Avcı, D., Atalay, Y. 2015. “Synthesis, spectroscopic characterization, second and third-order nonlinear optical properties, and DFT calculations of a novel Mn(II) complex”, J. Organomet. Chem., 797, 110-119.
  • Anderson, R.A., Cheng, N., Bryden, N.A., Polansky, M.M., Cheng, N., Chi, J., Feng, J. 1997. “Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes”, Diabetes, 46, 1786–1791.
  • Atkins, P. W., Friedman, R. S. 1997. Molecular Quantum Mechanics, Third Edition, Oxford University Press.
  • Avcı, D. 2009. “Heteroatom içeren bazı aromatik moleküllerin lineer olmayan optik ve spektroskopik özelliklerinin teorik olarak incelenmesi”. Doktora Tezi, Sakarya Üniversitesi Fen Bil. Enst., Sakarya.
  • Avcı, D. 2011. “Second and third-order nonlinear optical properties and molecular parameters of azo chromophores: Semiempirical analysis”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 82(1), 37-43.
  • Avcı, D., Altürk, S., Sönmez, F., Tamer, Ö., Başoğlu, A., Atalay, Y., Zengin Kurt, B., Dege, N. 2018. “Three novel Cu(II), Cd(II) and Cr(III) complexes of 6-Methylpyridine-2-carboxylic acid with thiocyanate: Synthesis, crystal structures, DFT calculations, molecular docking and α-Glucosidase inhibition studies”, Tetrahedron 74, 7198-7208.
  • Avcı, D., Altürk, S., Sönmez, F., Tamer, Ö., Başoğlu, A., Atalay, Y., Zengin Kurt, B., Öztürk, D., Dege, N. 2018. “A new dinuclear copper (II) complex of 2,5–Furandicarboxyclic acid with 4(5)‐Methylimidazole as a high potential α‐glucosidase inhibitor: Synthesis, Crystal structure, Cytotoxicity study, and TD/DFT calculations”, Appl Organometal Chem., e4725.
  • Baerends, E. J., Gritsenko, O. V. 1997. “A quantum chemical view of density functional theory”, J. Phys. Chem.,101, 5383−5403.
  • Banwell, C.N., McCash, E.M. 1994. “Fundamentals of molecular spectroscopy”, McGraw-Hill Publishing Company: Fourth Edition, London.
  • Baron AD. 1998. “Postprandial hyperglycaemia and alpha−glucosidase inhibitors”, Diabetes Res Clin Pract, 40, S51–S55.
  • Batten, S. R. 2001. “Topology of interpenetration”, CrystEngComm, 3(18), 67−72.
  • Becke, A. D. 1988. “Density-functional exchange-energy approximation with correct asymptotic behavior”, Phys. Rev. A, 38(6), 3098−3100.
  • Bernstein, J., Davey, R. J., Henck, J.−O. 1999. “Concomitant Polymorphs, Angew. Chem., Int. Ed. Engl. 38, 3440–3461.
  • Bernstein, J., Hagler, A. T. 1978. “Conformational polymorphism. The influence of crystal structure on molecular conformation”, J. Am. Chem. Soc. 100, 673–681.
  • Bian, X., Fan, X., Ke, C., Luan, Y., Zhao, G., Zeng, A. 2013. “Synthesis and α−glucosidase inhibitory activity evaluation of N−substituted aminomethyl−b−D−glucopyranosides”, Bioorg. Med. Chem., 21, 5442–5450.
  • Binkley, J. S., Pople, J. A., Hehre, W. J. 1980. “Self-consistent molecular orbital methods. 21. small split-valence basis sets for first-row elements”, J. Am Chem. Soc., 102, 939−947.
  • Binning Jr., R. C., Curtiss, L. A. 1990. “Compact contracted basis sets for third-row atoms: Ga–Kr.”, J. Comput. Chem., 11, 1206−1216.
  • Broadhurst, C. L., Domenico, P. 2006. “Clinical Studies on Chromium Picolinate Supplementation in Diabetes Mellitus—A Review”, Diabetes Technol. Ther., 8(6), 677– 687.
  • Cai, C.Y., Rao, L., Rao, Y., Guo, J.X., Xiao, Z.Z., Cao, J.Y., Huang, Z.S., Wang, B. 2017. “Analogues of xanthones−Chalcones and bis−chalcones as alpha−glucosidase inhibitors and anti−diabetes candidates”, Eur J Med. Chem., 130, 51−59.
  • Casirola, D.M., Ferraris, R.P. 2006. “α−Glucosidase inhibitors prevent diet−induced increases in intestinal sugar transport in diabetic mice”, Metabolism Clinical and Experimental, 55, 832– 841.
  • Castet, F., Rodriguez, V., Pozzo, J.-L., Ducasse, L., Plaquet, A., Champagne, B. 2013. “Design and Characterization of Molecular Nonlinear Optical Switches. Acc. Chem. Res., 46, 2656−2665.
  • Chandler, B.D. Cramb, D.T., Shimizu, G. K. 2006. “Microporous metal−organic frameworks formed in a stepwise manner from luminescent building blocks”, J. Am. Chem. Soc., 128(32), 10403−10412.
