Yıl: 2010 Cilt: 44 Sayı: 3 Sayfa Aralığı: 505 - 517 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Sars aşı çalışmalarında son gelişmeler

Öz:
Ciddi akut solunum yolu yetmezliği sendromu (SARS) dünya çapında sadece birkaç ay içerisinde binlerce enfeksiyona ve yüzlerce ölüme yol açmıştır. SARS koronavirusu (SARS-CoV)’nun 2002-2003 salgınının öncesinden beri hayvanlardan insanlara geçmekte olduğunu gösteren kanıtlar, olası yeni bir pandeminin gerçekleşebileceğini belirtmektedir. Bu nedenle günümüzde SARS aşı çalışmaları yoğun bir şekilde devam etmektedir. Üzerinde çalışılan aşılar arasında; inaktive tüm virus aşıları, viral ve bakteriyel vektörler kullanılarak hazırlanan aşılar, rekombinant protein aşıları, alt ünite aşıları, DNA aşıları ve canlı-atenüe virus aşıları sayılabilir. Aşı çalışmalarında farklı hayvan modelleri kullanılmakla birlikte en uygun model, insanlardaki SARS patogenezine yönelik klinik belirtilerin, viral replikasyonun ve akciğer patolojisinin benzerliği nedeniyle gelinciklerdir. SARS’a yönelik çeşitli aşı yöntemlerinin güvenli ve immünojenik olduğuna dair birçok kanıt olmasına rağmen, aşılanmış hayvanlarda virusun uygulanması sonrası hala belirgin derecede hastalık görülmektedir. Daha da önemlisi, bazı çalışmalarda, SARS hastalığının aşıya bağlı şiddetlenmesi olasılığı da gösterilmiştir. Çalışmalardan elde edilen veriler, özellikle mukozal immünite, T hücre cevabı ve heterolog aşı kombinasyonlarına odaklanması gereken ileri aşı geliştirme çalışmalarına olan ihtiyaç konusunda önemli bilgiler vermektedir. Bu derleme yazıda, SARS aşı çalışmalarındaki gelişmeler son yıllara ait kaynaklar ışığında tartışılmaktadır.
Anahtar Kelime:

Konular: Mikrobiyoloji

Recent developments in sars vaccine studies

Öz:
Severe acute respiratory syndrome (SARS) caused thousands of human infections worldwide and hundreds of deaths in just a few months. Evidence indicates that SARS coronavirus (SARS-CoV) has been circulating from animals to humans since before the 2002-2003 outbreak, suggesting that another pandemic may occur. This possibility has focused continuous action on SARS vaccine research. Inactivated vaccines, viral and bacterial vector vaccines, recombinant protein vaccines, subunit vaccines, DNA vaccines, and live-attenuated virus vaccines have been studied in different animal models. Although different animal models are used in vaccine studies, the most appropriate model for studying SARS is ferret since it develops the typical clinical signs, viral replication patterns and lung pathology compatible with that of SARS pathogenesis in humans. While there is much evidence that various vaccine strategies against SARS are safe and immunogenic, vaccinated animals still display significant disease upon challenge. Moreover, potential vaccine enhancement of SARS have also been shown in some studies. Data from the studies give an important information of the demand for further vaccine development research, especially focusing on mucosal immunization, T-cell immunity and combinations of heterologous vaccines in prime-boost regimens. In this review article developments on SARS vaccines have been discussed under the light of recent literature.
Anahtar Kelime:

Konular: Mikrobiyoloji
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Bibliyografik
  • 1. World Health Organization. Annex Table 2. Deaths by cause, sex and mortality stratum. www.who.int/whr/2004/en/09_annexes_en.pdf
  • 2. Fouchier RA, Kuiken T, Schutten M, et al. Aetiology: Koch's postulates fulfilled for SARS virus. Nature 2003; 423: 240.
  • 3. Roper RL, Rehm KE. SARS vaccines: where are we? Expert Rev Vaccines 2009; 8: 887-98.
  • 4. Xiong S, Wang YF, Zhang MY, et al. Immunogenicity of SARS inactivated vaccine in BALB/c mice. Immunol Lett 2004; 95: 139-43.
  • 5. Tsunetsugu-Yokota Y. Large-scale preparation of UV-inactivated SARS coronavirus virions for vaccine antigen. Methods Mol Biol 2008; 454: 1-8.
  • 6. See RH, Zakhartchouk AN, Petric M, et al. Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. J Gen Virol 2006; 87: 641-50.
  • 7. Lokugamage KG, Yoshikawa-Iwata N, Ito N, et al. Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus (SCoV) S protein protect mice against challenge with SCoV. Vaccine 2008; 26: 797-808.
  • 8. See RH, Petric M, Lawrence DJ, et al. Severe acute respiratory syndrome vaccine efficacy in ferrets: whole killed virus and adenovirus-vectored vaccines. J Gen Virol 2008; 89: 2136-46.
  • 9. Darnell ME, Plant EP, Watanabe H, et al. Severe acute respiratory syndrome coronavirus infection in vaccinated ferrets. J Infect Dis 2007; 196: 1329-38.
  • 10. Zhou J, Wang W, Zhong Q, et al. Immunogenicity, safety, and protective efficacy of an inactivated SARSassociated coronavirus vaccine in rhesus monkeys. Vaccine 2005; 23: 3202-9.
  • 11. Lin JT, Zhang JS, Su N, et al. Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir Ther 2007; 12: 1107-13.
  • 12. Gao W, Tamin A, Soloff A, et al. Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet 2003; 362: 1895-6.
  • 13. Zakhartchouk AN, Viswanathan S, Mahony JB, Gauldie J, Babiuk LA. Severe acute respiratory syndrome coronavirus nucleocapsid protein expressed by an adenovirus vector is phosphorylated and immunogenic in mice. J Gen Virol 2005; 86: 211-5.
  • 14. Kobinger GP, Figueredo JM, Rowe T, et al. Adenovirus-based vaccine prevents pneumonia in ferrets challenged with the SARS coronavirus and stimulates robust immune responses in macaques. Vaccine 2007; 25: 5220-31.
  • 15. Bisht H, Roberts A, Vogel L, et al. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci USA 2004; 101: 6641-6.
  • 16. Czub M, Weingartl H, Czub S, He R, Cao J. Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets. Vaccine 2005; 23: 2273-9.
  • 17. Yang ZY, Kong WP, Huang Y, et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 2004; 428: 561-4.
  • 18. Stohlman SA, Bergmann CC, van der Veen RC, Hinton DR. Mouse hepatitis virus-specific cytotoxic T lymphocytes protect from lethal infection without eliminating virus from the central nervous system. J Virol 1995; 69: 684-94.
  • 19. Seo SH, Wang L, Smith R, Collisson EW. The carboxyl-terminal 120-residue polypeptide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection. J Virol 1997; 71: 7889-94.
  • 20. Wang X, Xu W, Tong D, et al. A chimeric multi-epitope DNA vaccine elicited specific antibody response against severe acute respiratory syndrome-associated coronavirus which attenuated the virulence of SARSCoV in vitro. Immunol Lett 2008; 119: 71-7.
  • 21. Zhao P, Cao J, Zhao LJ, et al. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine. Virology 2005; 331: 128-35.
  • 22. Gupta V, Tabiin TM, Sun K, et al. SARS coronavirus nucleocapsid immunodominant T-cell epitope cluster is common to both exogenous recombinant and endogenous DNA-encoded immunogens. Virology 2006; 347: 127-39.
