Yıl: 2017 Cilt: 13 Sayı: 1 Sayfa Aralığı: 31 - 37 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

Catechol Derivative RAFT Agent for Surface Functionalization of Magnetic Nanoparticles

Öz:
Functional nanoparticles (NPs), Fe3O4@SiO2-PMEMA, were prepared via surface initiated reversibleaddition-fragmentation chain transfer (RAFT) polymerization, using catechol-based biomimetic RAFTagent incorporating a trithiocarbonate unit and 2-N-morpholinoethyl methacrylate (MEMA) as themonomer. Poly(2-N-morpholinoethyl methacrylate) (PMEMA) were synthesized on biomimetic RAFTagent functionalized Fe3O4@SiO2 NPs surface. The prepared NPs were characterized at the differentmodification stages using attenuated total reflectance-Fourier transform infrared spectroscopy (FTIR), Xrayphotoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA) andtransmission electron microscope (TEM). The magnetic properties of NPs were also determined byvibrating sample magnetometer (VSM).
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Andhariya, N.; Chudasama, B.; Mehta, R.V.; Upadhyay, R.V. Biodegradable thermoresponsive polymeric magnetic nanoparticles: a new drug delivery platform for doxorubicin. J. Nanopart. Res. 2011; 13, 1677-1688.
  • [2] Gu, H.; Xu, K.; Xu, C.; Xu, B. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun. 2006; 2006, 941-949.
  • [3] Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005; 26, 3995-4021.
  • [4] Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink, J.I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008; 2, 889-896.
  • [5] Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 2004; 14, 2161-2175.
  • [6] Qiang, Y.; Antony, J.; Sharma, A.; Nutting, J.; Sikes, D.; Meyer, D. Iron/iron oxide core-shell nanoclusters for biomedical applications. J. Nanopart. Res. 2006; 8, 489-496.
  • [7] Shubayev, V.I.; Pisanic, II T.R.; Jin, S. Magnetic nanoparticles for theragnostics. Adv. Drug. Deliver. Rev. 2009; 61, 467-477.
  • [8] Uzuriaga-Sánchez, R.J.; Khan, S.; Wong, A.; Picasso, G.; Pividori, M.I.; Sotomayor, M.D.P.T. Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples. Food Chem. 2016; 190, 460-467.
  • [9] Lu, L.; Li, J.; Yu, J.; Song, P.; Ng, D.H.L. A hierarchically porous MgFe2O4/γ-Fe2O3 magnetic microspheres for efficient removals of dye and pharmaceutical from water. Chemical Eng. Journal 2016; 283, 524-534
  • [10] Sheiko, S.S.; Sumerlin, B.S.; Matyjaszewski, K. Cylindrical molecular brushes: Synthesis, characterization, and properties. Prog. Polym. Sci. 2008; 33, 759-785.
  • [11] Zhang, M.; Breiner, T.; Mori, H.; Müller, A.H.E. Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples. Polymer 2003; 44, 1449-1458.
  • [12] Zhao, B.; Brittain, W.J. Polymer brushes: surfaceimmobilized macromolecules. Prog. Polym. Sci. 2000; 25, 677-710.
  • [13] Cimen, D.; Caykara, T. Preparation of oligo-Nisopropylacrylamide brushes with -OH and -COOH endgroups via surface-initiated NMP. J. Appl. Polym. Sci. 2013; 129, 383-390.
  • [14] Demirci, S.; Kinali-Demirci, S.; Caykara, T. Stimuliresponsive diblock copolymer brushes via combination of “click chemistry” and living radical polymerization. J. Polym. Sci. Part A: Polym. Chem. 2013; 51, 2677-2685.
  • [15] Boyes, S.G.; Brittain, W.J.; Weng, X.; Cheng, S.Z.D. Synthesis, characterization, and properties of aba type triblock copolymer brushes of styrene and methyl acrylate prepared by atom transfer radical polymerization. Macromolecules 2002; 35, 4960-4967.
