Yıl: 2013 Cilt: 19 Sayı: 3 Sayfa Aralığı: 141 - 148 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Coronavirüslerin replikasyonları

Öz:
Coronavirüsler (CoVs) çok çeşitlilik gösteren bir virüs ailesidir. CoVlar konak hücrelerle birçok aşamada etkileşime geçerler ve konak hücrenin değişik mekanizmalarını kullanarak enfeksiyonlarını ve replikasyonlarını gerçekleştirirler. CoVların moleküler biyolojisiyle ilgili olarak birçok şey bilinmektedir. Ancak CoVların moleküler biyolojisini daha iyi anlamak için daha çok bilgiye ihtiyaç vardır ve CoVlara karşı geliştirilmiş herhangi etkili bir ilaç tedavisi bulunmamaktadır. CoVların moleküler biyolojisini daha iyi anlama adına son yıllarda yapılan araştırmalarda birçok teknik ve yöntem kullanılmıştır. Moleküler biyolojik araştırmalar açısından fare hepatit virüsü en çok çalışılan CoVlardır ve Coronaviridae ailesi üyelerini araştırmak için iyi bir model sistemdir. Bu derleme CoVlerin replikasyonunu, transkripsiyonunu ve tekrar bir araya getirilmesini anlatmaktadır.
Anahtar Kelime:

Konular: Biyoloji Biyokimya ve Moleküler Biyoloji

Replication of coronavirus Recep BAYRAKTAR, İbrahim BOZGEYİK,

Öz:
Coronaviruses (CoVs) are a diverse family of viruses that interact at multiple levels with components of host cells taking this advantage of some of the cellular machineries for replication and proliferation. A lot is known about the molecular biology of CoVs but more information needs to be learned because no effective treatments against these viruses are available. The challenge now is to incorporate advance techniques in the investigative efforts done to understand further the biology of CoVs. In terms of molecular biology, mouse hepatitis virus (MHV) is the best-studied CoVs, and it is consequently considered a model system for the family of Coronaviridae. This review described replication, transcription, and assembly of CoVs.
Anahtar Kelime:

Konular: Biyoloji Biyokimya ve Moleküler Biyoloji
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. de Haan CA, de Wit M, Kuo L, Montalto-Morrison C, Haagmans BL, Weiss SR, et al. The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain. Virology 2003;312(2):395-406.
  • 2. Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res 1997;48:1-100.
  • 3. Pasternak AO, Spaan WJ, Snijder EJ. Nidovirus transcription: how to make sense? J Gen Virol 2006;87(Pt 6):1403-21.
  • 4. Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. Nidovirales: evolving the largest RNA virus genome. Virus Res 2006;117(1):17-37.
  • 5. de Haan CA, Rottier PJ. Molecular interactions in the assembly of coronaviruses. Adv Virus Res 2005;64:165-230.
  • 6. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 2009;7(6):439- 50.
  • 7. Sawicki SG, Sawicki DL, Siddell SG. A contemporary view of coronavirus transcription. J Virol 2007;81(1):20-9.
  • 8. Horzinek MC. Comparative aspects of togaviruses. J Gen Virol 1973;20(Suppl):87-103.
  • 9. Weiss M, Horzinek MC. The proposed family Toroviridae: agents of enteric infections. Brief review. Arch Virol 1987;92(1- 2):1-15.
  • 10. von Brunn A, Teepe C, Simpson JC, Pepperkok R, Friedel CC, Zimmer R, et al. Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome. PLoS One 2007;2(5):e459.
  • 11. Wijegoonawardane PK, Cowley JA, Phan T, Hodgson RA, Nielsen L, Kiatpathomchai W, et al. Genetic diversity in the yellow head nidovirus complex. Virology 2008;380(2):213-25.
  • 12. Brian DA, Baric RS. Coronavirus genome structure and replication. Curr Top MicrobiolImmunol 2005;287:1-30.
