Kırılma ve Çatlak İlerleme Analiz Sistemi (FCPAS) – Aşama 3

30 14

Proje Grubu: MAG Sayfa Sayısı: 480 Proje No: 217M690 Proje Bitiş Tarihi: 15.11.2020 Metin Dili: Türkçe İndeks Tarihi: 29-03-2021

Kırılma ve Çatlak İlerleme Analiz Sistemi (FCPAS) – Aşama 3

Öz:
Bu projenin ilk asamasında (Kırılma ve Çatlak Ilerleme Analiz Sistemi (FCPAS) - Asama 1, 2008-2011), temel geometrilere sahip parçalarda mod-I çatlak ilerleme analiz kabiliyetleri gelistirilmis ve kullanıcı ara yüzü olusturulmustur. Asama 2 projesinde (2013-2016), mod-I çatlak ilerleme analiz kabiliyetleri pratik saha problemlerine uygulanarak ilave saglamalar yapılmıs, karısık mod yük altında iki ve üç boyutlu çatlak ilerleme problemleri için deneysel ve analiz yöntemleri ile iyilestirilmis kırılma kriterleri olusturulmustur. Yukarıda tanımlanan çalısmalar ile karmasık geometri ve yük altında kırılma ve çatlak ilerleme analizlerinin yapılabilmesi için gerekli yöntem ve yazılım altyapısı olusturulmustur. Bu projede, gelistirilmis olan karısık mod analiz yetenekleri, yeni endüstriyel ve literatür problemlerine uygulanmıs ve olasılık temelli iki ve üç boyutlu çatlak ilerleme deney ve analizleri gerçeklestirilmistir. Bu çalısmalar, asagıda dört temel kategoride tanımlanmaktadır; 1) FCPAS karısık mod yük altında analiz kabiliyetlerinin enerji, ulastırma, havacılık ve savunma alanlarında karsılasılan kırılma ve çatlak ilerleme problemlerine uygulanması ve dogrulamalarının yapılması. Bu kapsamda, degisik uygulamalar yapılmıs, tahmin edilen düzlemsel olmayan üç boyutlu çatlak ilerleme yüzeyleri referans veriler ile dogrulanmıstır. 2) Olasılık Temelli Iki-Boyutlu Kırılma Mekanigi Analiz ve Deneysel Çalısmaları: Alüminyum 7075 ve standart Compact Tension (CT) numunesi kullanılarak malzeme özelliklerindeki degiskenlikler belirlenmis, analizler yapılarak sabit ve degisken genlikli yükleme sartları için mevcut yorulma çatlak ilerleme modelleri degerlendirilmis ve iyilestirilmis bir model önerilmistir. Elde edilen veriler asagıdaki üç boyutlu çatlak ilerleme analizlerinde kullanılmıstır. 3) Olasılık Temelli Üç-Boyutlu Kırılma Mekanigi Analiz ve Deneysel Çalısmaları: Alüminyum 7075 malzemesinden yapılmıs standart olmayan ve üç boyutlu mod-I yüzey çatlagı içeren numuneler kullanılarak yukarıdaki is paketinden elde edilen veriler ile sabit ve degisken genlikli yükleme sartları altında yorulma çatlak ilerleme analizleri gerçeklestirilmis ve deneysel sonuçlar ile saglamaları yapılmıstır. Bagımsız bir çatlak ilerleme analiz yazılımı gelistirilmistir. 4) FCPAS grafiksel kullanıcı ara yüzünün (GUI) güncellenmesi. Yukarıda tanımlanan gelismeler çerçevesinde kullanıcı ara yüzünde güncellemeler yapılmıstır. Proje kapsamında yapılan çalısmalar ile FCPAS'in mod-I ve karısık mod yük sartları altındaki kırılma ve çatlak ilerleme problemlerine uygulanabilir bir program oldugunun ispatı yapılmıs, olasılık temelli çatlak ilerleme analiz kabiliyetleri gelistirilerek saglamaları yapılmıstır. Böylece, projenin 4. asaması olarak planlanan, yüksek sıcaklık ve degisken sartlar altında gerçeklesen kırılma problemleri çalısmalarının zemini hazırlanmıstır.
