Yıl: 2016 Cilt: 36 Sayı: 3 Sayfa Aralığı: 162 - 170 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Yaşlanma ve Yaşlanmayla İlişkili Hastalıklardaki Epigenetik Değişiklikler

Öz:
Yaşlanma, çok sayıda endojen ve ekzojen faktörlerin etkileşimi sonucunda ortaya çıkantüm hücre, doku, organ ve sistemleri kapsayan kompleks ve geriye dönüşümü olmayan fizyolojikbir süreçtir. Yaşlanma, hem rastgele oluşan hem de çevresel faktörlerce uyarılan epigenetik de-ğişimlerin sonucunda ortaya çıkmaktadır. Son veriler epigenetik modifikasyonlar ve yaşlanmaarasında bir ilişki olduğunu ortaya koymaktadır. Bazı genlerdeki metilasyon artışı ile genomuntekrar bölgelerindeki metilasyon seviyesindeki azalışı, histon kuyruklarındaki çeşitli modifikasyonlar,kromatin yeniden şekillenmesi ve kodlamayan kısa RNA'lar gibi çeşitli epigenetik modifikasyonlarhem fizyolojik yaşlanma sürecinde ve hem de kanser, Alzheimer hastalığı, Parkinsonhastalığı, kardiyovasküler hastalıklar ve demans gibi yaşlanma ile ilişkili hastalıklarda rol alabilmektedir.Epigenetik modifikasyonların bir bölümü yaşlanma ve yaşlanma ile ilişkili hastalıklardadoğrudan rol alabileceği gibi çevresel faktörlerin indüklemesi sonucunda ya da bir kuşaklararasındaki aktarılmaya bağlı olarak etki edebilir. Ayrıca, kodlamayan kısa RNA'ların kromatin yapısınaolan katkısı ve gen ifadesinin düzenlenmesindeki olası rolleri yaşlanmada bir diğer önemliçalışma alanı haline gelmektedir. Bu bakımdan, epigenetik düzenlenme mekanizmaları yaşlanmayıanlamada gelecek vaat eden bir araştırma alanı olarak görülmektedir. Yaşlanmanın, hangiepigenetik mekanizmalar aracılığı ile belirlendiğinin anlaşılması, yaşlanma ile ilişkili hastalıklardakoruyucu stratejilerin geliştirilmesi açısından son derece önemlidir. Bu derlemede, hücreselyaşlanma ve yaşlanma ilişkili fenotiplere katkı sağlayan epigenetik düzenlenmemekanizmalarını değerlendirmeyi amaçladık.
Anahtar Kelime:

Konular: Genel ve Dahili Tıp

epigenetic alterations in agind and aging-associated diseases:review

Öz:
Aging is a complex physiological process comprising irreversible changes as a result of numerous of endogenous and exogenous factors at the level of all cells, tissues, organs and systems. Ageing is result of epigenetic alterations induced by both stochastic and environmental factors. Re- cent data have suggested an association between epigenetic modifications and aging. A variety of epigenetic modifications, including DNA methylation increase in specific genes and global hy- pomethylation of repeat elements, histone tail modifications, chromatin rearrangements and short non-coding RNAs may have a role in physiological aging and associated with ageing associated dis- eases including cancer, Alzheimer disease, Parkinson disease, cardiovascular diseases and demen- tia. Some of the epigenetic modifications may have a direct throughput on aging or aging-associated diseases; however the function of others may depend on the effect environmental factors or if they transmitted from one generation to the next. In addition, the contribution of non-coding RNAs to chromatin structure and its potential role in regulation gene expression is another promising area of research. In this regard, epigenetics has emerged as one of the promising research areas in un- derstanding aging. Understanding the mechanisms by which epigenetics can influence the aging will be essential for the development of preventative strategies ageing associated diseases. We aimed to review some epigenetic regulation pathways that contribute to cellular senescence and ageing as- sociated phenotypes.
Anahtar Kelime:

Konular: Genel ve Dahili Tıp
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Park DC, Yeo SG. Aging. Korean J Audiol 2013;17(2):39-44.
  • 2. Berdasco M, Esteller M. Hot topics in epigenetic mechanisms of aging: 2011. Aging Cell 2012;11(2):181-6.