  • 13. Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 2000;81(Pt 4):853-79.
  • 14. Snijder EJ, Ederveen J, Spaan WJ, Weiss M, Horzinek MC. Characterization of Berne virus genomic and messenger RNAs. J Gen Virol 1988;69(Pt 9):2135-44.
  • 15. Snijder EJ, den Boon JA, Horzinek MC, Spaan WJ. Comparison of the genome organization of toro- and coronaviruses: evidence for two nonhomologous RNA recombination events during Berne virus evolution. Virology 1991;180(1):448-52.
  • 16. Gonzalez JM, Gomez-Puertas P, Cavanagh D, Gorbalenya AE, Enjuanes L.A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol 2003;148(11):2207-35.
  • 17. den Boon JA, Snijder EJ, Chirnside ED, de Vries AA, Horzinek MC, Spaan WJ. Equine arteritis virus is not a togavirus but belongs to the coronavirus-like superfamily. J Virol 1991;65(6):2910-20.
  • 18. Chinese SMEC. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 2004;303(5664):1666-9.
  • 19. Graham RL, Baric RS. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J Virol 2010;84(7):3134-46.
  • 20. Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 2003;302(5643):276-8.
  • 21. Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci USA 2005;102(39):14040-5.
  • 22. Davies HA, Macnaughton MR. Comparison of the morphology of three coronaviruses. Arch Virol 1979;59(1-2):25-33.
  • 23. Ulasli M, Verheije MH, de Haan CA, Reggiori F. Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus. Cell Microbiol 2010;12(6):844-61.
  • 24. Barcena M, Oostergetel GT, Bartelink W, Faas FG, Verkleij A, Rottier PJ, et al. Cryo-electron tomography of mouse hepatitis virus: Insights into the structure of the coronavirion. Proc Natl Acad Sci USA 2009;106(2):582-7.
  • 25. Masters PS. The molecular biology of coronaviruses. Adv Virus Res 2006;66:193-292.
  • 26. Niemann H, Klenk HD. Coronavirus glycoprotein E1, a new type of viral glycoprotein. J Mol Biol. 1981;153(4):993-1010.
  • 27. Sturman LS, Holmes KV, Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J Virol 1980;33(1):449-62.
  • 28. Tan YJ, Lim SG, Hong W. Characterization of viral proteins encoded by the SARS-coronavirus genome. Antiviral Res 2005;65(2):69-78.
  • 29. Lewicki DN, Gallagher TM. Quaternary structure of coronavirus spikes in complex with carcinoembryonic antigen- related cell adhesion molecule cellular receptors. J Biol Chem 2002;277(22):19727-34.
  • 30. de Haan CA, Kuo L, Masters PS, Vennema H, Rottier PJ. Coronavirus particle assembly: primary structure requirements of the membrane protein. J Virol 1998;72(8):6838-50.
  • 31. Holmes KV, Doller EW, Sturman LS. Tunicamycin resistant glycosylation of coronavirus glycoprotein: demonstration of a novel type of viral glycoprotein. Virology 1981;115(2):334-44.
  • 32. Niemann H, Geyer R, Klenk HD, Linder D, Stirm S, Wirth M. The carbohydrates of mouse hepatitis virus (MHV) A59: structures of the O-glycosidically linked oligosaccharides of glycoprotein E1. EMBO J 1984;3(3):665-70.
  • 33. Alexander S, Elder JH. Carbohydrate dramatically influences immune reactivity of antisera to viral glycoprotein antigens. Science 1984;226(4680):1328-30.
  • 34. Wissink EH, Kroese MV, Maneschijn-Bonsing JG, Meulenberg JJ, van Rijn PA, Rijsewijk FA, et al. Significance of the oligosaccharides of the porcine reproductive and respiratory syndrome virus glycoproteins GP2a and GP5 for infectious virus production. J Gen Virol 2004;85(Pt 12):3715-23.
