Lityum-Iyon Piller Için 3d Baskı Teknolojisi Ile Yüksek Kapasiteli 3d Serbest Anot Üretimi

17 7

Proje Grubu: MAG Sayfa Sayısı: 0 Proje No: 315M250 Proje Bitiş Tarihi: 01.09.2018 Metin Dili: Türkçe İndeks Tarihi: 20-03-2020

Lityum-Iyon Piller Için 3d Baskı Teknolojisi Ile Yüksek Kapasiteli 3d Serbest Anot Üretimi

Öz:
Proje kapsamında Li-iyon pillerdeki kapasite tutma, hızlı şarj/deşarj ve yüksek akım yoğunluklarında çalışma problemlerine çözüm aramak amacıyla, 3D baskı tekniği ile orijinal 3 Boyutlu Si/Azot Katkılı Grafen Aerojel (3D Si/NGA) kompozit serbest elektrotun üretilmiştir. Yüksek teorik kapasitesi ve nanopartiküllerin kısa Li+ difüzyon mesafesi dolayısıyla silisyum nanopartiküller tercih edilmiş; silisyumda meydana gelen yüksek hacim genleşmesini sönümlemek için grafen aerojellerin kullanımına karar verilmiştir. Bununla birlikte, elektrotun 3D baskı teknolojisi ile serbest elektrot olarak üretilmesi grafen ile akım toplayıcı arasındaki temas direncini ve pilin içindeki bileşenlerden kaynaklanan toplam iç direnci düşürmüş, elektrot kesme işlemi esnasında meydana gelen deformasyonu ortadan kaldırmıştır. Grafen aerojeller azot katkılanarak oluşturulan kusurlu bölgeler sayesinde silisyum nanopartiküllerin bağlanma kuvveti arttırılmış ve Li+ geçiş hızı ve lityum depolama kabiliyeti desteklenmiştir. Böylece Si nanopartiküller ve NGA kombinasyonu malzemenin iletkenliğini arttırmış, agregasyon problemini hafifletmiş ve hacim genişlemesini düşürmüştür. Öncelikle modifiye Hummers metodu ile grafit katmanlara ayrılarak Grafen oksit (GO) elde edilmiştir. Elde edilen GO, silisyum ile karıştırılarak sol-jel kimyası ile Si/GO mürekkep hazırlanmıştır. 3D baskı teknolojisi ile basılan Si/GO dondurarak kurutma işleminin ardından azot/amonyak atmosferinde termal indirgeme ile nihai ürün olan 3 boyutlu Si/Azot Katkılı Grafen Aerojel (3D Si/NGA) serbest anota dönüşmüştür. Nihai ürün 3D Si/NGA?nın ve üretim aşamaları esnasındaki ara ürünlerin yapısal ve morfolojik Karakterizasyonu XRD, Raman, FTIR, BET, FE-SEM, HR-TEM ile yapılmıştır. Elektrokimyasal testler ise CR 2016 buton piller ile yapılmıştır. Çalışma elektrotu olarak 3D Si/NGA, karşıt elektrot olarak lityum folyo, elektrolit olarak LiFP6 kullanılmıştır. Şarj-deşarj davranışları, döngü ömürleri, spesifik kapasiteleri kronopotansiyometrik (CP) teknik ile, iç direnç ölçümleri elektrokimyasal impedans spektroskopisi (EIS) ile, elektrot-elektrolit arayüzeyinde meydana gelen elektrokimyasal değişimler dönüşümlü voltametri (CV) ile tespit edilmiştir. 100 mA/g akım yoğunluğunda en az 3000 mAh/g civarında spesifik kapasite elde edilmiş ve 100 şarj/deşarj döngüsü sonunda kapasitenin % 88?ini, 1000 döngü sonunda % 48?ini korumuştur. Yüksek (1, 2, 3 A/g) akım yoğunluklarında sırasıyla 1987, 1756, 1400 mAh/g kapasite elde edilmiştir; ultra yüksek (4, 5, 6, 8 A/g) akım yoğunlukları ile ise 1250, 952, 595, 333 mAh/g kapasite elde edilmiştir. Tüm bu şarj/deşarj döngüleri boyunca % 95 üzerinde kulombik etkinlik sağlanmıştır
Anahtar Kelime: Lityum-iyon piller Azot katkılı grafen aerojeller Silisyum 3 Boyutlu baskı

Konular: Kimya, Uygulamalı Kimya, İnorganik ve Nükleer
Erişim Türü: Erişime Açık
  • 3D systems. (2018). Eylül 2018 tarihinde https://www.3dsystems.com/solutions adresinden alındı
  • 1- FARKLI GRAFİT KAYNAKLARI KULLANARAK ELEKTROKİMYASAL EKSFOLİASYON İLEGRAFEN ÜRETİMİ (Bildiri - Ulusal Bildiri - Sözlü Sunum),
  • 3D Systems. (2018). Eylül 2018 tarihinde https://www.3dsystems.com/our-story adresinden alındı
  • 2- Lityum İyon Piller İçin Grafen Esaslı Elektrot Aktif Materyalleri (Bildiri - Ulusal Bildiri - Poster Sunum),
  • Adhikari, B., Biswas, A., & Banerjee, A. (2012). Graphene Oxide-Based Hydrogels to Make Metal Nanoparticle-Containing Reduced Graphene Oxide-Based Functional Hybrid Hydrogels. ACS Appl. Mater. Interf., 4(10), 5472–5482.