  • 3. Muñoz-Najar U, Sedivy JM. Epigenetic control of aging. Antioxidants Redox Signal 2011;14(2):241-59.
  • 4. Gunes S, Hekim GN, Arslan MA, Asci R. Effects of aging on the male reproductive system. J Assist Reprod Genet 2016;33(4): 441-54.
  • 5. Lillycrop KA, Hoile SP, Grenfell L, Burdge GC. DNA methylation, ageing and the influence of early life nutrition. Proc Nutr Soc 2014; 73(3):413-21.
  • 6. Oberdoerffer P, Sinclair DA. The role of nuclear architecture in genomic instability and ageing. Nat Rev Mol Cell Biol 2007;8(9):692- 702.
  • 7. Castillo-Fernandez JE, Spector TD, Bell JT. Epigenetics of discordant monozygotic twins: implications for disease. Genome Med 2014;6(7):60.
  • 8. Gonzalo S. Epigenetic alterations in aging. J Appl Physiol (1985) 2010;109(2):586-97.
  • 9. Gravina S, Vijg J. Epigenetic factors in aging and longevity. Pflugers Arch 2010;459(2):247- 58.
  • 10. Moskalev AA, Aliper AM, Smit-McBride Z, Buzdin A, Zhavoronkov A. Genetics and epigenetics of aging and longevity. Cell Cycle 2014;13(7):1063-77.
  • 11. Tan Q, Christiansen L, Thomassen M, Kruse TA, Christensen K. Twins for epigenetic studies of human aging and development. Ageing Res Rev 2013;12(1):182-7.
  • 12. Fraga MF. Genetic and epigenetic regulation of aging. Curr Opin Immunol 2009;21(4):446- 53.
  • 13. Wong CC, Caspi A, Williams B, Craig IW, Houts R, Ambler A, et al. A longitudinal study of epigenetic variation in twins. Epigenetics 2010;5(6):516-26.
  • 14. Oh G, Ebrahimi S, Wang SC, Cortese R, Kaminsky ZA, Gottesman, II, et al. Epigenetic assimilation in the aging human brain. Genome Biol 2016;17:76.
  • 15. Murrell A, Hurd PJ, Wood IC. Epigenetic mechanisms in development and disease. Biochem Soc Trans 2013;41(3):697-9.
  • 16. Huidobro C, Fernandez AF, Fraga MF. Aging epigenetics: causes and consequences. Mol Aspects Med 2013;34(4):765-81.
  • 17. Calvanese V, Lara E, Kahn A, Fraga MF. The role of epigenetics in aging and age-related diseases. Ageing Res Rev 2009;8(4):268-76.
  • 18. Yi SH, Xu LC, Mei K, Yang RZ, Huang DX. Isolation and identification of age-related DNA methylation markers for forensic age-prediction. Forensic Sci Int Genet 2014;11:117-25.
  • 19. D'Aquila P, Rose G, Bellizzi D, Passarino G. Epigenetics and aging. Maturitas 2013;74(2): 130-6.
  • 20. Johnson AA, Akman K, Calimport SR, Wuttke D, Stolzing A, de Magalhães JP. The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res 2012;15(5):483-94.
  • 21. Stefanska B, Karlic H, Varga F, FabianowskaMajewska K, Haslberger A. Epigenetic mechanisms in anti-cancer actions of bioactive food components--the implications in cancer prevention. Br J Pharmacol 2012;167(2):279-97.
  • 22. Kim JK, Samaranayake M, Pradhan S. Epigenetic mechanisms in mammals. Cell Mol Life Sci 2009;66(4):596-612.
  • 23. Ben-Avraham D. Epigenetics of aging. Adv Exp Med Biol. 2015;847:179-91.
  • 24. Winnefeld M, Lyko F. The aging epigenome: DNA methylation from the cradle to the grave. Genome Biol 2012;13(7):165.
  • 25. Lu Q, Qiu X, Hu N, Wen H, Su Y, Richardson BC. Epigenetics, disease, and therapeutic interventions. Ageing Res Rev 2006;5(4):449- 67.
  • 26. Hermann A, Gowher H, Jeltsch A. Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 2004;61(19-20): 2571-87.