  • 35. Escors D, Ortego J, Enjuanes L. The membrane M protein of the transmissible gastroenteritis coronavirus binds to the internal core through the carboxy-terminus. Adv Exp Med Biol 2001;494:589-93.
  • 36. Narayanan K, Makino S. Characterization of nucleocapsid-M protein interaction in murine coronavirus. Adv Exp Med Biol 2001;494:577-82.
  • 37. Raamsman MJ, Locker JK, de Hooge A, de Vries AA, Griffiths G, Vennema H, et al. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J Virol 2000;74(5):2333-42.
  • 38. Baudoux P, Carrat C, Besnardeau L, Charley B, Laude H. Coronavirus pseudoparticles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes. J Virol 1998;72(11):8636-43.
  • 39. Vennema H, Godeke GJ, Rossen JW, Voorhout WF, Horzinek MC, Opstelten DJ, et al. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J 1996;15(8):2020-8.
  • 40. Bos EC, Luytjes W, van der Meulen HV, Koerten HK, Spaan WJ. The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology 1996;218(1):52-60.
  • 41. DeDiego ML, Alvarez E, Almazan F, Rejas MT, Lamirande E, Roberts A, et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol 2007;81(4):1701-13.
  • 42. Kuo L, Masters PS. The small envelope protein E is not essential for murine coronavirus replication. J Virol 2003;77(8):4597-608.
  • 43. Stertz S, Reichelt M, Spiegel M, Kuri T, Martinez-Sobrido L, Garcia-Sastre A, et al. The intracellular sites of early replication and budding of SARS-coronavirus. Virology 2007;361(2):304- 15.
  • 44. Verheije MH, Hagemeijer MC, Ulasli M, Reggiori F, Rottier PJ, Masters PS, et al. The coronavirus nucleocapsid protein is dynamically associated with the replication-transcription complexes. J Virol 2010;84(21):11575-9.
  • 45. Chang CK, Sue SC, Yu TH, Hsieh CM, Tsai CK, Chiang YC, et al. Modular organization of SARS coronavirus nucleocapsid protein. J Biomed Sci 2006;13(1):59-72.
  • 46. Chen CY, Chang CK, Chang YW, Sue SC, Bai HI, Riang L, et al. Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA. J Mol Biol 2007;368(4):1075- 86.
  • 47. Huang Q, Yu L, Petros AM, Gunasekera A, Liu Z, Xu N, et al. Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry 2004;43(20):6059-63.
  • 48. Jayaram H, Fan H, Bowman BR, Ooi A, Jayaram J, Collisson EW, et al. X-ray structures of the N- and C-terminal domains of a coronavirus nucleocapsid protein: implications for nucleocapsid formation. J Virol 2006;80(13):6612-20.
  • 49. Saikatendu KS, Joseph JS, Subramanian V, Neuman BW, Buchmeier MJ, Stevens RC, et al. Ribonucleocapsid formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein. J Virol 2007;81(8):3913-21.
  • 50. Hurst KR, Koetzner CA, Masters PS. Identification of in vivo- interacting domains of the murine coronavirus nucleocapsid protein. J Virol 2009;83(14):7221-34.
  • 51. Rottier PJ, Welling GW, Welling-Wester S, Niesters HG, Lenstra JA, Van der Zeijst BA. Predicted membrane topology of the coronavirus protein E1. Biochemistry 1986;25(6):1335-9.
  • 52. Lissenberg A, Vrolijk MM, van Vliet AL, Langereis MA, de Groot-Mijnes JD, Rottier PJ, et al. Luxury at a cost? Recombinant mouse hepatitis viruses expressing the accessory hemagglutinin esterase protein display reduced fitness in vitro. J Virol 2005;79(24):15054-63.
  • 53. Shieh CK, Lee HJ, Yokomori K, La Monica N, Makino S, Lai MM. Identification of a new transcriptional initiation site and the corresponding functional gene 2b in the murine coronavirus RNA genome. J Virol 1989;63(9):3729-36.
