LEVENT CİVCİK
(Selçuk Üniversitesi, Mühendislik Mimarlık Fakültesi, Elektrik Elektronik Mühendisliği Bölümü, Konya, Türkiye)
BURAK YILMAZ
(Selçuk Üniversitesi, Mühendislik Mimarlık Fakültesi, Elektrik Elektronik Mühendisliği Bölümü, Konya, Türkiye)
Yüksel ÖZBAY
(Selçuk Üniversitesi, Mühendislik Mimarlık Fakültesi, Elektrik Elektronik Mühendisliği Bölümü, Konya, Türkiye)
GANİME DİLEK EMLİK
(Necmettin Erbakan Üniversitesi, Meram Tıp Fakültesi, Radyoloji, Anabilim Dali, Konya, Türkiye)
Yıl: 2015Cilt: 23Sayı: 3ISSN: 1300-0632 / 1300-0632Sayfa Aralığı: 853 - 872İngilizce

77 1
Detection of microcalcification in digitized mammograms with multistable cellular neural networks using a new image enhancement method: automated lesion intensity enhancer (ALIE)
Fen > Mühendislik > Mühendislik, Elektrik ve Elektronik
DergiDiğerErişime Açık
  • [1] Republic of Turkey Ministry of Health Department of Cancer Control. Ulusal Kanser Programı 2009-2015. Ankara, Turkey: Ministry of Health, 2009 (in Turkish).
  • [2] Darby S, McGale P, Correa C, Taylor C, Arriagada R, Clarke M, Cutter D, Davies C, Ewertz M, Godwin J et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 2011; 378: 1707–1716.
  • [3] Bouyahia S, Mbainaibeye J, Ellouze N. Computer-aided diagnosis of mammographic images. In: First International Symposium on Control, Communications and Signal Processing; 2004. New York, NY, USA: IEEE. pp. 259–262.
  • [4] Martin JE, Mokowitz M, Milbrath JR. Breast cancer missed by mammography. AJR Am J Roentgenol 1979; 132: 737–739.
  • [5] Hern ́ andez-Cisneros RR, Yerashima-Marin H. Feature selection for the classification of both individual and clustered microcalcifications in digital mammograms using genetic algorithms. In: A Recombination of the 15th International Conference Genetic Algorithms (ICGA) and the 11th Genetic Programming Conference (GP); Seattle, WA, USA; 2006.
  • [6] Strauss A, Sebbar S, Desarnaud S, Mouillard Le Gal PM. Automatic detection and segmentation of microcalcifica- thtions on digitized mammograms. In: 14 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 1992. New York, NY, USA: IEEE. pp. 1938–1939.
  • [7] Jiang J, Yao B, Wason AM. A genetic algorithm design for microcalcification detection and classification in digital mammograms. Comput Med Imag Grap 2007; 31: 49–61.
  • [8] Wang TC, Karayiannis NB. Detection of microcalcifications in digital mammograms. IEEE T Med Imaging 1998; 17: 498–509.
  • [9] Sajda P, Spence C, Pearson J. Learning contextual relationships in mammograms using a hierarchical pyramid neural network. IEEE T Med Imaging 2002; 21: 239–250.
  • [10] Bazzani A, Bevilacqua A, Bollini D, Brancaccio R, Campanini R, Lanconelli N, Riccardi A, Romani D. A SVM classifier to separate false signals from microcalcifications in digital mammograms. Phys Med Biol 2001; 46: 1651– 1663.
  • [11] Szir ́ anyi T, Csapodi M. Texture classification and segmentation by cellular neural networks using genetic learning. Comput Vis Image Und 1998; 71: 255–270.
  • [12] Chua LO, Yang L. Cellular neural networks: theory. IEEE T Circuits Syst 1988; 35: 1257–1272.
  • [13] Chua LO, Yang L. Cellular neural networks: application. IEEE T Circuits Syst 1988; 35: 1273–1290.
  • [14] Dogaru R, Murgan AT, Ortmann S, Glesner M. Getting order in chaotic cellular neural networks by self-organization with Hebbian adaptation rules. In: Proceedings of the 1996 Fourth IEEE International Workshop on Cellular Neural Networks and Their Applications; 1996. New York, NY, USA: IEEE. pp. 115–120.
  • [15] Paasio A, Dawidziuk A, Halonen K, Porra V. About the robustness of CNN linear templates with bipolar images. In: 1996 IEEE International Symposium on Circuits and Systems; 1996. New York, NY, USA: IEEE. pp. 555–557.
  • [16] Zarandy A, Roska T, Liszka G, Hegyesi J, Kek L, Rekeczky C. Design of analogic CNN algorithms for mammogram analysis. In: Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and Their Applications; 1994. New York, NY, USA: IEEE. pp. 255–260.
  • [17] Venetianter PL, Roska T. Image compression by cellular neural networks. IEEE T Circuits-I 1998; 45: 205–215.
  • [18] Zanjun L, Derong L. A new synthesis procedure for a class of cellular neural networks with space-invariant cloning template. IEEE T Circuits-II 1998; 45: 1601–1605.
  • [19] Matsumoto T, Chua LO, Suzuki H. CNN cloning template: shadow detector. IEEE T Circuits Syst 1990; 37: 1070–1073.