  • 27. Golbabapour S, Abdulla MA, Hajrezaei M. A concise review on epigenetic regulation: insight into molecular mechanisms. Int J Mol Sci 2011;12(12):8661-94.
  • 28. Liyanage VR, Jarmasz JS, Murugeshan N, Del Bigio MR, Rastegar M, Davie JR. DNA modifications: function and applications in normal and disease States. Biology (Basel) 2014;3(4):670-723.
  • 29. Miceli M, Bontempo P, Nebbioso A, Altucci L. Natural compounds in epigenetics: a current view. Food Chem Toxicol 2014;73:71-83.
  • 30. Cencioni C, Spallotta F, Martelli F, Valente S, Mai A, Zeiher AM, et al. Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int J Mol Sci 2013;14(9):17643-63.
  • 31. Madrigano J, Baccarelli A, Mittleman MA, Sparrow D, Vokonas PS, Tarantini L, et al. Aging and epigenetics: longitudinal changes in gene-specific DNA methylation. Epigenetics 2012;7(1):63-70.
  • 32. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013. doi:10.1186/gb-2013-14-10-r115.
  • 33. Xu X. DNA methylation and cognitive aging. Oncotarget 2015;6(16):13922-32.
  • 34. McClay JL, Aberg KA, Clark SL, Nerella S, Kumar G, Xie LY, et al. A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum Mol Genet 2014;23(5):1175-85.
  • 35. Eid A, Bihaqi SW, Renehan WE, Zawia NH. Developmental lead exposure and lifespan alterations in epigenetic regulators and their correspondence to biomarkers of Alzheimer's disease. Alzheimers Dement (Amst) 2016;2: 123-31.
  • 36. Gentilini D, Mari D, Castaldi D, Remondini D, Ogliari G, Ostan R, et al. Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians' offspring. Age (Dordr) 2013; 35(5):1961-73.
  • 37. Lepeule J, Baccarelli A, Motta V, Cantone L, Litonjua AA, Sparrow D, et al Gene promoter methylation is associated with lung function in the elderly: the Normative Aging Study. Epigenetics 2012;7(3):261-9.
  • 38. Kim YI. Nutritional epigenetics: impact of folate deficiency on DNA methylation and colon cancer susceptibility. J Nutr 2005;135(11): 2703-9.
  • 39. Kanherkar RR, Bhatia-Dey N, Csoka AB. Epigenetics across the human lifespan. Front Cell Dev Biol 2014;2:49.
  • 40. Bollati V, Baccarelli A. Environmental epigenetics. Heredity (Edinb) 2010;105(1):105-12.
  • 41. Fong CY, Morison J, Dawson MA. Epigenetics in the hematologic malignancies. Haematologica 2014;99(12):1772-83.
  • 42. Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 2009;8(6):1409-20.
  • 43. Zhang G, Pradhan S. Mammalian epigenetic mechanisms. IUBMB Life 2014;66(4):240-56.
  • 44. Pegoraro G, Kubben N, Wickert U, Göhler H, Hoffmann K, Misteli T. Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol 2009;11(10):1261-7.
  • 45. Sarg B, Koutzamani E, Helliger W, Rundquist I, Lindner HH. Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J Biol Chem 2002;277(42):39195-201.
  • 46. Wang CM, Tsai SN, Yew TW, Kwan YW, Ngai SM. Identification of histone methylation multiplicities patterns in the brain of senescenceaccelerated prone mouse 8. Biogerontology 2010;11(1):87-102.
  • 47. Gebremedhin KG, Rademacher DJ. Histone H3 acetylation in the postmortem Parkinson's disease primary motor cortex. Neurosci Lett 2016;627:121-5.
  • 48. Heyn H, Moran S, Esteller M. Aberrant DNA methylation profiles in the premature aging disorders Hutchinson-Gilford Progeria and Werner syndrome. Epigenetics 2013;8(1):28- 33.
  • 49. McCord RP, Nazario-Toole A, Zhang H, Chines PS, Zhan Y, Erdos MR, et al. Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res 2013;23(2):260-9.
  • 50. Feser J, Tyler J. Chromatin structure as a mediator of aging. FEBS Lett 2011;585(13):2041- 8.