  • 54. Callebaut PE, Pensaert MB. Characterization and isolation of structural polypeptides in haemagglutinating encephalomyelitis virus. J Gen Virol 1980;48(1):193-204.
  • 55. King B, Potts BJ, Brian DA. Bovine coronavirus hemagglutinin protein. Virus Res 1985;2(1):53-9.
  • 56. Vlasak R, Luytjes W, Leider J, Spaan W, Palese P. The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J Virol 1988;62(12):4686-90.
  • 57. Vlasak R, Luytjes W, Spaan W, Palese P. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc Natl Acad Sci USA 1988;85(12):4526-9.
  • 58. Schultze B, Herrler G. Bovine coronavirus uses N-acetyl-9-O- acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. J Gen Virol 1992;73(Pt 4):901-6.
  • 59. Kuo L, Godeke GJ, Raamsman MJ, Masters PS, Rottier PJ. Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. J Virol 2000;74(3):1393-406.
  • 60. Verheije MH, Raaben M, Mari M, TeLintelo EG, Reggiori F, van Kuppeveld FJ, et al. Mouse hepatitis coronavirus RNA replication depends on GBF1-mediated ARF1 activation. PLoS Pathog 2008;4(6):e1000088.
  • 61. Holmes KV, Tresnan DB, Zelus BD. Virus-receptor interactions in the enteric tract. Virus-receptor interactions. Adv Exp Med Biol 1997;412:125-33.
  • 62. Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 2003;77(16):8801-11.
  • 63. Blau DM, Holmes KV. Human coronavirus HCoV-229E enters susceptible cells via the endocytic pathway. Adv Exp Med Biol 2001;494:193-8.
  • 64. Chu VC, McElroy LJ, Ferguson AD, Bauman BE, Whittaker GR. Avian infectious bronchitis virus enters cells via the endocytic pathway. Adv Exp Med Biol 2006;581:309-12.
  • 65. Eifart P, Ludwig K, Bottcher C, de Haan CA, Rottier PJ, Korte T, et al. Role of endocytosis and low pH in murine hepatitis virus strain A59 cell entry. J Virol 2007;81(19):10758-68.
  • 66. Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, et al. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res 2008;18(2):290-301.
  • 67. Baranov PV, Henderson CM, Anderson CB, Gesteland RF, Atkins JF, Howard MT. Programmed ribosomal frameshifting in decoding the SARS-CoVgenome. Virology 2005;332(2):498-510.
  • 68. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 2003;331(5):991-1004.
  • 69. Ziebuhr J. Molecular biology of severe acute respiratory syndrome coronavirus. Curr Opin Microbiol 2004;7(4):412-9.
  • 70. Goldsmith CS, Tatti KM, Ksiazek TG, Rollin PE, Comer JA, Lee WW, et al. Ultrastructural characterization of SARS coronavirus. Emerg Infect Dis 2004;10(2):320-6.
  • 71. Gosert R, Kanjanahaluethai A, Egger D, Bienz K, Baker SC. RNA replication of mouse hepatitis virus takes place at double- membrane vesicles. J Virol 2002;76(8):3697-708.
  • 72. Denison MR. Seeking membranes: positive-strand RNA virus replication complexes. PLoS Biol 2008;6(10):e270.
  • 73. Miller S, Krijnse-Locker J. Modification of intracellular membrane structures for virus replication. Nat Rev Microbiol 2008;6(5):363-74.
  • 74. Ahlquist P. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat Rev Microbiol 2006;4(5):371-82.
  • 75. Prentice E, Jerome WG, Yoshimori T, Mizushima N, Denison MR. Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem 2004;279(11):10136-41.
  • 76. Shi ST, Schiller JJ, Kanjanahaluethai A, Baker SC, Oh JW, Lai MM. Colocalization and membrane association of murine hepatitis virus gene 1 products and De novo-synthesized viral RNA in infected cells. J Virol 1999;73(7):5957-69.