Anahtar Kelime: olasılık temelli yorulma çatlak ilerlemesi sonlu elemanlar yöntemi kırılma mekanigi

Konular: Mühendislik, Makine
Erişim Türü: Erişime Açık
  • Analyzing Digital Images . ADI16, 2016, https://www.umassk12.net/adi/ Andresen, P. L., Ayhan, A., Catlin, G., Catlin, B., & Miller, W. D. 2004. gDevelopment and the Use of a Lee James Surface Cracked Specimen for Evaluating Chemistry and Flow Rate Effects in Realistic Cracksh. In CORROSION 2004. NACE International. ANSYS Version 12.0. 2009. Ansys Inc., Canonsburg, PA, USA.
  • 1- Effects of microstructural through-thickness non-uniformity and crack size on fatigue crack propagation and fracture of rolled Al-7075 alloy (Makale - Diger Hakemli Makale),
  • Annis, C. 2004. gProbabilistic life prediction isn't as easy as it looks.h In Probabilistic aspects of life prediction. ASTM International.
  • 2- Variation in Crack Growth Properties and Its Effect on Fatigue Crack Growth Life for Al 7075-T6 (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • ASTM International, 2013. gE399-12, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K.c of Metallic Materials".
  • 3- Applications on Three-Dimensional Mixed Mode Fatigue Crack Propagation Using Fracture and Crack Propagation Analysis System (FCPAS) (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • ASTM International, 2014. gE647 . 13, Standard Test Method for Measurement of Fatigue Crack Growth Rates".
  • 4- Three-Dimensional Mixed Mode Stress Intensity Factors for Inclined Elliptical Surface Cracks in Plates under Uniform Tensile Load (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • Avc., A., Akdemir, A., Ar.kan, H. 2005. "Mixed-mode fracture behavior of glass fiber reinforced polymer concrete". Cem Concr Res, 35(2):243.7.
  • 5- Evaluation of Different Crack Growth Retardation Models Under Single Overloads Using Al-7075 Material (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • Avram, J. 2006. gRound Robin Fatigue Crack Growth Testing Resultsh (No. USAFA-TR-2006- 10). A.r Force Academy Colorado Spr.ngs Co Center For A.rcraft Structural L.fe Extens.on. Ayatollahi, M. R., Saboori, B. 2015. "A new fixture for fracture tests under mixed mode I/III loading". Eur J Mech A Solids, 51:67.76.
  • 6- Yayılı Yük Altında Bulunan Levhalardaki Eliptik Karısık Mod Yüzey Çatlaklarının FCPAS ile Kırılma Analizleri (Tez (Arastırmacı Yetistirilmesi) - Yüksek Lisans Tezi),
  • Ayhan, A. O., Nied, H. F. 2002. "Stress intensity factors for three]dimensional surface cracks using enriched finite elements". International Journal for Numerical Methods in Engineering, 54(6), 899-921.
  • Ayhan, A. O. 2004. "Mixed mode stress intensity factors for deflected and inclined surface cracks in finite-thickness plates". Engineering fracture mechanics, 71(7-8), 1059-1079.
  • Ayhan, A. O. 2007. "Mixed mode stress intensity factors for deflected and inclined corner cracks in finite-thickness plates". International Journal of Fatigue, 29(2), 305-317.
  • Ayhan AO. 2011. gSimulation of three-dimensional fatigue crack propagation using enriched finite elementsh. Comp. Struct. 89:801-812.
  • Ayhan, A. O. 2016. "K.r.lma ve Catlak .lerleme Analiz Sistemi-A.ama 2" Proje No: 113M407, TUB.TAK 1001, Proje Sonuc Raporu.
  • Ayhan, A. O., Demir, O. 2019. "A novel test system for mixed mode-I/II/III fracture tests.Part 1: Modeling and numerical analyses". Engineering Fracture Mechanics, 218, 106597.
  • Ayhan, A. O., ve Yaren, M.F. 2020. "Effects of microstructural through]thickness non]uniformity and crack size on fatigue crack propagation and fracture of rolled Al]7075 alloy." Fatigue & Fracture of Engineering Materials & Structures 43.9. 2071-2084.