  • 51. McCauley BS, Dang W. Histone methylation and aging: lessons learned from model systems. Biochim Biophys Acta 2014;1839(12): 1454-62.
  • 52. Tse C, Sera T, Wolffe AP, Hansen JC. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol 1998;18(8):4629-38.
  • 53. Kennedy BK, Austriaco NR Jr, Zhang J, Guarente L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 1995; 80(3):485-96.
  • 54. Pollina EA, Brunet A. Epigenetic regulation of aging stem cells. Oncogene 2011;30(28): 3105-26.
  • 55. López-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013;153(6):1194-217.
  • 56. Larson K, Yan SJ, Tsurumi A, Liu J, Zhou J, Gaur K, et al. Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet 2012;8(1):e1002473.
  • 57. Mensaert K, Denil S, Trooskens G, Van Criekinge W, Thas O, De Meyer T. Next-generation technologies and data analytical approaches for epigenomics. Environ Mol Mutagen 2014;55(3):155-70.
  • 58. Jung HJ, Suh Y. MicroRNA in aging: from discovery to biology. Curr Genomics 2012; 13(7):548-57.
  • 59. Kanwal R, Gupta S. Epigenetic modifications in cancer. Clin Genet 2012;81(4):303-11.
  • 60. Abba M, Patil N, Allgayer H. MicroRNAs in the regulation of MMPs and metastasis. Cancers (Basel) 2014;6(2):625-45.
  • 61. Tammen SA, Friso S, Choi SW. Epigenetics: the link between nature and nurture. Mol Aspects Med 2013;34(4):753-64.
  • 62. Ben-Avraham D, Muzumdar RH, Atzmon G. Epigenetic genome-wide association methylation in aging and longevity. Epigenomics 2012;4(5):503-9.
  • 63. Khee SG, Yusof YA, Makpol S. Expression of senescence-associated microRNAs and target genes in cellular aging and modulation by tocotrienol-rich fraction. Oxid Med Cell Longev 2014;2014:725929.
  • 64. Dimmeler S, Nicotera P. MicroRNAs in agerelated diseases. EMBO Mol Med 2013;5(2): 180-90.
  • 65. Crosby ME, Kulshreshtha R, Ivan M, Glazer PM. MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 2009;69(3):1221-9.
  • 66. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 2009;5(8): e1000602.
  • 67. Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 2010;19(5):698-711.
  • 68. Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks. Trends Genet 2007;23(8):413-8.
  • 69. Yao J, Hennessey T, Flynt A, Lai E, Beal MF, Lin MT. MicroRNA-related cofilin abnormality in Alzheimer's disease. PLoS One 2010;5(12):e15546.
  • 70. Kumar S, Reddy PH. Are circulating microRNAs peripheral biomarkers for Alzheimer's disease? Biochim Biophys Acta 2016;1862(9): 1617-27.
  • 71. Miñones-Moyano E, Porta S, Escaramís G, Rabionet R, Iraola S, Kagerbauer B, et al. MicroRNA profiling of Parkinson's disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 2011;20(15):3067-78.
  • 72. Hoss AG, Labadorf A, Beach TG, Latourelle JC, Myers RH. microRNA profiles in Parkinson's disease prefrontal cortex. Front Aging Neurosci 2016;8:36.
  • 73. Srinivasan S, Selvan ST, Archunan G, Gulyas B, Padmanabhan P. MicroRNAs-the next generation therapeutic targets in human diseases. Theranostics 2013;3(12):930-42.
  • 74. Sano T, Reynolds J, Jimenez-Mateos EM, Matsushima S, Taki W, Henshall DC. MicroRNA-34a upregulation during seizure-induced neuronal death. Cell Death Dis 2012;3:e287.
  • 75. Wang J, Tan L, Tan L, Tian Y, Ma J, Tan C-C, et al. Circulating microRNAs are promising novel biomarkers for drug-resistant epilepsy. Sci Rep 2015;5:10201.
  • 76. Ortega FJ, Mercader JM, Catalán V, MorenoNavarrete JM, Pueyo N, Sabater M, et al. Targeting the circulating microRNA signature of obesity. Clin Chem 2013;59(5):781-92.