  • Cheng, J.W. Zheng, S.T., Ma, E., Yang, G.Y. 2007. “{LnIII [μ5-κ2, κ1, κ1, κ1, κ1-1, 2- (CO2)2C6H4][isonicotine][H2O]}2CuI•X (Ln= Eu, Sm, Nd; X= ClO4− , Cl−): A New Pillared-Layer Approach to Heterobimetallic 3d−4f 3D−Network Solids”, Inorg. Chem., 46(25), 10534−10538.
  • Cheng, L.-T., Tam, W., Stevenson, S.H., Meredith, G.R., Rikken, G., Marder, S.R. 2001. “Experimental investigation of organic molecular nonlinear optical polarizabilities. 1. methods and results on benzene and stilbene derivatives”, J. Phys. Chem., 95, 10631−10643.
  • Chiasson JL., Josse R.G., Gomis R., Hanefeld M., Karasik A., Laakso M. 2002. “STOP−NIDDM trial research group. Acarbose for the prevention of Type 2 diabetes, hypertension and cardiovascular disease in subjects with impaired glucose tolerance: Facts and interpretations concerning the critical analysis of the STOPNIDDMTrial data”, Lancet, 359, 2072–2077.
  • Chiasson, JL., Josse, RG., Gomis, R., Hanefeld, M., Karasik, A., Laakso, M. 2003. “Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance, the STOP−NIDDM trial”, JAMA, 290, 486−94.
  • Clays, K., Coe, B. J. 2003. “Design strategies versus limiting theory for engineering large second-order nonlinear optical polarizabilities in charged organic molecules”, Chem. Mater., 15, 642-648.
  • Coulston, L., Dandona, P. 1980. “Insulin−like effect of zinc on adipocytes”, Diabetes 29, 665– 667.
  • Demadis, K. D. Katarachia, S. D. 2004. “Metal−phosphonate chemistry: Synthesis, crystal structure of calcium−amino tris− (methylene phosphonate) and inhibition of CaCO3 crystal growth”, Phosphorus, Sulfur, and Silicon, 179(3): 627−648.
  • Dennington, R., Keith, T., Millam, J. 2009. “GaussView, Version 5”, Semichem Inc., Shawnee mission KS.
  • Ditchfield, R., Hehre, W. J., Pople, J. A. 1971. “Self-consistent molecular-orbital methods. IX. an extended Gaussian-type basis for molecular-orbital studies of organic molecules”, J. Chem. Phys., 54, 724−728.
  • Dixon, R.A., Ferreira, D. 2002. “Genistein”, Phytochemistry, 60, 205–211.
  • Dobbs, K. D., Hehre, W. J. 1987. “Molecular orbital theory of the properties of inorganic and organometallic compounds. 6. Extended basis sets for second-row transition metals”, J. Comput. Chem., 8, 880−893.
  • Driessen, W. L. De Graaff, R. A. G., Parlevliet, F. J., Reedijk, J., De Vos, R. M. 1994. “Transition metal compounds of the tridentate pyrazole substituted amine ligand bis (2− (3,5−dimethyl−1−pyrazolyl) ethyl) ethylamine (ddae). X−ray structures of [Co(ddae)(NO3)2], [Cu(ddae)(NO3)(H2O)](NO3) and [Cu(ddae)(Cl)2]• C2H5OH”, Inorg. Chim. Acta, 216(1): 43−49.
  • Dunitz, J. D., Bernstein, J. 1995. “Disappearing Polymorphs”, Acc. Chem. Res. 28, 193–200. Ebrahimipour, S.Y., Sheikhshoaie, I., Crochet, A., Khaleghi, M., Fromm, K.M. 2014. “A new mixed-ligand copper(II) complex of (E)–N'–(2-hydroxybenzylidene) acetohydrazide: Synthesis, characterization, NLO behavior, DFT calculation and biological activities”, Journal of Molecular Structure 1072, 267–276.
  • Ernzerhof, M., Perdew, J. P. 1998. “Generalized gradient approximation to the angle-and system-averaged exchange hole”, J. Chem. Phys., 109(9), 3313−3320.
  • Evans, O.R. Lin, W. 2002. “Crystal engineering of NLO materials based on metal-organic coordination networks”, Acc. Chem. Res., 35(7), 511−522.
  • Fitzpatrick, L. A. 2003. “Soy isoflavones: hope or hype”, Maturitas, 44(Suppl. 1), S21–S29.
  • Fleming, I. 1976. Frontier Orbitals and Organic Chemical Reactions. Willey, London.
  • Foresman, J. B., Frisch, Æ. 1993. “Exploring chemistry with electronic structure methods: a guide to using Gaussian.
  • Frederic, B.; Aline, D.; Achene, B.; Anne-Marie, M.; Germain, B.; Francoise, C.; Philippe, D. 1997. “Genistein and fluorinated analogs suppress agonist-induced airway smooth muscle contraction,” Bioorg. Med. Chem. Lett., 18, 1323–1326.
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O.,
  • Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox D.J. 2013. “Gaussian 09, Revision D.01”, Gaussian, Inc., Wallingford CT.