  • Barsom, J. M. 1976. gFatigue crack growth under variable-amplitude loading in various bridge steels.h In Fatigue Crack Growth under Spectrum Loads. ASTM International.
  • Bergner, F., & Zouhar, G. 2020. gA new approach to the correlation between the coefficient and the exponent in the power law equation of fatigue crack growthh. International Journal of Fatigue, 22(3), 229-239.
  • Chandler, R., and P. Northrop. "Documentation for file randgen.f." (2007). www.ucl.ac.uk/~ucakarc/work/randgen.html
  • Chang, J., Xu, J. Q., Mutoh, Y. 2006. "A general mixed-mode brittle fracture criterion for cracked materials". Eng Fract Mech, 73(9):1249.63.
  • Chang, J. B. 1980. gThe Sixth Quarterly Interim Report, Improved Methods for Predicting Spectrum Loading Effects.h NA-78-491-6, Rockwell International, North American Aircraft Division, Los Angeles, California.
  • Chang, J. B., & Hudson, C. M. (Eds.). 1981. gMethods and models for predicting fatigue crack growth under random loading (No. 748)h. ASTM International
  • Citarella, R., Lepore, M., Shlyannikov, V., Yarullin, R. 2014. "Fatigue surface crack growth in cylindrical specimen under combined loading". Eng Fract Mech, 131:439.53.
  • Citarella, R., Lepore, M., Maligno, A., Shlyannikov, V. 2015. "FEM simulation of a crack propagation in a round bar under combined tension and torsion fatigue loading". Frattura ed Integrita Strutturale, 31:138.47.
  • Citarella, R., Giannella, V., Lepore, M., Dhondt, G. 2018. "Dual boundary element method and finite element method for mixed]mode crack propagation simulations in a cracked hollow shaft". Fatigue & Fracture of Engineering Materials & Structures, 41.1,84-98.
  • Coules, H. E. 2016. "Stress intensity interaction between dissimilar semi-elliptical surface cracks". International Journal of Pressure Vessels and Piping,146, 55-64.
  • Davidson, B. D., Sediles, F. O. 2011. "Mixed-mode I-II.III delamination toughness determination via a shear.torsion-bending test". Composites Part A, 42:589.603.
  • Demir, O,. 2016. gUc boyutlu kar...k mod k.r.lma kriterlerinin say.sal ve deneysel olarak incelenmesi ve geli.tirilmesih. Sakarya Universitesi Fen Bilimleri Enstitusu Doktora Tezi.
  • Demir, O., Ayhan, A. O., .ric, S. 2019. "A novel test system for mixed mode-I/II/III fracture tests. Part 2: Experiments and criterion development". Engineering Fracture Mechanics, 220, 106671.
  • Dowling, Norman E. 2012. gMechanical behavior of materials: engineering methods for deformation, fracture, and fatigueh. Pearson.
  • Elber, W. 1971. gThe significance of fatigue crack closure. In Damage tolerance in aircraft structuresh. ASTM International.
  • Erdogan, F., Sih, G. 1963. "On the crack extension in plates under plane loading and transverse shear". J. Basic Eng., 85(4),519.525.
  • Frangi, A., Novati, G., Springhetti, R., Rovizzi, M. 2002. "3D fracture analysis by the symmetric Galerkin BEM". Computational Mechanics, 28(3-4), 220-232.
  • Forman, R. G. 1972. gStudy of fatigue crack initiation from flaws using fracture mechanics theoryh. Engineering Fracture Mechanics, 4(2), 333-345.
  • Forman, R. G., ve Mettu, S. R. 1990. gBehavior of surface and corner cracks subjected to tensile and bending loads in Ti-6Al-4V alloy.h
  • Forman, R. G., Shivakumar, V., Mettu, S. R., ve Newman, J. C. 2000. gFatigue crack growth computer program NASGRO version 3.0. Reference Manualh, NASA JSC-22267B.
  • Gallagher, J. P. 1974. gA generalized development of yield zone modelsh (No. AFFDL-TMFBR- 74-28). A.r Force Fl.ght Dynam.cs Lab Wr.ght-Patterson Afb OH.