  • Bai, H., Li, C., Wang, X., & Shi, G. (2011). On the Gelation of Graphene Oxide. J.Phys. Chem. C., 115(13), 5545–5551.
  • Bak, D. (2003). Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assem. Autom., 23, 340-345.
  • Bak, S. M., Nam, K.-W., Lee, C.-W., Kim, K.-H., Jung, H.-C., Yang, X.-Q., & Kim, K.-B. (2011). Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries. J. Mater. Chem., 21, 17309.
  • Breen, J., Nottrot, R., & Stellingwerff, M. (2003). ngible Virtuality – Perceptions of computeraided and virtual modelling. Automation in Construction, 12, 649-653.
  • Bruce, P. G., Freunberger, S. A., Hardwick, L. J., & Tarascon, J.-M. (2012). Li–O2 and Li–S batteries with high energy storage. NATURE MATERIALS, 11, 19–29.
  • Bulut, E., Can, M., Özacar, M., & Akbulut, H. (2016). Synthesis and characterization of advanced high capacity cathode active nanomaterials with three integrated spinellayered phases for Li-ion batteries. . Journal of Alloys and Compounds, 670, 25-34.
  • Charlier, J., Eklund, P., Zhu, J., & Ferrari, A. (2008). lectron and Phonon Propertiesof Graphene: Their Relationship with Carbon Nanotubes. Berlin: Heidelberg SpringerVerlag.
  • Chen, D., Tang, L. H., & Li, J. H. (2010). Graphene-Based Materials in Electrochemistry. Chem. Soc. Rev., 39, 3157-3180.
  • Chen, J. (2008). Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2. Nature Nanotechnology, 3, 206.
  • Chen, J., Yao, B., Li, C., & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon,, 64, 225.
  • Chen, M., Zhang, C., Li, X., Zhang, L., Ma, Y., Xu, X., . . . J.P.Gao. (2013). A one-step method for reduction and self-assembling of graphene oxide into reduced graphene oxide aerogels . J. Mater. Chem. A, 1(8), 2869-2877 .
  • Chen, P., Yang, J., Li, S., Wang, Z., Xiao, T., Qian, Y., & Yu, S. (2013). Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy , 2, 249-256.
  • Chen, W. F., Li, S., Chen, C., & Yan, L. (2011). Self-Assembly and Embedding of Nanoparticles by In Situ Reduced Graphene for Preparation of a 3D Graphene/Nanoparticle Aerogel. Adv. Mater., 23(47), 5679–5683 .
  • Chen, W., & Yan, L. (2011). In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale, 3(8), 3132-3137.
  • Chen, Y., Chen, L., Bai, H., & Li, L. (2013). Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J. Mater. Chem. A, 1, 1992–2001.
  • Chen, Y., Chen, L., Bai, H., & Li, L. (2013). Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents for water purification . J. Mater. Chem. A, 1, 1992-2001.
  • Choi, J., Kim, K., Jeong, J., Cho, K. Y., Ryou, M.-H., & Lee, Y. M. (2015). Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 7(27), 14851-14858.
  • Choi, J.-W., Wicker, R., Lee, S.-H., Choi, K.-H., Ha, C.-S., & Chung, I. (2009). Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J. Mater. Process. Technol., 209, 5494-5503.
  • Christopher, S., & Jamie, H. (2013). Chapter 3 Properties of Graphene. Graphene: Fundamentals and Emergent Applications. içinde Elsevier.
  • Cong, H., Ren, X., Wang, P., & Yu, S. (2012). Macroscopic Multifunctional Graphene-Based Hydrogels and Aerogels by a Metal Ion Induced Self-Assembly Process. ACS Nano, 6(3), 2693–2703.
  • Crowthera, O., Keenya, D., Moureaua, D. M., Meyera, B., Salomona, M., & Hendrickson, M. (2012). Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane. J.Power Sources, 202, 347– 351.