  • Furić, K., Kodrin, I., Kukovec, B. –M., Mhalić, Z., Popović, Z. 2013. “Vibrational spectroscopic and DFT calculation studies of cobalt(II) complexes with 3−hydroxypicolinic acid”, Spectrochim. Acta A 101, 273−282.
  • Furić, K., Kodrin, I., Kukovec, B. –M., Mhalić, Z., Popović, Z. 2013. “Erratum to vibrational spectroscopic and DFT calculation studies of cobalt(II) complexes with 3−hydroxypicolinic acid [Spectrochim. Acta A 101, 273−282]”, Spectrochim. Acta A 112, 463−466.
  • García, F., Perles, J., Zamora, F., Amo−Ochoa, P. 2016. “Rhodium and copper 6−methylpicolinate complexes. Structural diversity and supramolecular interaction study”, Inorg. Chim. Acta, 453, 574–582.
  • Gadre, S.R., Shrivastava, I.H. 1991. “Shapes and sizes of molecular anions via topographical analysis of electrostatic potential”, J. Chem. Phys. 94, 4384‒4390.
  • Gauss, J. 2000. “Molecular properties, published in modern methods and algorithms of quantum chemistry, proceedings. Second edition, J. Grotendorst (Ed.); John von Neumann Institute for Computing”, Jülich, NIC Series, 3, 541−592.
  • Geraghty, M., Sheridan, V., McCann, M., Devereux, M., McKee, V. 1999. “Synthesis and anti-Candida activity of copper(II) and manganese(II) carboxylate complexes X–ray crystal structures of [Cu(sal)(bipy)]·C2H5OH·H2O and [Cu(norb)(phen)2]·6.5H2O (salH2= salicylic acid; norbH2= cis–5–norbornene–endo–2,3-dicarboxylic acid; bipy= 2,2'- bipyridine; phen=1,10–phenanthroline)”, Polyhedron 18, 2931–2939.
  • Ghani, U. 2015. “Re−exploring promising α−glucosidase inhibitors for potential development into oral anti−diabetic drugs: Finding needle in the haystack”, Eur. J. Med. Chem., 103, 133–162.
  • Ghosh, S. Ray, P. K., Bandyopadhyay, T. K., Deb, A. K. 1981. New Stable Manganese (III) Chelates of Some Pyridine Carboxylic Acids. Zeitschrift für Naturforschung B, 36(10): 1270-1272.
  • Gipson, K. Stevens, K., Brown, P., Ballato, J. 2014. Infrared Spectroscopic Characterization of Photoluminescent Polymer Nanocomposites. Journal of Spectroscopy.
  • Gorelsky, S.I. 2010. “SWizard Program Revision 4.5”, University of Ottawa, Ottawa, Canada, 2010 http://www.sg.chem.net/.
  • Green, M. L., Marder, S. R., Thompson, M. E., Bandy, J. A., Bloor, D., Kolinsky, P. V., Jones, R. J. 1987. “Synthesis and structure of (cis)-[1-ferrocenyl-2-(4- nitrophenyl)ethylene], an organotransition metal compound with a large secondorder optical nonlinearity”, Nature (London), 330, 360-362.
  • Grob, F., Müller‐Hartmann, A., Vahrenkamp, H. 2000. “Diphosphate− Zinc Complexes with Tridentate Coligands”, Eur. J. Inorg. Chem., 2000(11): 2363−2370.
  • Hardy, A. M. LaDuca, R. L. 2009. “Synthesis and structure of a cobalt dicyanamide chain coordination polymer incorporating a long−spanning hydrogen−bonding capable diimine with a novel binodal (4,6)−connected supramolecular topology”, Inorg. Chem. Comm., 12(4): 308−311.
  • Hartree, D. R. 1928. “The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods”, In Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 24(1), 89−110.
  • Hay, P.J., Wadt, W.R. 1985. “Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg”, J. Chem. Phys., 82, 270–283.
  • Hay, P.J., Wadt, W.R. 1985. “Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals”, J. Chem. Phys., 82, 299– 310.
  • Heyd, J., Scuseria, G. E., Ernzerhof, M. 2003. “Hybrid functionals based on a screened Coulomb potentia”l. J. Chem. Phys., 118(18), 8207−8215.
  • Heyd, J., Scuseria, G. E. 2004. “Efficient hybrid density functional calculations in solid: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional”, J. Chem. Phys., 121, 1187−1192.
  • Heyd, J., Scuseria, G. E. 2004. “Assessment and validation of a screened Coulomb hybrid density functional”, J. Chem. Phys., 120, 7274−7280.
  • Heyd, J., Peralta, J. E., Scuseria, G. E., Martin, R. L. 2005. “Energy band gaps and lattice parameters evaluated with the HeydScuseria-Ernzerhof screened hybrid functional”, J. Chem. Phys., 123, 1−8.
  • Heyd, J., Scuseria, G. E., Ernzerhof, M. 2006. Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys.118, 8207 (2003)], J. Chem. Phys., 124, 219906−1.
  • Hincliffe, A. 1987. “Ab initio Determination of molecular properties”. Adam Hilger, Bristol, p.152.