  • Grasso, M., Xu, Y., Russo, R., Rosiello, V. 2018. "Mixed mode fatigue crack propagation behaviour of aluminium F357 alloy". Engineering Failure Analysis, 90,463-475.
  • Guozhong, C., Kangda, Z., Dongdi, W. 1996. "Analyses of embedded elliptical cracks in finite thickness plates under uniform tension". Engineering fracture mechanics, 54(4), 579-588.
  • Hannemann, R., Koster, P., Sander, M. 2017. "Investigations on crack propagation in wheelset axles under rotating bending and mixed mode loading". Proc Struct Integ, 5:861.8.
  • Huang, X. P., vd. 2005. "Fatigue crack growth with overload under spectrum loading." Theoretical and applied fracture mechanics 44.2. 105-115.
  • Huang, X., Torgeir, M., & Cui, W. 2008. gAn engineering model of fatigue crack growth under variable amplitude loading.h International Journal of Fatigue, 30(1), 2-10.
  • Hudson, C. M. 1981. gA root-mean-square approach for predicting fatigue crack growth under random loading.h In Methods and models for predicting fatigue crack growth under random loading. ASTM International.
  • Hyde, T. H., Aksogan, O. 1994. "A specimen for determining fracture properties under combined modes, I, II, and III crack tip conditions". J Strain Anal Eng Design, 29(1):1.6.
  • Kamat, S. V. Hirth, J. P., Mehrabian, R. 1989. "Combined mode I-Mode III fracture toughness of alumina particulate-reinforced aluminum alloy-matrix composites". Scripta Met, 23(4):523. 8.
  • Iric, S., ve Ayhan, A. O. 2017. gDependence of Fracture Toughness on Rolling Direction in Aluminium 7075 Alloysh. Acta Physica Polonica A, 132(3), 892-895.
  • Khan, S. U., Alderliesten, R. C., Schijve, J., & Benedictus, R. 2007. gOn the fatigue crack growth prediction under variable amplitude loadingh. Computational and experimental analysis of damaged materials, 77-105.
  • Kamat, S. V., Hirth, J. P. 1996. "Effect of aging on mixed-mode I/III fracture toughness of 2034 aluminum alloys". Acta Mater, 44(3):1047.54.
  • Karpour, A., Zarrabi, K. 2010. "Mixed-mode I/II/III fracture grip interface". Recent Pat Mech Eng, 3:131.9.
  • Krueger, R. 2004. "Virtual crack closure technique: history, approach, and applications". Appl. Mech. Rev., 57(2), 109-143.
  • L.A. James and W.K. Wilson, 1994. gDevelopment of a Surface Cracked Specimenh, Theoretical and Applied Fracture Mechanics 20, p.115-121.
  • Liao, C. Y., Atluri, S. N. 1989. "Stress intensity factor variation along a semicircular surface flaw in a finite-thickness plate". Engineering fracture mechanics, 34(4), 957-976.
  • Lin, B., Mear, M. E., Ravi-Chandar, K. 2010. "Criterion for initiation of cracks under mixedmode I+ III loading". Int J Fract, 165(2):175.88.
  • Liu, S., Chao, Y. J., Zhu, X. 2004. "Tensile-shear transition in mixed mode I/III fracture". Int J Solids Struct, 41(22):6147.72.
  • Livieri, P., Segala, F. 2016. "Stress intensity factors for embedded elliptical cracks in cylindrical and spherical vessels". Theoretical and Applied Fracture Mechanics, 86, 260-266.
  • Manoharan, M., Hirth, J. P., Rosenfield, A. R. 1989. "Combined mode I-mode III fracture toughness of a high carbon steel". Scripta Met, 23(5):763.6.
  • Manjunatha, C. M. 2006. "Fatigue crack growth prediction under spectrum load using crack driving force Delta K." AIAA journal 44.2 396-399.
  • McDonald, V., & Daniewicz, S. R. 2002. gAn experimental study of the growth of surface flaws under cyclic loading.h In Fatigue and Fracture Mechanics: 32nd Volume. ASTM International.