  • Dahn, J. R., Zheng, T., Liu, Y., & Xue, J. S. (1995). Mechanisms for lithium insertion in carbonaceous materials. Science, 270, 590-593.
  • Deng, D., Pan, X., Yu, L., Cui, Y., Jiang, Y., Qi, J., . . . Bao, X. (2011). Toward N-Doped Graphene via Solvothermal Synthesis. Chem. Mater., 23, 1188-1193.
  • Deng, L., Zhu, G., Wang, J., Kang, L., Liu, Z., Yang, Z., & Wang, Z. (2011). Graphene–MnO2 and graphene asymmetrical electrochemical capacitor with a high energy density in aqueous electrolyte. J. Power Sour., 196(24), 10782-10787.
  • Dolenc, A., & Mäkelä, I. (1994). Slicing procedure for layered manufacturing techniques. Comput.-Aided Des., 26, 119-126.
  • Dreyer, D., Park, S., Bielawski, C., & Ruoff, R. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39, 228.
  • Duan, J., Chen, S., Jaroniec, M., & Qiao, S. (2015). Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catal., 5, 5207.
  • F. Meng, X. Z., & Luo, Y. (2011). Alkali-treated graphene oxide as a solid base catalyst: synthesis and electrochemical capacitance of graphene/carbon composite aerogels . J. Mater. Chem., 21, 18537-18539.
  • Fan, Z., Kai, W., Yan, J., Wei, T., Zhi, L., Feng, J., . . . Wei, F. (2011). Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide. ACS Nano, 5(1), 191-198.
  • Farahani, R. D., Chizari, K., & Therriault, D. (2014). Three-dimensional printing of freeform helical microstructures: a review. Nanoscale, 6, 10470-10485.
  • G. KUCINSKIS; G. BAJARS; J. KLEPERIS. (2013). Journal of Power Sources, 240, 66.
  • Geim, A. (2007). Making Graphene Visible. Applied Physics Letters, 91, 063124.
  • Geim, A., & Novoselov, K. (2007). The rise of graphene. Nature Materials, 6, 183.
  • Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S., & Wilcke, W. (2010). Lithium-Air Battery: Promise and Challenges. J. Phys. Chem. Lett., 1, 2193–2203.
  • Girishkumar, G., Mccloskey, B., Luntz, A., Swanson, S., & Wilcke, W. (2010). Lithium-Air Battery: Promise And Challenges. The Journal Of Physical Letters, 1, 2193.
  • Goodenough, J. B., & Kim, Y. (2010). Challenges for Rechargeable Li Batteries. Chem. Mater., 22, 587–603.
  • Guo, C. X., Yang, H. B., Sheng, Z. M., Lu, Z. S., Song, Q. L., & Li, C. M. (2010). Layered Graphene/Quantum Dots for Photovoltaic Devices. Angew. Chem., 49, 3014-3017.
  • H., D., & S., H. (2008). Made-to-measure pattern development based on 3D whole body scans. Int. J. Cloth. Sci. Technol., 20, 15-25.
  • H.Hu, Zhao, Z., Wan, W., Gogotsi, Y., & Qiu, J. (2013). Ultralight and Highly Compressible Graphene Aerogels. Adv. Mater., 25(15), 2219–2223 .
  • H.K.H.K. Jeong, Lee, Y., Lahaye, R., Park, M., An, K., Kim, I., . . . Lee, Y. (2008). Evidence of Graphitic AB Stacking Order of Graphite Oxides. J. Am. Chem. Soc., 130(4), 1362– 1366.
  • Han, W., Ren, L., Gong, L., Qi, X., Liu, Y., Yang, L., & Wei, X. (2014). Self-Assembled ThreeDimensional Graphene-Based Aerogel with Embedded Multifarious Functional Nanoparticles and Its Excellent Photoelectrochemical Activities. ACS Sustainable Chem. Eng., 2, 741−748
  • Hao, Y., Wang, Y., Wang, L., Ni, Z., Wang, Z., Wang, R., . . . Thong, J. (2010). Probing Layer Number and Stacking Order of Few-Layer Graphene by Raman Spectroscopy. small, 6, 195-200.
  • Hassan, F., Batmaz, R., Li, J., Wang, X., Xiao, X., Yu, A., & Chen, Z. (2015). Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithiumion batteries. Nat Commun., 6, 8597.
  • He, S. J., Song, B., Li, D., Zhu, C. F., Qi, W. P., Wen, Y. Q., . . . Fan, C. H. (2010). Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. Adv. Funct. Mater., 20, 453-459.