  • 77. Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, Onderwater JJ, van der Meulen J, Koerten HK, et al. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol 2006;80(12):5927-40.
  • 78. van der Meer Y, Snijder EJ, Dobbe JC, Schleich S, Denison MR, Spaan WJ, et al. Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. J Virol 1999;73(9):7641-57.
  • 79. de Haan CA, Reggiori F. Are nidoviruses hijacking the autophagy machinery? Autophagy 2008;4(3):276-9.
  • 80. Reggiori F, Monastyrska I, Verheije MH, Cali T, Ulasli M, Bianchi S, et al. Coronaviruses Hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe 2010;7(6):500-8.
  • 81. de Haan CA, Rottier PJ. Hosting the severe acute respiratory syndrome coronavirus: specific cell factors required for infection. Cell Microbiol 2006;8(8):1211-8.
  • 82. Snijder EJ, Meulenberg JJ. The molecular biology of arteriviruses. J Gen Virol 1998;79(Pt 5):961-79.
  • 83. Sethna PB, Hung SL, Brian DA. Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons. Proc Natl Acad Sci USA 1989;86(14):5626-30.
  • 84. Knoops K, Kikkert M, Worm SH, Zevenhoven-Dobbe JC, van der Meer Y, Koster AJ, et al. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 2008;6(9):e226.
  • 85. Kawai T, Akira S. Innate immune recognition of viral infection. Nat Immunol 2006;7(2):131-7.
  • 86. Perry AK, Chen G, Zheng D, Tang H, Cheng G. The host type I interferon response to viral and bacterial infections. Cell Res 2005;15(6):407-22.
  • 87. Chang RY, Hofmann MA, Sethna PB, Brian DA. A cis-acting function for the coronavirus leader in defective interfering RNA replication. J Virol 1994;68(12):8223-31.
  • 88. Sola I, Moreno JL, Zuniga S, Alonso S, Enjuanes L. Role of nucleotides immediately flanking the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis. J Virol 2005;79(4):2506-16.
  • 89. Zuniga S, Sola I, Alonso S, Enjuanes L. Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J Virol 2004;78(2):980-94.
  • 90. de Haan CA, Smeets M, Vernooij F, Vennema H, Rottier PJ. Mapping of the coronavirus membrane protein domains involved in interaction with the spike protein. J Virol 1999;73(9):7441-52.
  • 91. Lontok E, Corse E, Machamer CE. Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site. J Virol 2004;78(11):5913-22.
  • 92. Klumperman J, Locker JK, Meijer A, Horzinek MC, Geuze HJ, Rottier PJ. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J Virol 1994;68(10):6523-34.
  • 93. Tooze J, Tooze S, Warren G. Replication of coronavirus MHV- A59 in sac- cells: determination of the first site of budding of progeny virions. Eur J Cell Biol 1984;33(2):281-93.
  • 94. Corse E, Machamer CE. The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction. Virology 2003;312(1):25-34.
  • 95. Ng ML, Tan SH, See EE, Ooi EE, Ling AE. Proliferative growth of SARS coronavirus in Vero E6 cells. J Gen Virol 2003;84(Pt 12):3291-303.
  • 96. Svoboda D, Nielson A, Werber A, Higginson J. An electron microscopic study of viral hepatitis in mice. Am J Pathol 1962;41:205-24.
  • 97. David-Ferreira JF, Manaker RA. An electron microscope study of the development of a mouse hepatitis virus in tissue culture cells. J Cell Biol 1965;24:57-78.
  • 98. Shi Z, Hu Z. A review of studies on animal reservoirs of the SARS coronavirus. Virus Res 2008;133(1):74-87.
  • 99. Wang LF, Shi Z, Zhang S, Field H, Daszak P, Eaton BT. Review of bats and SARS. Emerg Infect Dis 2006;12(12):1834- 40.