  • Hohenberg, P., Kohn, W. 1964. “Inhomogeneous electron gas”, Phys. Rev. B, 136, 864−871.
  • House, D. A. 1987. Ammonia and amines. Comprehensive coordination chemistry, 2, 23. Huang, Y.G. Jiang, F. L., Hong, M. C. 2009. “Magnetic lanthanide–transition-metal organic– inorganic hybrid materials: From discrete clusters to extended frameworks”, Coord. Chem. Rev., 253(23), 2814−2834.
  • Ivanova, B., Spiteller, M. 2011. “AgI and ZnII complexes with possible application as NLO materials – Crystal structures and properties”, Polyhedron, 30, 241–245.
  • Kaatz P., Donley E.A., Shelton D.P. 1998, “A comparison of molecular hyperpolarizabilities from gas and liquid phase measurements”, J. Chem. Phys. 108, 849–856.
  • Khan, M., Yousaf, M., Wadood, A., Junaid, M., Ashraf, M., Alam, U., Ali, M., Arshad, M., Hussain, Z., Khan, K. M. 2014. “Discovery of novel oxindole derivatives as potent aglucosidase inhibitors”, Bioorganic & Medicinal Chemistry 22, 3441–3448.
  • Kanis, D. R., Ratner, M. A., Marks, T. J. 1994. “Design and Construction of molecular assemblies with large second-order optical nonlinearities. Qantum Chemical Aspects”, Chem. Rev., 94, 195-242.
  • Kitagawa, S. Kitaura, R., Noro, S. I. 2004. “Functional porous coordination polymers”, Angew. Chemie International Edition, 43(18), 2334−2375.
  • Kohn, W., Sham, L. J. 1965. “Self-consistent equations including exchange and correlation effects”, Phys. Rev. A140, 1133−1138.
  • Krukau, A.V., Vydrov, O. A., Izmaylov, A. F., Scuseria, G. E. 2006. “Influence of the exchange screening parameter on the performance of screened hybrid functional”, J. Chem. Phys., 125, 224106:1−5.
  • Kukovec, B. –M., Popović, Z., Kozlevčar,B.,Jagličić, Z. 2008. “3D supramolecular architectures of copper(II) complexes with 6−methylpicolinic and 6−bromopicolinic acid: Synthesis, spectroscopic, thermal and magnetic properties”,Polyhedron, 27, 3631−3638.
  • Kukovec, B. –M., Popović, Z., Komorsky−Lovrić, Š., Vojković, V., Vinković, M. 2009. “Synthesis, structural, spectroscopic and thermal characterization of cobalt complexes with 3− and 6−methylpicolinic acid. Voltammetric and spectrophotometric study in solution” Inorg. Chim. Acta, 362, 2704−2714.
  • Kukovec, B. –M. Vaz, P. D., Popović, Z., Calhorda, M. J., Furić, K., Pavlović, G., Linarić, M. R. 2008. “Pseudopolymorphism in Nickel(II) Complexes with 6−Methylpicolinate. Synthesis, Structural, Spectroscopic, Thermal, and Density Functional Theory Studies”, Cryst. Growth Design 8, 3465−3473.
  • Kukovec, B. –M., Kodrin, I., Vojković, V., Popović, Z., 2013. “Synthesis, X−ray structural, IR spectroscopic, thermal and DFT studies of nickel(II) and copper(II) complexes with 3−methylpicolinic acid. UV–Vis spectrophotometric study of complexation in the solution”, Polyhedron, 52, 1349–1361.
  • Kuriakose, M., Kurup, M.R.P., Suresh, E. 2007. “Synthesis, spectroscopic studies and crystal structures of two new vanadium complexes of 2-benzoylpyridine containing hydrazone ligands”, Polyhedron 26, 2713–2718.
  • Lamshöft, M., Storp, J., Ivanova B., Spiteller, M. 2011. “Gas-phase CT-stabilized Ag(I) and Zn(II) metal–organic complexes – Experimental versus theoretical study”, Polyhedron, 30, 2564–2573.
  • Lee, C., Yang, W., Parr, R. G. 1988. “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Phys. Rev. B, 37(2), 785−789.
  • Lee., D.−S., Lee, S.−H. 2001. “Genistein, a soy isoflavone, is a potent α-glucosidase inhibitör”, FEBS Lett. 501, 84–86.
  • Levine, B. F., Betha, C. G. 1975. “Second and third order hyperpolarizabilities of organic molecules”, J. Chem. Phys., 63, 2666-2682.
  • Li, J. R. Kuppler, R. J., Zhou, H. C. 2009. “Selective gas adsorption and separation in metal– organic frameworks”, Chem. Soc. Rev., 38(5), 1477−1504.
  • Li-Hua, W., Lei, L., Xin, W. 2017. “Synthesis, Structural Characterization and Catalytic Activity of A Cu(II) Coordination Polymer Constructed from 1,4–Phenylenediacetic Acid and 2,2’-Bipyridine”, Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1), 113-118.
  • Luque, F.J., Orozco, M., Bhadane, P.K., Gadre, S.R. 1993. “SCRF calculation of the effect of water on the topology of the molecular electrostatic potentia”, J. Phys. Chem. 97, 9380‒9384.