  • Hossain, S., & Linden, D. (1995). Handbook of Batteries (2. b.). New York: McGraw-Hill.
  • Hou, C., Zhang, Q., Li, Y., & Wang, H. (2012). P25-graphene hydrogels: room-temperature synthesis and application for removal of methylene blue from aqueous solution. J Hazard Mater. , 205, 229-235.
  • Hu, L., Wu, F., Lin, C., Khlobystov, A. N., & Li, L. (2013). Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nature Communications, 4, 1.
  • Hull, C. (1986, Mart 11). ABD Patent No. U.S. Patent 4,575,330.
  • Hull, C. (1990, Mayıs 29). ABD Patent No. U.S. Patent 4,929,402.
  • Hull, C. W. (1993, Ağustos 17). ABD Patent No. U.S. Patent 5,236,637.
  • Hull, C. W., Spence, S. T., Lewis, C. W., Vinson, W. A., Freed, R. S., & Smalley, D. R. (1992, Nisan 14). ABD Patent No. U.S. Patent 5,104,592.
  • Hummers, W., & Offeman, R. (1958). Preparation of Graphitic Oxide. J. Am. Chem. Soc., 80(6), 1339-1339.
  • Hummers, W., & Offeman, R. (1958). Preparation Of Graphitic Oxide. Am. Chem. Soc., 80, 1339.
  • Ibrahim, I., & Rummeli, M. (2013). Chapter 4 Methods For Obtaining Graphene. Graphene: Fundamentals and Emergent Applications. içinde Elsevier.
  • Jeong, H., Lee, J., Shin, W., YJ, C., HJ, S., JK, K., & JW., C. (2011). Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett., 11, 2472-2477.
  • Jiang, T., Zhang, R., Yin, Q., & Zhou, W. (2017). Morphology, composition and electrochemistry of a nano-porous silicon versus bulk silicon anode for lithium-ion batteries. J. Mater. Sci., 52, 3670-3677.
  • Jiang, X., Ma, Y., Li, J., Fan, Q., & Huang, W. (2010). Self-Assembly of Reduced Graphene Oxide into Three-Dimensional Architecture by Divalent Ion Linkage. J. Phys. Chem. C., 114(51), 22462–22465.
  • Johnson, B., & White, R. (1998). Characterization of commercially available lithium-ion batteries. J. Power Sources, 70, 48-54.
  • Kaniyoor, A., Baby, T., Arockiadoss, T., Rajalakshmi, N., & Ramaprabhu, S. (2011). Wrinkled Graphenes A Study on the Effects of Synthesis Parameters on Exfoliation-Reduction of Graphite Oxide. J. Phys. Chem. C., 17660–17669.
  • Kiehne, H. A. (Dü.). (2003). Battery Technology Handbook (2 b.). Renningen-Malsheim: Expert Verlag.
  • Kim, H., Lee, E.-J., & Sun, Y.-K. (2014). Recent advances in the Si-based nanocomposite materials as high capacity anode materials for lithium ion batteries. Materials Today, 17(6), 285-297.
  • Kovtyukhova, N. I., Ollivier, P. J., Martin, B. R., Mallouk, T. E., Chizhik, S. A., Buzaneva, E. V., & Gorchinskiy, A. D. (1999). Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chem. Mater., 11, 771- 778.
  • Kowalczk, I., Read, J., & Salomon, M. (2007). Li-air batteries: A classic example of limitations owing to solubilities. Pure Appl. Chem., 79(5), 851–860.
  • Kumar, S. (2003). Selective laser sintering: a qualitative and objective approach. JOM, 55, 43- 47.
  • Lee, C., Wei, X., Kysar, J., & Hone, J. (2008). Measurments of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385.
  • Lee, J.-S., Kim, S. T., Cao, R., Choi, N.-S., Liu, M., Lee, K. T., & Cho, J. (2011). Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air. Adv. Energy Mater, 1, 34– 50.
  • Leukers, B., Gülkan, H., Irsen, S. H., Milz, S., Tille, C., Schieker, M., & Seitz, H. (2005). Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J. Mater. Sci.: Mater. Med., 16, 1121-1124.
  • Li, C., & Shi, G. (2012). Three-dimensional graphene architectures. Nanoscale, 4, 5549-5563.
  • Li, M., Qu, M., He, X., & Yu, Z. (2009). Effects of electrolytes on the electrochemical performance of Si/graphite/disordered carbon composite anode for lithium-ion batteries. Electrochim. Acta, 54(19), 4506-4513.
  • Li, S., Zhu, F., Meng, F., Li, H., Wang, L., Zhao, J., . . . Jia, J. (2013). Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties. Journal of Electroanalytical Chemistry, 703, 135.