  • Meggiolaro, M. A., & Castro, J. T. P. 2001. gComparison of load interaction models in fatigue crack propagation.h In XVI Congresso Brasileiro de Eng. Mecanica (COBEM), ABCM, Uberlandia, MG.
  • Minitab, 2014. I. MINITAB release 17: Statistical software for windows. State College, PA, USA. Microsoft Office 2013, Excel Version 15.0, Microsoft.
  • Newman, J. 1981. "A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading, Methods and Models for Predicting Fatigue Crack Growth under Random Loading". ASTM International.
  • Newman Jr, J. C., Raju, I. S. 1981. "An empirical stress-intensity factor equation for the surface crack". Engineering fracture mechanics, 15(1-2), 185-192.
  • Okada, H., Kawai, H., Tokuda, T., Fukui, Y. 2013. "Fully automated mixed mode crack propagation analyses based on tetrahedral finite element and VCCM (virtual crack closureintegral method)". International Journal of Fatigue, 50,33-39.
  • Okada, H., Koya, H., Kawai, H., Li, Y., Osakabe, K. 2016. "Computations of stress intensity factors for semi-elliptical cracks with high aspect ratios by using the tetrahedral finite element (fully automated parametric study)". Engineering Fracture Mechanics,158, 144-166.
  • Paris, P., Erdogan, F. 1963. gA critical analysis of crack propagation lawsh. Journal of basic engineering, 85(4), 528-533.
  • Porter, Theodore R. 1972. "Method of analysis and prediction for variable amplitude fatigue crack growth." Engineering Fracture Mechanics 4.4. 717-736.
  • Raju, I. S., Newman Jr, J. C. 1979. "Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates". Engineering fracture mechanics, 11(4), 817-829.
  • Rao, B. C., Srinivas, M., Kamat, S. V. 2008. "The effect of mixed mode I/III loading on the fracture toughness of Timetal 834 titanium alloy". Mater Sci Eng A, 476(1):162.8.
  • Razavi, S. M. J., Berto, F. 2019. "A new fixture for fracture tests under mixed mode I/II/III loading". Fatigue Fract Eng Mater Struct, 1.15.
  • Ren, X., Guan, X. 2017. "Three dimensional crack propagation through mesh-based explicit representation for arbitrarily shaped cracks using the extended finite element method". Engineering Fracture Mechanics, 177,218-238.
  • Rice, James R. 1968. "A path independent integral and the approximate analysis of strain concentration by notches and cracks." 379-386.
  • Richard, H. A., Kuna, M. 1990. "Theoretical and experimental study of superimposed fracutre modes I, II and III". Eng Fract Mech, 35:949.60.
  • Richard, H. A.,Fulland, M., Buchholz, F. G., Schollmann, M. 2003. "3D fracture criteria for structures with cracks". Steel Res, 74:491.7.
  • Richard, H. A., Schramm, B., Schirmeisen, N. H. 2014. "Cracks on mixed mode loading theories, experiments, simulations". Int J Fat, 62:93.103.
  • Richard, H. A., Eberlein, A. 2016. "Material characteristics at 3D-mixed-mode-loadings". Proc Struct Integ, 2:1821.8.
  • Richard, H. A., Eberlein, A., Kullmer, G. 2017. "Concepts and experimental results for stable and unstable crack growth under 3D-mixed-mode-loadings". Eng Fract Mech, 174:10.20.
  • Rudd, J. L., & Engle, R. M. 1981. gCrack growth behavior of center-cracked panels under random spectrum loading.h In Methods and models for predicting fatigue crack growth under random loading. ASTM International.
  • Rybicki, E. F., & Kanninen, M. F. 1977. "A finite element calculation of stress intensity factors by a modified crack closure integral". Engineering fracture mechanics, 9(4), 931-938.
  • Saboori, B., Ayatollahi, M. R. 2017. "Experimental fracture study of MWCNT/epoxy nanocomposites under the combined out-of-plane shear and tensile loading". Polym Test, 59:193.202.