  • Mao, J. G. 2007. “Structures and luminescent properties of lanthanide phosphonates”, Coord. Chem. Rev., 251(11): 1493−1520.
  • Macrae, C.F., Edgington, P.R., McCabe, P., Pidcock, E., Shields, G.P., Taylor, R., Towler, M., van de Streek, J. 2006. “Mercury Visualization and Analysis of Crystal Structures”, J. Appl. Crystallogr. 39, 453–457.
  • March, R., Clegg, W., Coxall, R.A., Cucurull−Sa´nchez, L., Lezama, L., Rojo, T., Gonza´lez−Duarte, P. 2003. “Synthesis, characterisation and magnetic properties of cobalt(II) complexes with picolinic acid derivatives: the crystal and molecular structures of [Co(MeC5H3NCOO)2(H2O)2] and [CoCl2(C5H4NCOOPri )2]”, Inorg. Chim Acta, 353, 129_138.
  • Miertus, S., Scrocco, E., Tomasi, J. 1981. “Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects”, J. Chem. Phys., 55, 117−129.
  • Mistri, S., Zangrando, E., Manna, S.C. 2013. “Cu(II) complexes of pyridine–2,6–dicarboxylate and N-donor neutral ligands: Synthesis, crystal structure, thermal behavior, DFT calculation and effect of aromatic compounds on their fluorescence”, Inorganica Chimica Acta 405, 331–338.
  • Monot, J. Petit, M., Lane, S. M., Guisle, I., Léger, J., Tellier, C., Talham, D. R., Bujoli, B. 2008. “Towards zirconium phosphonate−based microarrays for probing DNA− protein interactions: Critical influence of the location of the probe anchoring groups”, J. Am. Chem. Soc., 130(19): 6243−6251.
  • Murray, J.S., Sen, K. 1996. “Molecular Electrostatic Potentials, Concepts and Applications”, Elsevier, Amsterdam.
  • Nakai, M., Obata, M., Sekiguchi, F., Kato, M., Shiro, M., Ichimura, A., Kinoshita, I., Mikuriya, M., Inohara, T., Kawabe, K., Sakurai, H., Orvig, C., Yano, S. 2004. “Synthesis and insulinomimetic activities of novel mono− and tetranuclear oxovanadium(IV) complexes with 3−hydroxypyridine−2−carboxylic acid”, J. Inorg. Biochem. 98, 105−112.
  • Nakai, M., Sekiguchi, F., Obata, M., Ohtsuki, C., Adachi, Y., Sakurai, H., Orvig, C., Rehder, D., Yano, S. 2005. “Synthesis and insulin−mimetic activities of metal complexes with 3−hydroxypyridine−2−carboxylic acid”, J. Inorg. Biochem. 99, 1275−1282.
  • Nakamoto, K. 1970. Infrared and Raman spectra of inorganic and coordination compounds. John Wiley & Sons, Ltd. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, 2nd ed., Wiley Interscience, New York, p. 230.
  • Natarajan, S. Mahata, P. 2009. “Metal–organic framework structures–how closely are they related to classical inorganic structures?”, Chem. Soc. Rev., 38(8), 2304−2318.
  • Oudar, J. L. 1977. “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds”, J. Chem. Phys., 67, 446-457.
  • Paiva, L., Binsack, R., Machado, UF. 2002. “Chronic acarbose−feeding increases GLUT1 protein without changing intestinal glucose absorption function”, Eur. J Pharmacol, 434, 197−204.
  • Perdew, J. P., Ziesche, P., Eschrig, H. 1991. “Electronic structure of solids’ 91” (Vol. 11). Akademie Verlag, Berlin.
  • Perdew, J. P., Burke, K., Ernzerhof, M. 1996. “Generalized gradient approximation made simple”, Phys. Rev. Lett., 77(18), 3865−3868.
  • Perry Iv, J. J. Perman, J. A., Zaworotko, M. J. 2009. “Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks”, Chem. Soc. Rev., 38(5), 1400−1417.
  • Petersilka, M., Gossmann, U. J., Gross, E. K. U. 1996. “Excitation energies from timedependent density-functional theory”, Phys. Rev. Lett., 76, 1212−1215.
  • Pons, J., March, R., Rius, J., Ros, J. 2004. “Zinc complexes of 6−methyl−2−pyridinecarboxylic acid. Crystal structure of [Zn(MeC5H3NCOO)2(H2O)] .H2O”, Inorg. Chim. Acta, 357, 3789–3792.
  • Prasad, P. N., Williams, D. J. 1991. Introduction to nonlinear optical effects in molecules and polymers. J. Wiley & Sons, Inc., New York.
  • Pulay, P. 1987. “Analytical derivative methods in quantum chemistry”, Ab Initio Methods in Quantum Chemistry, Part II, edited by KP Lawley, 69, 241−286.
  • Qiu, S. Zhu, G. 2009. “Molecular engineering for synthesizing novel structures of metal– organic frameworks with multifunctional properties”, Coord. Chem. Rev., 253(23): 2891−2911.