  • Li, X., Wang, H., Robinson, J. T., Sanchez, H., Diankov, G., & Dai, H. (2009). Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc., 131, 15939- 15944.
  • Liao, N., Zheng, B., Zhou, H., & Xue, W. (2015). Lithiation Behavior of High Capacity SiCO Anode Material for Lithium-ion Battery: A First Principle Study. Electrochim. Acta, 156, 115-120.
  • Lipton, J., Arnold, D., Nigl, F., Lopez, N., Cohen, D., Noren, N., & Lipson, H. (2010). MutlıMaterıal Food Prıntıng Wıth Complex Internal Structure Suıtable For Conventıonal Post-Processıng. Solid Freeform Fabrication Symposium. Texas, USA.
  • Liu, J., Chen, G., & Jiang, M. (2011). Supramolecular Hybrid Hydrogels from Noncovalently Functionalized Graphene with Block Copolymers. Macromolecules, 44(19), 7682– 7691.
  • Liu, W. (2014). Synthesis And Characterization Of Graphene And Carbon Nanotubes: A Review On The Past And Recent Developments. Journal Of Industrial And Engineering Chemistry, 20, 1171.
  • Lomeda, J., Doyle, C., & Kosynkin, D. (2008). Diazonium Functionalization of SurfactantWrapped Chemically Converted Graphene Sheets. J. Am. Chem. Soc., 130(48), 16201–16206.
  • M., S. E., Haggerty, J. S., Cima, M. J., & Williams, P. A. (1993, Nisan 20). ABD Patent No. U.S. Patent 5,204,055.
  • Ma, X., Li, Y., Wang, W., Ji, Q., & Xia, Y. (2013). Temperature-sensitive poly(Nisopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior. Euro. Poly. J., 49(2), 389-396.
  • Manthiram, A., Murugan, A. V., Sarkar, A., & Muraliganth, T. (2008). Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci., 1, 621–638.
  • Markano, D., Kosynkin, D., Berlin, J., Sinitskii, A., Sun, Z., Slesarev, A., . . . Tour, J. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4, 4806.
  • Melchels, F., Feijen, J., & DW, D. G. (2009). A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials, 30, 3801-3809.
  • Meligrana, G., Gerbaldi, C., Tuelb, A., Bodoardo, S., & Penazzi, N. (2006). Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. J. Power Sources, 160, 516–522.
  • Mohri, M., Yanagisawa, N., Tajima, Y., Tanaka, H., Miyake, T., Nakajima, S., . . . Wada, H. (1989). J. Power Sources, 26, 545.
  • Nardecchia, S., Carriazo, D., Ferrer, M., Gutierrez, M., & Monte, F. (2013). Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem. Soc. Rev., 42(2), 794-830.
  • Nazri, G.-A., & Pistoia, G. (2009). Lithium Batteries Science and Technology. New York: Springer.
  • Nekahi, A., Marashi, P., & Haghshenas, D. (2014). Transparent Conductive Thin Film Of Ultra Large Reduced Graphene Oxide Monolayers. Applied Surface Science, 295, 59.
  • Novoselov, K., & Geim, A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666.
  • Ohzukua, T., & Brodd, R. J. (2007). An overview of positive-electrode materials for advanced lithium-ion batteries. J. Power Sources, 174, 449-456.
  • Patil, A., Vickery, J., Scott, T., & Mann, S. (2009). Aqueous Stabilization and Self-Assembly of Graphene Sheets into Layered Bio-Nanocomposites using DNA. Adv. Mater., 21(31), 3159–3164 .
  • Pei, S., Zhao, J., Du, J., Ren, W., & Cheng, H. (2010). Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon, 48(15), 4466-4474.
  • Pfister, A., Landers, R., Laib, A., Hubner, U., Schmelzeisen, R., & Mulhaupt, R. (2004). Biofunctional rapid prototyping for tissue‐engineering applications: 3D bioplotting versus 3D printing. J. Polym. Sci. Polym. Chem., 42, 624-638.
  • Qin, S., Liu, X., Zhuo, R., & Zhang, X. (2012). Microstructure-Controllable Graphene Oxide Hydrogel Film Based on a pH-Responsive Graphene Oxide Hydrogel. Macromol. Chem. Phys., 213(19), 2044–2051.
  • Qiu, Y., & Park, K. (2001). Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev., 53(3), 321-329.
  • Reddy, A. L., Srivastava, A., Gowda, S. R., Gullapalli, H., Dubey, M., & Ajayan, P. M. (2010). Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application. ACS Nano, 4(11), 6337-6342.
  • Reddy, A., Srivastava, A., Gowda, S., Gullapalli, H., Dubey, M., & Ajayan, P. (2010). Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application. ACS Nano, 4, 6337-6342.