  • Safaei, S., Ayatollahi, M. R., Saboori, B. 2017. "Fracture behavior of GPPS brittle polymer under mixed mode I/III loading". Theor Appl Fract Mech, 91:103.15.
  • Sahin, H. 2020. "Yay.l. yuk alt.nda bulunan levhalardaki eliptik kar...k mod yuzey catlaklar.n.n FCPAS ile k.r.lma analizleri". Sakarya Universitesi Fen Bilimleri Enstitusu, Yuksek Lisans Tezi.
  • Sander, M. 2004. gComparison of fatigue crack growth concepts with respect to interaction effectsh. In ECF15, Stockolm.
  • Sander, M., & Richard, H. A. 2006. gFatigue crack growth under variable amplitude loading Part II: analytical and numerical investigationsh. Fatigue & Fracture of Engineering Materials & Structures, 29(4), 303-319.
  • Schirmeisen, N-H., Richard, H. A. 2009. "Weiterentwicklung der AFM-probe zur experimentellen analyse raumlicher mixed-mode-beanspruchung von Rissen". DVM-Bericht 241. Berlin: Deutscher Verband fur Materialforschung und.prufung e.V., p. 211.20.
  • Shah, R. C., Kobayashi, A. S. 1973. "Stress intensity factors for an elliptical crack approaching the surface of a semi-infinite solid". International Journal of Fracture, 9(2), 133-146.
  • Shah, R. C. 1974. "Fracture under combined modes in 4340 steel". In: Fracture analysis, ASTM STP 560. Amer. Soc. for Test. Mat., p. 29.52.
  • Sheu, B. C., Song, P. S., & Hwang, S. (1995). Shaping exponent in Wheeler model under a single overload. Engineering fracture mechanics, 51(1), 135-143.
  • Shivakumar, K. N., Tan, P. W., Newman Jr, J. C. 1988. "A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies".
  • Shu, Y.,Li, Y., Duan, M., Yang, F. 2017. "An X-FEM approach for simulation of 3-D multiple fatigue cracks and application to double surface crack problems". International Journal of Mechanical Sciences, 130,331-349.
  • Srinivas, M., Kamat, S. V., Rao, P. R. 2006. "Influence of dynamic strain ageing on mixed mode I/III fracture toughness of Armco iron". Mater Sci Eng: A, 443(1):132.41.
  • Suresh, S., Tschegg, E. K. 1987. "Combined mode I-mode III fracture of fatigue-precracked alumina". J Am Ceram Soc, 70(10):726.33.
  • Suresh, S., Shih, C. F., Morrone, A., O'Dowd, N.P. 1990. "Mixed mode fracture toughness of ceramic materials". J Am Ceram Soc, 73(5):1257.67.
  • Tanaka K. 1974. "Fatigue crack propagation from a crack inclined to the cyclic tensile axis". Engng Fract Mech, 6:493.507.
  • Uslu, M., Demir, O., Ayhan, A. O. 2014. "Surface cracks in finite thickness plates under thermal and displacement-controlled loads.Part 2: Crack propagation". Engineering Fracture Mechanics,115, 255-269.
  • Walker, K. 1970. gThe effect of stress ratio during crack propagation and fatigue for 2024- T3 and 7075-T6 aluminumh. In Effects of environment and complex load history on fatigue life. ASTM International.
  • Wang, X., Lambert, S. B. 1995. "Stress intensity factors for low aspect ratio semi-elliptical surface cracks in finite-thickness plates subjected to nonuniform stresses". Engineering Fracture Mechanics, 51(4), 517-532.
  • Wang, J. T., & Raju, I. S. 1996. "Strain energy release rate formulae for skin-stiffener debond modeled with plate elements". Engineering Fracture Mechanics, 54(2), 211-228.
  • Wheeler, O. E. 1972. gSpectrum loading and crack growth.h Journal of basic engineering, 94(1), 181-186,
  • Willenborg, J., Engle, R. M., & Wood, H. A. 1971. gA crack growth retardation model using an effective stress concept (No. AFFDL-TM-71-1-FBR)h. Air Force Flight Dynamics Lab Wright-Patterson Afb OH.