  • [16] Baskaran, D.; Mays, J.W.; Bratcher, M.S. Polymergrafted multiwalled carbon nanotubes through surfaceinitiated polymerization. Angew. Chemie. 2004; 43, 2138- 2142.
  • [17] Demirci, S.; Caykara, T. RAFT-mediated synthesis of cationic poly[(ar-vinylbenzyl)trimethyl ammonium chloride] brushes for quantitative DNA immobilization. Mater. Sci. Eng. C Mater. Biol. Appl. 2013; 33; 111-120.
  • [18] Rungta, A.; Natarajan, B.; Neely, T.; Dukes, D.; Schadler, L. S.; Benicewicz, B.C. Grafting bimodal polymer brushes on nanoparticles using controlled radical polymerization. Macromolecules 2012; 45, 9303-9311.
  • [19] Demirci, S.; Caykara, T. High density cationic polymer brushes from combined “click chemistry” and RAFTmediated polymerization. J. Polym. Sci. Part A: Polym. Chem. 2012; 50, 2999-3007.
  • [20] Demirci, S.; Caykara, T. Controlled grafting of cationic poly[(ar-vinylbenzyl)trimethylammonium chloride] on hydrogen-terminated silicon substrate by surface-initiated RAFT polymerization. React. Funct. Polym. 2012; 72, 588- 595.
  • [21] Baum, M.; Brittain, W.J. Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique. Macromolecules 2002; 35, 610-615.
  • [22] Zhai, G.; Yu, W.H.; Kang, E.T.; Neoh, K.G.; Huang, C. C.; Liaw, D. Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples. J. Ind. Eng. Chem. Res. 2004; 43, 1673-1680.
  • [23] Demirci, S.; Kinali-Demirci, S.; Caykara, T. A new selenium-based RAFT agent for surface-initiated RAFT polymerization of 4-vinylpyridine. Polymer 2013; 54, 5345- 5350.
  • [24] Li, C.; Han, J.; Ryu, C. Y.; Benicewicz, B.C. A versatile method to prepare RAFT agent anchored substrates and the preparation of PMMA grafted nanoparticles. Macromolecules 2006; 39, 3175-3183.
  • [25] Li, C.; Benicewicz, B.C. Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition−fragmentation chain transfer polymerization. Macromlecules 2005; 38, 5929-5936.
  • [26] Tria, M.C.R.; Grande, C.D.T.; Ponnapati, R.R.; Advincula, R.C. Electrochemical deposition and surface-initiated raft polymerization: protein and cell-resistant ppegmema polymer brushes. Biomacromolecules 2010; 11, 3422-3431.
  • [27] Gurbuz, N.; Demirci, S.; Yavuz, S.; Caykara, T. Synthesis of cationic N-[3-(dimethylamino)propyl] methacrylamide brushes on silicon wafer via surface-initiated RAFT polymerization. J. Polym. Sci. Part A: Polym. Chem. 2011; 49, 423-431.
  • [28] Liu, J.; Li, J.; Yu, B.; Ma, B.; Zhu, Y.; Song, X.; Cao, X.; Yang, W.; Zhou, F. Tribological properties of self-assembled monolayers of catecholic imidazolium and the spin-coated films of ionic liquids. Langmuir 2011; 27, 11324-11331.
  • [29] Liu, J.; Yang, W.; Zareie, H.M.; Gooding, J.J.; Davis, T. P. pH-detachable polymer brushes formed using titanium-diol coordination chemistry and living radical polymerization (RAFT). Macromolecules 2009; 42, 2931-2939.
  • [30] Zobrist, C.; Sobocinski, J.; Lyskawa, J.; Fournier, D.; Miri, V.; Traisnel, M.; Jimendez, M.; Woisel, P. Functionalization of titanium surfaces with polymer brushes prepared from a biomimetic RAFT agent. Macromolecules 2011; 44, 5883-5892.
  • [31] Ranjbakhsh, E.; Bordbar, A.K.; Abbasi, M.; Khosropour, A.R.; Shams, E. Enhancement of stability and catalytic activity of immobilized lipase on silica-coated modified magnetite nanoparticles. Chemical Eng. Journal 2012; 179, 272-276.