  • Sandoval, S., Kumar, N., Oro-Solé, J., Sundaresan, A., Rao, C. N., Fuertes, A., & Tobias, G. (2016). Tuning the nature of nitrogen atoms in N-containing reduced graphene oxide. Carbon, 96, 594-602.
  • Schwierz, F. (2010). Graphene Transistors. Nat. Nanotechnol., 5, 487-496.
  • Scrosati, B., & Garche, J. (2010). Lithium batteries: Status, prospects and future. J. Power Sources, 195, 2419.
  • Secor, E. B., & Hersam, M. C. (2015). Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics. J. Phys. Chem. Lett., 6, 620-626.
  • Shao, Y., Zhang, S., & Engelhard, M. (2010). Nitrogen-doped graphene and its electrochemical applications . J. Mate. Chem., 20, 7491-7496.
  • Shen, J., Yan, B., Li, T., Long, Y., Li, N., & Ye, M. (2012). Study on graphene-oxide-based polyacrylamide composite hydrogels. Composites Part A: Appl. Sci. Manuf., 43(9), 1476-1481.
  • Shen, J., Yan, B., Li, T., Long, Y., Li, N., & Ye, M. (2012). Study on graphene-oxide-based polyacrylamide composite hydrogels. Composites Part A: Appl. Sci. Manuf., 43(9), 1476-1481.
  • Sheng, K., Y. X., C. L., & Shi, G. (2011). High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide . New Carbon Materials, 26(1), 9-15.
  • Shukla, A. K., & Kumar, T. P. (2008). Materials for next-generation lithium batteries. CURRENT SCIENCE, 94(3), 314-331.
  • Song, T., Xia, J., Lee, J.-H., Lee, D. H., Kwon, M.-S., Choi, J.-M., . . . Paik, U. (2010). Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries. Nano Lett., 10(5), 1710-1716.
  • Song, X., Lin, L., Rong, M., Wang, Y., Xie, Z., & Chen, X. (2014). Mussel-inspired, ultralight, multifunctional 3D nitrogen-doped graphene aerogel. Carbon, 80, 174-182.
  • Sood, A., Ohdar, R., & Mahapatra, S. (2009). Improving Dimensional Accuracy of Fused Deposition Modelling Processed Part Using Grey Taguchi Method. Materials & Design, 30, 4243-4252.
  • Stankovich, S., Dikin, D. A., Dommett, G. H., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., . . . Ruoff, R. S. (2006). Graphene-Based Composite Materials. Nature, 442, 282-286.
  • Stoller, M., Park, S., Zhu, Y.-W., An, J., & Ruo, R. (2008). Graphene-Based Ultracapacitors. Nano Lett., 8(10), 3498–3502.
  • Sun, H., Xu, Z., & Gao, C. (2013). Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels. Adv. Mater., 25(18), 2554-2560.
  • Sun, S., & Wu, P. (2011). A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. J. Mater. Chem., 21, 4095-4097 .
  • Tan, C., Cao, J., Khattak, A. M., Cai, F., Jiang, B., Yang, G., & Hu, S. (2014). High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries. Journal of Power Sources, 270, 28-33.
  • Tang, L., Wang, Y., Li, Y., Feng, H., Lu, J., & Li, J. (2009). Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Adv. Funct. Mater., 19, 2782–2789.
  • Teo, G. (2008). Visibility Study Of Graphene Multilayer structures. Journal of Applied Physics, 103, 124302.
  • Thackeray, M. M. (1999). Spinel Electrodes for Lithium Batteries. J. Am. Ceram. Soc., 82(12), 3347-3354.
  • Thackeray, M. M., Wolvertonb, C., & Isaacs, E. D. (2012). Electrical energy storage for transportation—approaching the limits of, and. Energy Environ. Sci., 5, 7854.
  • Thapa, A. K., & Ishihara, T. (2011). Mesoporous a-MnO2/Pd catalyst air electrode for rechargeable lithium–air battery. J.Power Sources, 196, 7016–7020.
  • The International Society for optics and photonics. (2018). Eylül 2018 tarihinde https://spie.org/membership/spie-professional-magazine/archives/chuck-hull?SSO=1 adresinden alındı
  • Vikipedi. (2017). 2017 tarihinde https://tr.wikipedia.org/wiki/Grafen adresinden alındı
  • Wakihara, M., & Yamamoto, o. (1998). Lithium Ion Batteries Fundamentals and Performance. Weinheim: WILEY-VCH.
  • Waldbaur, A., Rapp, H., Länge, K., & Rapp, B. E. (2011). Let there be chip—towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal. Methods, 3, 2681-2716.
  • Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., & Yao, J. (2008). Facile Synthesis and Characterization of Graphene Nanosheets. J. Phys. Chem. C, 112, 8192-8195.
  • Wang, W., Favors, Z., Ionescu, R., Ye, R., Bay, H., Ozkan, M., & Ozkan, C. (tarih yok). Monodisperse porous silicon spheres as anode materials for lithium ion batteries.
  • Wang, X., Sun, G., Routh, P., Kim, D., Huang, W., & Chen, P. (2014). Heteroatom-doped graphene materials: syntheses,properties and applications. Chem. Soc. Rev, 43, 7067.
  • Wikipedia. (2017). 2017 tarihinde https://en.wikipedia.org/wiki/Graphene adresinden alındı
  • Winter, M., & Brodd, R. (2004). What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev., 104(10), 4245-4270.
  • Worsley, M., Pauzauskie, P., Olson, T., Biener, J., Satcherand, J. H., & Baumann, T. (2010). Synthesis of Graphene Aerogel with High Electrical Conductivity. J. Am. Chem. Soc., 132(40), 14067–14069.
  • Wu, C., Fan, W., Zhou, Y., Luo, Y., Gelinsky, M., Chang, J., & Xiao, Y. (2012). 3D-printing of highly uniform CaSiO3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis. J. Mater. Chem., 22, 12288-12295.
  • Wu, D., Zhang, F., Liang, H., & Feng, X. (2012). Nanocomposites and macroscopic materials: assembly of chemically modified graphene sheets. Chem. Soc. Rev., 41, 6160-6177.
  • Wu, Z., Winter, A., Chen, L., Sun, Y., Turchanin, A., Feng, X., & Müllen, K. (2012). ThreeDimensional Nitrogen and Boron Co-doped Graphene for High-Performance All-SolidState Supercapacitors. Adv. Mater., 24, 5130-5135.
  • Wu, Z., Zhou, G., Yin, L., Ren, W., Li, F., & Cheng, H. (2012). Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 1(1), 107-131.
  • Xiao, J., Mei, D., Li, X., Xu, W., Wang, D., Graff, G. L., . . . Zhang, J. (2011). Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Nano Lett., 11, 5071.
  • Xu, C., Sun, J., & Gao, L. (2012). Controllable synthesis of monodisperse ultrathin SnO2 nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties. Nanoscale, 4, 5425-5430.
  • Xu, Y., Lin, Z., Zhong, X., Papandrea, B., Huang, Y., & Duan, X. (2015). Solvated Graphene Frameworks as High-Performance Anodes for Lithium-Ion Batteries. Angew. Chem. Int. Ed., 54, 5345-5350.
  • Xu, Y., Sheng, K., Li, C., & Shi, G. (2010). Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano, 4, 4324-4330.
  • Xu, Y., Sheng, K., Li, C., & Shi, G. (2010). Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano, 4(7), 4324–4330.
  • Xu, Y., Sheng, K., Li, C., & Shi, G. (2010). Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano, 4(7), 4324–4330.
  • Xu, Y., Wu, Q., Sun, Y., Bai, H., & Shi, G. (2012). Three-Dimensional Self-Assembly of Graphene Oxide and DNA into Multifunctional Hydrogels. ACS Nano, 4(12), 7358– 7362.
  • Ye, S., Feng, J., & Wu, P. (2013). Deposition of Three-Dimensional Graphene Aerogel on Nickel Foam as a Binder-Free Supercapacitor Electrode. ACS Applied Materials & Interfaces, 5, 7122-7129.
  • Yoo, E., Kim, J., Hosono, E., Zhou, H., Kudo, T., & Honma, I. (2008). Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett., 8, 2277.
  • Yoo, J. J., Balakrishnan, K., Huang, J. S., Meunier, V., Sumpter, B. G., Srivastava, A., . . . Vajtai, R. (2011). Ultrathin Planar Graphene Supercapacitors. Nano Lett., 11, 1423- 1427.
  • Z.H.Tang, S.L.Shen, Zhuang, J., & X.Wang. (2010). Noble-Metal-Promoted ThreeDimensional Macroassembly of Single-Layered Graphene Oxide. Angew. Chem., 122(27), 4707–4711.
  • Zhang, C., Dabbs, D. M., Liu, L.-M., Aksay, I. A., Car, R., & Selloni, A. (2015). Combined Effects of Functional Groups, Lattice Defects, and Edges in the Infrared Spectra of Graphene Oxide. J. Phys. Chem. C., 119, 18167−18176.
  • Zhang, L., Chen, G., Hedhili, M., Zhang, H., & Wang, P. (2012). Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method. Nanoscale, 4, 7038-7045.