  • 100.Garbino J, Crespo S, Aubert JD, Rochat T, Ninet B, Deffernez C, et al. A prospective hospital-based study of the clinical impact of non-severe acute respiratory syndrome (Non-SARS)- related human coronavirus infection. Clin Infect Dis 2006;43(8):1009-15.
  • 101.van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ, Wolthers KC, et al. Identification of a new human coronavirus. Nat Med 2004;10(4):368-73.
  • 102.Vijgen L, Keyaerts E, Zlateva K, Van Ranst M. Identification of six new polymorphisms in the human coronavirus 229E receptor gene (aminopeptidase N/CD13). Int J Infect Dis 2004;8(4):217-22.
  • 103.Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 2005;79(2):884-95.
  • 104.Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003;361(9366):1319-25.
  • 105.Godfraind C, Coutelier JP. Morphological analysis of mouse hepatitis virus A59-induced pathology with regard to viral receptor expression. Histol Histopathol 1998;13(1):181-99.
  • 106.Liang G, Chen Q, Xu J, Liu Y, Lim W, Peiris JS, et al. Laboratory diagnosis of four recent sporadic cases of community-acquired SARS, Guangdong Province, China. Emerg Infect Dis 2004;10(10):1774-81.
  • 107.Kim L, Chang KO, Sestak K, Parwani A, Saif LJ. Development of a reverse transcription-nested polymerase chain reaction assay for differential diagnosis of transmissible gastroenteritis virus and porcine respiratory coronavirus from feces and nasal swabs of infected pigs. J Vet Diagn Invest 2000;12(4):385-8.
  • 108.Pensaert MB, de Bouck P. A new coronavirus-like particle associated with diarrhea in swine. Arch Virol 1978;58(3):243-7.
  • 109.Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2005;69(4):635-64.
  • 110.Hartmann K, Ritz S. Treatment of cats with feline infectious peritonitis. Vet Immunol Immunopathol 2008;123(1-2):172-5.
  • 111.Hooper BE, Haelterman EO. Lesions of the gastrointestinal tract of pigs infected with transmissible gastroenteritis. Can J Comp Med 1969;33(1):29-36.
  • 112.Addie D, Belak S, Boucraut-Baralon C, Egberink H, Frymus T, Gruffydd-Jones T, et al. Feline infectious peritonitis. ABCD guidelines on prevention and management. J Feline Med Surg 2009;11(7):594-604.
  • 113.Gelinas AM, Boutin M, Sasseville AM, Dea S. Bovine coronaviruses associated with enteric and respiratory diseases in Canadian dairy cattle display different reactivities to anti-HE monoclonal antibodies and distinct amino acid changes in their HE, S and ns4.9 protein. Virus Res 2001;76(1):43-57.
  • 114.Cavanagh D. Coronavirus avian infectious bronchitis virus. Vet Res 2007;38(2):281-97.
  • 115.Buchmeier MJ, Lewicki HA, Talbot PJ, Knobler RL. Murine hepatitis virus-4 (strain JHM)-induced neurologic disease is modulated in vivo by monoclonal antibody. Virology 1984;132(2):261-70.
  • 116.Lavi E, Gilden DH, Highkin MK, Weiss SR. The organ tropism of mouse hepatitis virus A59 in mice is dependent on dose and route of inoculation. Lab Anim Sci 1986;36(2):130-5.
  • 117.Perlman S. Pathogenesis of coronavirus-induced infections. Review of pathological and immunological aspects. Adv Exp Med Biol 1998;440:503-13.
  • 118.Risku M, Lappalainen S, Rasanen S, Vesikari T. Detection of human coronaviruses in children with acute gastroenteritis. J ClinVirol 2010;48(1):27-30.
  • 119.Dominguez SR, Robinson CC, Holmes KV. Detection of four human coronaviruses in respiratory infections in children: a one- year study in Colorado. J Med Virol 2009;81(9):1597-604.