  • [20] Akbari-Dilmaghani A, Taylor J. Implementation of cellular neural networks with cloning templates of smaller dimensions. In: Proceedings of the Third IEEE International Conference on Electronics, Circuits, and Systems; 1996. New York, NY, USA: IEEE. pp. 410–413.
  • [21] Giaquinto A, Fornarelli G. PSO-based cloning template design for CNN associative memories. IEEE T Neural Networ 2009; 20: 1837–1841.
  • [22] Suckling J, Parker J, Dance DR, Astley SM, Hutt I, Boggis CRM, Ricketts I, Stamatakis E, Cerneaz N, Kok SL et al. The mammographic image analysis society digital mammogram database. In: Proceedings of the International Workshop on Digital Mammography; 1994. pp. 211–221.
  • [23] Kawahara M, Inoue T, Nishio Y. Cellular neural network with dynamic template and its output characteristics. In: Proceedings of International Joint Conference on Neural Networks; Atlanta, GA, USA; 2009. pp. 155–1558.
  • [24] Perfetti R, Ricci E, Casali D, Costantini G. Cellular neural networks with virtual template expansion for retinal vessel segmentation. IEEE T Circuits Syst 2007; 54: 141–145.
  • [25] Kozek T, Roska T, Chua LO. Genetic algorithm for CNN template learning. IEEE T Circuits-I 1993; 40: 392–402.
  • [26] Roska T, Chua LO. CNN: Cellular Analog Programmable Multidimensional Processing Array with Distributed Logic and Memory. Rep. DNS-2-1992. Budapest, Hungary: Computer and Automation Institute of the Hungarian Academy of Sciences, 1992.
  • [27] Yokosawa K, Nakaguchi T, Tanji Y, Tanaka M. Cellular neural networks with output function having multiple constant regions. IEEE T Circuits-I 2003; 50: 847–857.
  • [28] Medina Hernandez JA, Castaeda FG, Moreno Cadenas JA. Multistable cellular neural networks and their application to image decomposition. In: 52nd IEEE International Midwest Symposium on Circuits and Systems; 2009. New York, NY, USA: IEEE. pp. 873–876.
  • [29] Quintanilla-Dominguez J, Cortina-Januchs MG, Ojeda-Magana B, Jevtic A, Vega-Corona A, Andina D. Microcal- cification detection applying artificial neural networks and mathematical morphology in digital mammograms. In: Spain World Automation Congress (WAC); 2010. pp. 1–6.
  • [30] Morrow WM, Paranjape RB, Rangayyan RM, Desautels JEL. Region-based contrast enhancement of mammograms. IEEE T Med Imaging 1992; 11: 392–406.
  • [31] Chen ZY, Abidi BR, David L, Abidi MA. Gray-level grouping (GLG): an automatic method for optimized image contrast enhancement - Part II: The variations. IEEE T Image Process 2006; 15: 2303–2314.
  • [32] Panetta KA, Wharton EJ, Agaian SS. Human visual system-based image enhancement and logarithmic contrast measure. IEEE T Syst Man Cy B 2008; 38: 174–188.
  • [33] Smathers RL, Bush E, Drace J, Stevens M, Sommer FG, Brown BW, Kanas B. Mammographic microcalcifications: detection with xerography, screen-film and digitized film display. Radiology 1986; 159: 673–677.
  • [34] Kosheleva O, Arenas J, Aguirre M, Mendoza C, Cabrera SD. Compression degradation metrics for analysis of consistency in microcalcification detection. In: IEEE Southwest Symposium on Image Analysis and Interpretation; 1998. New York, NY, USA: IEEE. pp. 35–40.
  • [35] Thangavel K, Karnan M. Computer aided diagnosis in digital mammograms: detection of microcalcifications by meta-heuristic algorithms. GVIP Journal 2005; 5: 41–55.
  • [36] Masek M, Chandrasekhar R, deSilva CJS, Attikiouzel Y. Spatially based application of the minimum cross-entropy thresholding algorithm to segment the pectoral muscle in mammograms. In: The Seventh Australian and New Zealand Intelligent Information Systems Conference; 2001. pp. 101–106.
  • [37] Kwok SM, Chandrasekhar R, Attikiouzel Y, Rickard MT. Automatic pectoral muscle segmentation on mediolateral oblique view mammograms. IEEE T Med Imaging 2004; 23: 1129–1140.
  • [38] Guzelis C, Karamahmut S. Algorithm for completely stable cellular neural networks. In: Proceedings of the Third IEEE International Workshop on Cellular Neural Network and Applications; Rome, Italy; 1994. pp. 177–182.
  • [39] Vilari ̃ no DL, Cabello D, Pardo XM, Brea VM. Cellular neural networks and active contours: a tool for image segmentation. Image Vision Comput 2003; 21: 189–204.
  • [40] Grgic S, Grgic M, Mrak M. Reliability of objective picture quality measures. J Electr Eng 2004; 55: 3–10.
  • [41] Sundaram M, Ramar K, Arumugam N, Prabin G. Histogram modified local contrast enhancement for mammogram images. Appl Soft Comput 2011; 11: 5809–5816.
  • [42] Wang Z, Bovik AC. A universal image quality index. IEEE Signal Proc Lett 2002; 9: 81–84.
  • [43] Agaian SS, Lentz KP, Grigoryan AM. A new measure of image enhancement. In: IASTED International Conference on Signal Processing & Communication; 2000.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.