  • [32] Farrukh, A.; Akram, A.; Ghaffar, A.; Hanif, S.; Hamid, A.; Duran, H.; Yameen, B. Design of polymer-brush-grafted magnetic nanoparticles for highly efficient water remediation. ACS Appl. Mater. Interfaces 2013; 5, 3784-3793.
  • [33] Satyanarayana, N.; Sinha, S.K. Tribology of PFPE overcoated self-assembled monolayers deposited on Si surface. J. Phys. D: Appl. Phys. 2005; 38, 3512-3522.
  • [34] Jiang, X.; Zhai, S.; Jiang, X.; Lu, G.; Huang, X. Synthesis of PAA-g-PNIPAM well-defined graft polymer by sequential RAFT and SET-LRP and its application in preparing size-controlled super-paramagnetic Fe3O4 nanoparticles as a stabilizer. Polymer 2014; 55, 3703-3712.
  • [35] Li, Q.; Zhang, L.; Bai, L.; Zhang, Z.; Zhu, J.; Zhou, N.; Cheng, Z.; Zhu, X. Multistimuli-responsive hybrid nanoparticles with magnetic core and thermoresponsive fluorescence-labeled shell via surface-initiated RAFT polymerization. Soft Matter 2011; 7, 6958-6966.
  • [36] Wu, Y.; Yang, H.; Lin, Y.; Zheng, Z.; Ding, X. Poly(Nisopropylacrylamide) modified Fe3O4@Au nanoparticles with magnetic and temperature responsive properties. Mater. Lett. 2016; 169, 218-222.
APA Demirci S (2017). Catechol Derivative RAFT Agent for Surface Functionalization of Magnetic Nanoparticles. , 31 - 37.
Chicago Demirci Serkan Catechol Derivative RAFT Agent for Surface Functionalization of Magnetic Nanoparticles. (2017): 31 - 37.
MLA Demirci Serkan Catechol Derivative RAFT Agent for Surface Functionalization of Magnetic Nanoparticles. , 2017, ss.31 - 37.
AMA Demirci S Catechol Derivative RAFT Agent for Surface Functionalization of Magnetic Nanoparticles. . 2017; 31 - 37.
Vancouver Demirci S Catechol Derivative RAFT Agent for Surface Functionalization of Magnetic Nanoparticles. . 2017; 31 - 37.
IEEE Demirci S "Catechol Derivative RAFT Agent for Surface Functionalization of Magnetic Nanoparticles." , ss.31 - 37, 2017.
ISNAD Demirci, Serkan. "Catechol Derivative RAFT Agent for Surface Functionalization of Magnetic Nanoparticles". (2017), 31-37.
APA Demirci S (2017). Catechol Derivative RAFT Agent for Surface Functionalization of Magnetic Nanoparticles. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 13(1), 31 - 37.
Chicago Demirci Serkan Catechol Derivative RAFT Agent for Surface Functionalization of Magnetic Nanoparticles. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13, no.1 (2017): 31 - 37.
MLA Demirci Serkan Catechol Derivative RAFT Agent for Surface Functionalization of Magnetic Nanoparticles. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol.13, no.1, 2017, ss.31 - 37.
AMA Demirci S Catechol Derivative RAFT Agent for Surface Functionalization of Magnetic Nanoparticles. Celal Bayar Üniversitesi Fen Bilimleri Dergisi. 2017; 13(1): 31 - 37.
Vancouver Demirci S Catechol Derivative RAFT Agent for Surface Functionalization of Magnetic Nanoparticles. Celal Bayar Üniversitesi Fen Bilimleri Dergisi. 2017; 13(1): 31 - 37.
IEEE Demirci S "Catechol Derivative RAFT Agent for Surface Functionalization of Magnetic Nanoparticles." Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 13, ss.31 - 37, 2017.
ISNAD Demirci, Serkan. "Catechol Derivative RAFT Agent for Surface Functionalization of Magnetic Nanoparticles". Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13/1 (2017), 31-37.