  • Reedijk, J. Wilkinson, G., Gillard, R. D., McCleverty, J. A. 1987. “Comprehensive coordination chemistry”. Pergamon, Oxford, 2, 73.
  • Runge, E., Gross, E. K. U. 1984. “Density- functional theory for time-dependent systems, Phys. Rev. Lett., 52, 997−1000.
  • Sakurai, H., Kojima, Y., Yoshikawa, Y., Kawabe, K., Yasui, H. 2002. “Antidiabetic vanadium(IV) and zinc(II) complexes”, Coord. Chem. Rev., 226, 187–198.
  • Scrocco, E., Tomasi, J. 1978. “in: P. Lowdin (Ed.), Advances in Quantum Chemistry”, Academic Press, New York.
  • Shaver, A., Ng, J. B., Hall, D. A., Lum, B. S., Posner, B. 1993. “Insulin−Mimetic Peroxovanadium Complexes: Preparation and Structure of Potassium xodiperoxo(pyridine−2−carboxylato)vanadate(V), K2[VO(O2)2(C5H4NCOO)].2H2O, and Potassium Oxodiperoxo (3−hydroxypyridine−2−carboxylato) vanadate(V), K2VO(O2)2(OHC5H3NCOO)]∙3H2O, and Their Reactions with Cysteine”, Inorg. Chem. 32, 3109−3113.
  • Seayad, A. M. Antonelli, D. M. 2004. “Recent Advances in Hydrogen Storage in Metal‐Containing Inorganic Nanostructures and Related Materials”, Advanced Mater., 16(9‐10), 765−777.
  • Shechter, Y., Karlish, S.J.D. 1980. “Insulin−like stimulation of glucose oxidation in rat adipocytes by vanadyl(IV) ions”, Nature, 284, 556–558.
  • Sheldrick, G.M., 1997. “SHLEXS–97 and SHELXL–97. Programs for Crystal Structure Analysis”, University of Göttingen, Germany.
  • Sheldrick, G.M. 2015. “SHELXT–integrated space-group and crystal-structure determination”, Acta Cryst. A71, 3–8.
  • Sorenson, J.R.J. 1989. “Copper complexes offer a physiological approach to treatment of chronic diseases”, Prog. Med. Chem., 26, 437–568.
  • Spek, A.L. 2009. “Structure validation in chemical crystallography”, Acta Cryst. D65, 148– 155.
  • Sponer, J., Hobza, P. 1996. “DNA base amino groups and their role in molecular interactions: ab initio and preliminary density functional theory calculations”, Int. J. Quantum Chem. 57, 959‒970.
  • Stratmann, R. E., Scuseria, G. E., Frisch, M. J. 1998. “An efficient implementation of timedependent density-functional theory for the calculation of excitation energies of large molecules”, J. Chem. Phys., 109, 8218−8224.
  • Sun, Y. Q. Zhang, J., Yang, G. Y. 2006. “A series of luminescent lanthanide–cadmium– organic frameworks with helical channels and tubes”, Chem. Commun., (45), 4700−4702.
  • Takino, T., Yasui, H., Yoshitake, A., Hamajima, Y., Matsushita, R., Takada, J., Sakurai, H., 2001. “A new halogenated antidiabetic vanadyl complex, bis(5−iodopicolinato)oxovanadium(IV): in vitro and in vivo insulinomimetic evaluations and metallokinetic analysis”, JBIC J. Biol. Inorg. Chem., 6, 133−142.
  • Tamer, Ö., Avcı, D., Atalay, Y. (2015). “Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of Co (II)−picolinate complex”, Mater. Chem. Phys., 168, 138−146.
  • Tao, J., Perdew, J. P., Staroverov, V. N., Scuseria, G. E. 2003. “Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids”, Phys. Rev. Lett., 91(14), 146401.
  • Teimouri, A., Chermahini, A.N., Taban, K., Dabbagh, H.A. 2009. “Experimental and CIS, TDDFT, ab initio calculations of visible spectra and the vibrational frequencies of sulfonyl azide-azoic dyes”, Spectrochim. Acta 72, 369−377.
  • Thomas, L. H. 1927. “The calculation of atomic fields”, In Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 23(05) 542−548.
  • Thompson, K. H., Orvig, C. 2000. “Design of vanadium compounds as insulin enhancing agents”, J. Chem. Soc., Dalton Trans. 2885−2992. Uhrecký, R., Padĕlková, Z., Moncol, J., Koman, M., Dlháň, L., Titiš, J., Boča, R. 2013. “Synthesis, crystal structure, spectra and magnetic properties of new manganese(III) and iron(III) dipicolinate complexes”, Polyhedron 56, 9–17.
  • Umeda, J. Suzuki, M., Kato, M., Moriya, M., Sakamoto, W., Yogo, T. 2010. “Proton conductive inorganic–organic hybrid membranes functionalized with phosphonic acid for polymer electrolyte fuel cell”, J. Power Sources, 195(18): 5882−5888.
  • Van Gisbergen, S. J. A., Snijders, J. G., Baerends, E. J. 1989. “Implementation of timedependent density functional response equations”, Comput. Phys. Commun, 118, 119−138.