  • 120.Soma T, Ohinata T, Ishii H, Takahashi T, Taharaguchi S, Hara M. Detection and genotyping of canine coronavirus RNA in diarrheic dogs in Japan. Res Vet Sci 2010;90(2):205-7.
  • 121.Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA 2009;106(14):5871- 6.
  • 122.Jackwood MW, Hilt DA, Callison SA, Lee CW, Plaza H, Wade E. Spike glycoprotein cleavage recognition site analysis of infectious bronchitis virus. Avian Dis 2001;45(2):366-72.
  • 123.Yamada YK, Takimoto K, Yabe M, Taguchi F. Requirement of proteolytic cleavage of the murine coronavirus MHV-2 spike protein for fusion activity. Adv Exp Med Biol 1998;440:89-93.
  • 124.de Haan CA, Stadler K, Godeke GJ, Bosch BJ, Rottier PJ. Cleavage inhibition of the murine coronavirus spike protein by a furin-like enzyme affects cell-cell but not virus-cell fusion. J Virol 2004;78(11):6048-54.
  • 125.Ghosh AK, Takayama J, Aubin Y, Ratia K, Chaudhuri R, Baez Y, et al. Structure-based design, synthesis, and biological evaluation of a series of novel and reversible inhibitors for the severe acute respiratory syndrome-coronavirus papain-like protease. J Med Chem 2009;52(16):5228-40.
  • 126.Schwegmann-Wessels C,Herrler G. Transmissible gastroenteritis virus infection: a vanishing specter. Dtsch Tierarztl Wochenschr 2006;113(4):157-9.
  • 127.Takano T, Kawakami C, Yamada S, Satoh R, Hohdatsu T. Antibody-dependent enhancement occurs upon re-infection with the identical serotype virus in feline infectious peritonitis virus infection. J Vet Med Sci 2008;70(12):1315-21.
  • 128.Hoskins JD. Coronavirus infection in cats. Vet Clin North Am Small Anim Pract 1993;23(1):1-16.
APA ULAŞLI M (2013). Coronavirüslerin replikasyonları. , 141 - 148.
Chicago ULAŞLI Mustafa Coronavirüslerin replikasyonları. (2013): 141 - 148.
MLA ULAŞLI Mustafa Coronavirüslerin replikasyonları. , 2013, ss.141 - 148.
AMA ULAŞLI M Coronavirüslerin replikasyonları. . 2013; 141 - 148.
Vancouver ULAŞLI M Coronavirüslerin replikasyonları. . 2013; 141 - 148.
IEEE ULAŞLI M "Coronavirüslerin replikasyonları." , ss.141 - 148, 2013.
ISNAD ULAŞLI, Mustafa. "Coronavirüslerin replikasyonları". (2013), 141-148.
APA ULAŞLI M (2013). Coronavirüslerin replikasyonları. Gaziantep Tıp Dergisi, 19(3), 141 - 148.
Chicago ULAŞLI Mustafa Coronavirüslerin replikasyonları. Gaziantep Tıp Dergisi 19, no.3 (2013): 141 - 148.
MLA ULAŞLI Mustafa Coronavirüslerin replikasyonları. Gaziantep Tıp Dergisi, vol.19, no.3, 2013, ss.141 - 148.
AMA ULAŞLI M Coronavirüslerin replikasyonları. Gaziantep Tıp Dergisi. 2013; 19(3): 141 - 148.
Vancouver ULAŞLI M Coronavirüslerin replikasyonları. Gaziantep Tıp Dergisi. 2013; 19(3): 141 - 148.
IEEE ULAŞLI M "Coronavirüslerin replikasyonları." Gaziantep Tıp Dergisi, 19, ss.141 - 148, 2013.
ISNAD ULAŞLI, Mustafa. "Coronavirüslerin replikasyonları". Gaziantep Tıp Dergisi 19/3 (2013), 141-148.