  • 23. Kim TW, Lee JH, Hung CF, et al. Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J Virol 2004; 78: 4638-45.
  • 24. Wang Z, Yuan Z, Matsumoto M, Hengge UR, Chang YF. Immune responses with DNA vaccines encoded different gene fragments of severe acute respiratory syndrome coronavirus in BALB/c mice. Biochem Biophys Res Commun 2005; 327: 130-5.
  • 25. Martin JE, Louder MK, Holman LA, et al. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a phase I clinical trial. Vaccine 2008; 26: 6338-43.
  • 26. Lamirande EW, DeDiego ML, Roberts A, et al. A live attenuated severe acute respiratory syndrome coronavirus is immunogenic and efficacious in golden Syrian hamsters. J Virol 2008; 82: 7721-4.
  • 27. Zust R, Cervantes-Barragan L, Kuri T, et al. Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines. PLoS Pathog 2007; 3:109.
  • 28. de Haan CA, Masters PS, Shen X, Weiss S, Rottier PJ. The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. Virology 2002; 296: 177-89.
  • 29. Olsen CW. A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination. Vet Microbiol 1993; 36: 1-37.
  • 30. Weiss RC, Scott FW. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comp Immunol Microbiol Infect Dis 1981; 4: 175-89.
  • 31. Kam YW, Kien F, Roberts A, et al. Antibodies against trimeric S glycoprotein protect hamsters against SARSCoV challenge despite their capacity to mediate FcgammaRII-dependent entry into B cells in vitro. Vaccine 2007; 25: 729-40.
  • 32. Deming D, Sheahan T, Heise M, et al. Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med 2006; 3: e525.
  • 33. Tan YJ, Goh PY, Fielding BC, et al. Profiles of antibody responses against severe acute respiratory syndrome coronavirus recombinant proteins and their potential use as diagnostic markers. Clin Diagn Lab Immunol 2004; 11: 362-71.
  • 34. Hu MC, Jones T, Kenney RT, et al. Intranasal protollin-formulated recombinant SARS S-protein elicits respiratory and serum neutralizing antibodies and protection in mice. Vaccine 2007; 25: 6334-40.
  • 35. Yang L, Peng H, Zhu Z, et al. Persistent memory CD4+ and CD8+ T-cell responses in recovered severe acute respiratory syndrome (SARS) patients to SARS coronavirus M antigen. J Gen Virol 2007; 88: 2740-8.
APA Ruh E (2010). Sars aşı çalışmalarında son gelişmeler. , 505 - 517.
Chicago Ruh Emrah Sars aşı çalışmalarında son gelişmeler. (2010): 505 - 517.
MLA Ruh Emrah Sars aşı çalışmalarında son gelişmeler. , 2010, ss.505 - 517.
AMA Ruh E Sars aşı çalışmalarında son gelişmeler. . 2010; 505 - 517.
Vancouver Ruh E Sars aşı çalışmalarında son gelişmeler. . 2010; 505 - 517.
IEEE Ruh E "Sars aşı çalışmalarında son gelişmeler." , ss.505 - 517, 2010.
ISNAD Ruh, Emrah. "Sars aşı çalışmalarında son gelişmeler". (2010), 505-517.
APA Ruh E (2010). Sars aşı çalışmalarında son gelişmeler. Mikrobiyoloji Bülteni, 44(3), 505 - 517.
Chicago Ruh Emrah Sars aşı çalışmalarında son gelişmeler. Mikrobiyoloji Bülteni 44, no.3 (2010): 505 - 517.
MLA Ruh Emrah Sars aşı çalışmalarında son gelişmeler. Mikrobiyoloji Bülteni, vol.44, no.3, 2010, ss.505 - 517.
AMA Ruh E Sars aşı çalışmalarında son gelişmeler. Mikrobiyoloji Bülteni. 2010; 44(3): 505 - 517.
Vancouver Ruh E Sars aşı çalışmalarında son gelişmeler. Mikrobiyoloji Bülteni. 2010; 44(3): 505 - 517.
IEEE Ruh E "Sars aşı çalışmalarında son gelişmeler." Mikrobiyoloji Bülteni, 44, ss.505 - 517, 2010.
ISNAD Ruh, Emrah. "Sars aşı çalışmalarında son gelişmeler". Mikrobiyoloji Bülteni 44/3 (2010), 505-517.