  • Varsanyi, G. 1973. “Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives”, Academic Kiaclo, Budapest.
  • Vosko, S. H., Wilk, L., Nusair, M. 1980. “Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis”, Can. J. Phys., 58(8), 1200−1211.
  • Wadt, W.R., Hay, P.J. 1985. “Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi”, J. Chem. Phys., 82, 284–298.
  • Wang, G.C., He, D.X., Li, X., Li, J., Peng, Z.Y. 2016. “Design, synthesis and biological evaluation of novel coumarin thiazole derivatives as alpha−glucosidase inhibitors”, Bioorg. Chem., 65, 167−174.
  • Wang, H., Zheng, X.–F., Shen, X.–Q., Zhang, H.–Y., Yang, R., Hou, H.–W., Zhu, Y. 2006. “Syntheses, Crystal Structures and Thermal Decomposition Kinetics of Ni(II) and Cu(II) Complexes with dpa and dca: [Ni(dpa)2(dca)2] and [Cu(dpa)2(dca)2] (dpa= 2,2'– Dipyridylamine, dca= Sodium Dicyanamide) Ligands, Synthesis and Reactivity in Inorganic”, Metal-Organic and Nano-Metal Chemistry 36,609–616.
  • Wang, H., Yan, J.−F., Song, X.−L., Fan, L., Xu, J., Zhou, G.−M., Jiang, L., Yang, D.−C. 2012. “Synthesis and antidiabetic performance of b−amino ketone containing nabumetone moiety”, Bioorg. Med. Chem., 20, 2119–2130.
  • Wang L., Li Y.Y., Ge J., Zhang J., Liang S.K., Li L.F., Ma C., Gao E.J. 2015. “Syntheses, Structures, Characterization, and Bioactivities of New Cd(II) Complex of 2,3– Pyrazinedicarboxylate with 1,10–Phenanthroline”, Russian J. Coord. Chem. 41, 169– 174.
  • Wang, S. Luo, Q., Wang, X., Wang, L., Yu, K. 1995. “Synthesis, crystal structures and physical properties of μ−oxo−μ−carboxylato−diiron (III) complexes with tripodal polybenzimidazole ligands containing distinct iron sites”, J. Chem. Soc., Dalton Transactions, (12): 2045−2055.
  • Wang, Y., Zhang, Y., Zhu, D., Ma, K., Ni, H., Tang, G. (2015). “Synthesis, structural characterization and theoretical approach of the tri (2−(2,6−dichlorophenyl)−1H−imidazo [4, 5-f][1, 10] phenanthroline) cobalt (II)”, Spectrochim. Acta A, 147, 31−42.
  • Wang, Y., Ma, L., Li, Z., Du, Z., Liu, Z., Qin, J., Wang, X., Huang, Z., Gu, L., Chen, A.S.C. (2004). “Synergetic inhibition of metal ions and genistein on a-glucosidase”, FEBS Letters, 576 , 46–50.
  • Yoshikawa, Y., Ueda, E., Kawabe, K., Miyake, H., Takino, T., Sakurai, H., Kojima, Y. 2002. “Development of new insulinomimetic zinc(II) picolinate complexes with a Zn(N2O2) coordination mode: structure characterization, in vitro, and in vivo studies”, J. Biol. Inorg. Chem., 7, 68−73. [Erratum: 2002, JBIC J. Biol. Inorg. Chem., 7, 560−561].
  • Yoshikawa, Y., Hirata, R., Yasui, H., Sakurai, H. 2009. “Alpha−glucosidase inhibitory effect of anti−diabetic metal ions and their complexes”, Biochimie, 91, 1339–1341.
  • Yasui, H., Tamura, A., Takino, T., Sakurai, H. 2002. “Structure−dependent metallokinetics of antidiabetic vanadyl−picolinate complexes in rats: studies on solution structure, insulinomimetic activity, and metallokinetics”, J. Inorg. Biochem., 91, 327–338.
  • Yasumatsu, N., Yoshikawa, Y., Adachi, Y., Sakurai, H. 2007. “Antidiabetic copper(II)– picolinate: impact of the first transition metal in the metallopicolinate complexes”, Bioorg. Med. Chem., 15, 4917–4922.
  • Zhen, J., Dai, Y.J., Villani, T., Giurleo, D., Simon, J.E., Wu, Q.L. 2017. “Synthesis of novel flavonoid alkaloids as alpha−glucosidase inhibitors”, Bioorg. Med. Chem., 25(20), 5355−5364.
APA AVCI D, BAŞOĞLU A, TAMER Ö, Sönmez F, ATALAY Y (2019). Yeni 6-metilpiridin-2-karboksilik Asit İçeren Karışık Ligantlı Farklı Metal Komplekslerin Sentezi, Yapılarının Detaylı Analizi ve α-Glukozidaz Enzim İnhibisyonunun in vitro İncelenmesi. , 1 - 0.
Chicago AVCI Davut,BAŞOĞLU Adil,TAMER Ömer,Sönmez Fatih,ATALAY Yusuf Yeni 6-metilpiridin-2-karboksilik Asit İçeren Karışık Ligantlı Farklı Metal Komplekslerin Sentezi, Yapılarının Detaylı Analizi ve α-Glukozidaz Enzim İnhibisyonunun in vitro İncelenmesi. (2019): 1 - 0.