  • Zhao, S., Yin, H., Du, L., Yin, G., Tang, Z., & Liu, S. (2014). Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. J. Mater. Chem. A, 2, 3719-3724.
  • Zhao, Y., Hu, C., Hu, Y., Cheng, H., Shi, G., & Qu, L. (2012). Ultralight, nitrogen-doped graphene framework. Angew. Chem., 51(45), 11371-11375.
  • Zhendong, H. (2012). Development of Nano-structured Electrode Materials for High Performance Energy Storage System. The Hong Kong University of Science and Technology.
  • Zhou, S., & Chu, B. (1998). Synthesis and Volume Phase Transition of Poly(methacrylic acidco-N-isopropylacrylamide) Microgel Particles in Water. J. Phys.Chem. B, 102(8), 1364– 1371.
  • Zhu, C., Han, T., Duoss, E., Golobic, A., & Kuntz, J. (2015). highly compreesible 3D periodc graphene aerogel microlattices. Nature Communications, 6, 6962.
  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Adv. Mater., 22, 3906.
  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J., Potts, J., & Ruoff, R. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater., 22(35), 3906- 3924.
  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J., Potts, J., & Ruoff, R. (2010). Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater., 22, 3906-3924
APA BULUT E, Akbulut H, CAN M (2018). Lityum-Iyon Piller Için 3d Baskı Teknolojisi Ile Yüksek Kapasiteli 3d Serbest Anot Üretimi. , 1 - 0.
Chicago BULUT Emrah,Akbulut Hatem,CAN Mustafa Lityum-Iyon Piller Için 3d Baskı Teknolojisi Ile Yüksek Kapasiteli 3d Serbest Anot Üretimi. (2018): 1 - 0.
MLA BULUT Emrah,Akbulut Hatem,CAN Mustafa Lityum-Iyon Piller Için 3d Baskı Teknolojisi Ile Yüksek Kapasiteli 3d Serbest Anot Üretimi. , 2018, ss.1 - 0.
AMA BULUT E,Akbulut H,CAN M Lityum-Iyon Piller Için 3d Baskı Teknolojisi Ile Yüksek Kapasiteli 3d Serbest Anot Üretimi. . 2018; 1 - 0.
Vancouver BULUT E,Akbulut H,CAN M Lityum-Iyon Piller Için 3d Baskı Teknolojisi Ile Yüksek Kapasiteli 3d Serbest Anot Üretimi. . 2018; 1 - 0.
IEEE BULUT E,Akbulut H,CAN M "Lityum-Iyon Piller Için 3d Baskı Teknolojisi Ile Yüksek Kapasiteli 3d Serbest Anot Üretimi." , ss.1 - 0, 2018.
ISNAD BULUT, Emrah vd. "Lityum-Iyon Piller Için 3d Baskı Teknolojisi Ile Yüksek Kapasiteli 3d Serbest Anot Üretimi". (2018), 1-0.
APA BULUT E, Akbulut H, CAN M (2018). Lityum-Iyon Piller Için 3d Baskı Teknolojisi Ile Yüksek Kapasiteli 3d Serbest Anot Üretimi. , 1 - 0.
Chicago BULUT Emrah,Akbulut Hatem,CAN Mustafa Lityum-Iyon Piller Için 3d Baskı Teknolojisi Ile Yüksek Kapasiteli 3d Serbest Anot Üretimi. (2018): 1 - 0.
MLA BULUT Emrah,Akbulut Hatem,CAN Mustafa Lityum-Iyon Piller Için 3d Baskı Teknolojisi Ile Yüksek Kapasiteli 3d Serbest Anot Üretimi. , 2018, ss.1 - 0.
AMA BULUT E,Akbulut H,CAN M Lityum-Iyon Piller Için 3d Baskı Teknolojisi Ile Yüksek Kapasiteli 3d Serbest Anot Üretimi. . 2018; 1 - 0.
Vancouver BULUT E,Akbulut H,CAN M Lityum-Iyon Piller Için 3d Baskı Teknolojisi Ile Yüksek Kapasiteli 3d Serbest Anot Üretimi. . 2018; 1 - 0.
IEEE BULUT E,Akbulut H,CAN M "Lityum-Iyon Piller Için 3d Baskı Teknolojisi Ile Yüksek Kapasiteli 3d Serbest Anot Üretimi." , ss.1 - 0, 2018.
ISNAD BULUT, Emrah vd. "Lityum-Iyon Piller Için 3d Baskı Teknolojisi Ile Yüksek Kapasiteli 3d Serbest Anot Üretimi". (2018), 1-0.