  • 77. Klöting N, Berthold S, Kovacs P, Schön MR, Fasshauer M, Ruschke K, et al. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One 2009;4(3):e4699.
  • 78. Guay C, Roggli E, Nesca V, Jacovetti C, Regazzi R. Diabetes mellitus, a microRNA-related disease? Transl Res 2011;157(4):253- 64.
  • 79. Hennessy E, Clynes M, Jeppesen PB, O'Driscoll L. Identification of microRNAs with a role in glucose stimulated insulin secretion by expression profiling of MIN6 cells. Biochem Biophys Res Commun 2010;396(2):457-62.
APA BAYRAMOV B, GÜNEŞ S (2016). Yaşlanma ve Yaşlanmayla İlişkili Hastalıklardaki Epigenetik Değişiklikler. , 162 - 170.
Chicago BAYRAMOV Bayram,GÜNEŞ Sezgin Yaşlanma ve Yaşlanmayla İlişkili Hastalıklardaki Epigenetik Değişiklikler. (2016): 162 - 170.
MLA BAYRAMOV Bayram,GÜNEŞ Sezgin Yaşlanma ve Yaşlanmayla İlişkili Hastalıklardaki Epigenetik Değişiklikler. , 2016, ss.162 - 170.
AMA BAYRAMOV B,GÜNEŞ S Yaşlanma ve Yaşlanmayla İlişkili Hastalıklardaki Epigenetik Değişiklikler. . 2016; 162 - 170.
Vancouver BAYRAMOV B,GÜNEŞ S Yaşlanma ve Yaşlanmayla İlişkili Hastalıklardaki Epigenetik Değişiklikler. . 2016; 162 - 170.
IEEE BAYRAMOV B,GÜNEŞ S "Yaşlanma ve Yaşlanmayla İlişkili Hastalıklardaki Epigenetik Değişiklikler." , ss.162 - 170, 2016.
ISNAD BAYRAMOV, Bayram - GÜNEŞ, Sezgin. "Yaşlanma ve Yaşlanmayla İlişkili Hastalıklardaki Epigenetik Değişiklikler". (2016), 162-170.
APA BAYRAMOV B, GÜNEŞ S (2016). Yaşlanma ve Yaşlanmayla İlişkili Hastalıklardaki Epigenetik Değişiklikler. Türkiye Klinikleri Tıp Bilimleri Dergisi, 36(3), 162 - 170.
Chicago BAYRAMOV Bayram,GÜNEŞ Sezgin Yaşlanma ve Yaşlanmayla İlişkili Hastalıklardaki Epigenetik Değişiklikler. Türkiye Klinikleri Tıp Bilimleri Dergisi 36, no.3 (2016): 162 - 170.
MLA BAYRAMOV Bayram,GÜNEŞ Sezgin Yaşlanma ve Yaşlanmayla İlişkili Hastalıklardaki Epigenetik Değişiklikler. Türkiye Klinikleri Tıp Bilimleri Dergisi, vol.36, no.3, 2016, ss.162 - 170.
AMA BAYRAMOV B,GÜNEŞ S Yaşlanma ve Yaşlanmayla İlişkili Hastalıklardaki Epigenetik Değişiklikler. Türkiye Klinikleri Tıp Bilimleri Dergisi. 2016; 36(3): 162 - 170.
Vancouver BAYRAMOV B,GÜNEŞ S Yaşlanma ve Yaşlanmayla İlişkili Hastalıklardaki Epigenetik Değişiklikler. Türkiye Klinikleri Tıp Bilimleri Dergisi. 2016; 36(3): 162 - 170.
IEEE BAYRAMOV B,GÜNEŞ S "Yaşlanma ve Yaşlanmayla İlişkili Hastalıklardaki Epigenetik Değişiklikler." Türkiye Klinikleri Tıp Bilimleri Dergisi, 36, ss.162 - 170, 2016.
ISNAD BAYRAMOV, Bayram - GÜNEŞ, Sezgin. "Yaşlanma ve Yaşlanmayla İlişkili Hastalıklardaki Epigenetik Değişiklikler". Türkiye Klinikleri Tıp Bilimleri Dergisi 36/3 (2016), 162-170.