MLA AVCI Davut,BAŞOĞLU Adil,TAMER Ömer,Sönmez Fatih,ATALAY Yusuf Yeni 6-metilpiridin-2-karboksilik Asit İçeren Karışık Ligantlı Farklı Metal Komplekslerin Sentezi, Yapılarının Detaylı Analizi ve α-Glukozidaz Enzim İnhibisyonunun in vitro İncelenmesi. , 2019, ss.1 - 0.
AMA AVCI D,BAŞOĞLU A,TAMER Ö,Sönmez F,ATALAY Y Yeni 6-metilpiridin-2-karboksilik Asit İçeren Karışık Ligantlı Farklı Metal Komplekslerin Sentezi, Yapılarının Detaylı Analizi ve α-Glukozidaz Enzim İnhibisyonunun in vitro İncelenmesi. . 2019; 1 - 0.
Vancouver AVCI D,BAŞOĞLU A,TAMER Ö,Sönmez F,ATALAY Y Yeni 6-metilpiridin-2-karboksilik Asit İçeren Karışık Ligantlı Farklı Metal Komplekslerin Sentezi, Yapılarının Detaylı Analizi ve α-Glukozidaz Enzim İnhibisyonunun in vitro İncelenmesi. . 2019; 1 - 0.
IEEE AVCI D,BAŞOĞLU A,TAMER Ö,Sönmez F,ATALAY Y "Yeni 6-metilpiridin-2-karboksilik Asit İçeren Karışık Ligantlı Farklı Metal Komplekslerin Sentezi, Yapılarının Detaylı Analizi ve α-Glukozidaz Enzim İnhibisyonunun in vitro İncelenmesi." , ss.1 - 0, 2019.
ISNAD AVCI, Davut vd. "Yeni 6-metilpiridin-2-karboksilik Asit İçeren Karışık Ligantlı Farklı Metal Komplekslerin Sentezi, Yapılarının Detaylı Analizi ve α-Glukozidaz Enzim İnhibisyonunun in vitro İncelenmesi". (2019), 1-0.
APA AVCI D, BAŞOĞLU A, TAMER Ö, Sönmez F, ATALAY Y (2019). Yeni 6-metilpiridin-2-karboksilik Asit İçeren Karışık Ligantlı Farklı Metal Komplekslerin Sentezi, Yapılarının Detaylı Analizi ve α-Glukozidaz Enzim İnhibisyonunun in vitro İncelenmesi. , 1 - 0.
Chicago AVCI Davut,BAŞOĞLU Adil,TAMER Ömer,Sönmez Fatih,ATALAY Yusuf Yeni 6-metilpiridin-2-karboksilik Asit İçeren Karışık Ligantlı Farklı Metal Komplekslerin Sentezi, Yapılarının Detaylı Analizi ve α-Glukozidaz Enzim İnhibisyonunun in vitro İncelenmesi. (2019): 1 - 0.
MLA AVCI Davut,BAŞOĞLU Adil,TAMER Ömer,Sönmez Fatih,ATALAY Yusuf Yeni 6-metilpiridin-2-karboksilik Asit İçeren Karışık Ligantlı Farklı Metal Komplekslerin Sentezi, Yapılarının Detaylı Analizi ve α-Glukozidaz Enzim İnhibisyonunun in vitro İncelenmesi. , 2019, ss.1 - 0.
AMA AVCI D,BAŞOĞLU A,TAMER Ö,Sönmez F,ATALAY Y Yeni 6-metilpiridin-2-karboksilik Asit İçeren Karışık Ligantlı Farklı Metal Komplekslerin Sentezi, Yapılarının Detaylı Analizi ve α-Glukozidaz Enzim İnhibisyonunun in vitro İncelenmesi. . 2019; 1 - 0.
Vancouver AVCI D,BAŞOĞLU A,TAMER Ö,Sönmez F,ATALAY Y Yeni 6-metilpiridin-2-karboksilik Asit İçeren Karışık Ligantlı Farklı Metal Komplekslerin Sentezi, Yapılarının Detaylı Analizi ve α-Glukozidaz Enzim İnhibisyonunun in vitro İncelenmesi. . 2019; 1 - 0.
IEEE AVCI D,BAŞOĞLU A,TAMER Ö,Sönmez F,ATALAY Y "Yeni 6-metilpiridin-2-karboksilik Asit İçeren Karışık Ligantlı Farklı Metal Komplekslerin Sentezi, Yapılarının Detaylı Analizi ve α-Glukozidaz Enzim İnhibisyonunun in vitro İncelenmesi." , ss.1 - 0, 2019.
ISNAD AVCI, Davut vd. "Yeni 6-metilpiridin-2-karboksilik Asit İçeren Karışık Ligantlı Farklı Metal Komplekslerin Sentezi, Yapılarının Detaylı Analizi ve α-Glukozidaz Enzim İnhibisyonunun in vitro İncelenmesi". (2019), 1-0.