  • Wu, W. F., & Ni, C. C. 2007. Statistical aspects of some fatigue crack growth data. Engineering Fracture Mechanics, 74(18), 2952-2963.
  • Yang JN, Manning SD. 1996. gA simple second order approximation for stochastic crack growth analysis.h Engng Fract Mech; 53: 677.86.
  • Yuen, B. K. C., & Taheri, F. 2006. gProposed modifications to the Wheeler retardation model for multiple overloading fatigue life predictionh. International journal of fatigue, 28(12), 1803- 1819.
  • Zeinedini, A. 2018. "A novel fixture for mixed mode I/II/III fracture testing of brittle materials". Fatigue Fract Eng Mater Struct, 1.16.
  • Zhang, S., Marissen, R., Schulte, K., Trautmann, K. K., Nowack, H., & Schijve, J. 1987. gCrack propagation studies on Al 7475 on the basis of constant amplitude and selective variable amplitude loading histories.h Fatigue & fracture of engineering materials & structures, 10(4), 315-332.
  • Zhao, T., Zhang, J., & Jiang, Y. 2008. gA study of fatigue crack growth of 7075-T651 aluminum alloyh. International Journal of Fatigue, 30(7), 1169-1180.
APA AYHAN A, IRIÇ S, DEMİR O (2020). Kırılma ve Çatlak İlerleme Analiz Sistemi (FCPAS) – Aşama 3. , 1 - 480.
Chicago AYHAN Ali Osman,IRIÇ SEDAT,DEMİR Oğuzhan Ömer Kırılma ve Çatlak İlerleme Analiz Sistemi (FCPAS) – Aşama 3. (2020): 1 - 480.
MLA AYHAN Ali Osman,IRIÇ SEDAT,DEMİR Oğuzhan Ömer Kırılma ve Çatlak İlerleme Analiz Sistemi (FCPAS) – Aşama 3. , 2020, ss.1 - 480.
AMA AYHAN A,IRIÇ S,DEMİR O Kırılma ve Çatlak İlerleme Analiz Sistemi (FCPAS) – Aşama 3. . 2020; 1 - 480.
Vancouver AYHAN A,IRIÇ S,DEMİR O Kırılma ve Çatlak İlerleme Analiz Sistemi (FCPAS) – Aşama 3. . 2020; 1 - 480.
IEEE AYHAN A,IRIÇ S,DEMİR O "Kırılma ve Çatlak İlerleme Analiz Sistemi (FCPAS) – Aşama 3." , ss.1 - 480, 2020.
ISNAD AYHAN, Ali Osman vd. "Kırılma ve Çatlak İlerleme Analiz Sistemi (FCPAS) – Aşama 3". (2020), 1-480.
APA AYHAN A, IRIÇ S, DEMİR O (2020). Kırılma ve Çatlak İlerleme Analiz Sistemi (FCPAS) – Aşama 3. , 1 - 480.
Chicago AYHAN Ali Osman,IRIÇ SEDAT,DEMİR Oğuzhan Ömer Kırılma ve Çatlak İlerleme Analiz Sistemi (FCPAS) – Aşama 3. (2020): 1 - 480.
MLA AYHAN Ali Osman,IRIÇ SEDAT,DEMİR Oğuzhan Ömer Kırılma ve Çatlak İlerleme Analiz Sistemi (FCPAS) – Aşama 3. , 2020, ss.1 - 480.
AMA AYHAN A,IRIÇ S,DEMİR O Kırılma ve Çatlak İlerleme Analiz Sistemi (FCPAS) – Aşama 3. . 2020; 1 - 480.
Vancouver AYHAN A,IRIÇ S,DEMİR O Kırılma ve Çatlak İlerleme Analiz Sistemi (FCPAS) – Aşama 3. . 2020; 1 - 480.
IEEE AYHAN A,IRIÇ S,DEMİR O "Kırılma ve Çatlak İlerleme Analiz Sistemi (FCPAS) – Aşama 3." , ss.1 - 480, 2020.
ISNAD AYHAN, Ali Osman vd. "Kırılma ve Çatlak İlerleme Analiz Sistemi (FCPAS) – Aşama 3". (2020), 1-480.