Yıl: 2017 Cilt: 37 Sayı: 2 (40. Yıl Özel Baskı) Sayfa Aralığı: 75 - 88 Metin Dili: İngilizce İndeks Tarihi: 20-12-2018

A NEW METHOD FOR THE OPTIMIZATION OF INSULATION THICKNESS FOR RADIANT WALL HEATING SYSTEMS

Öz:
In this study we proposed a new modified New Degree-Day Method (NDDM) for the optimization ofinsulation thickness of the wall where the radiant panels are mounted (WMRP) in which heat generation inside thewall is considered. The existing Standard Degree-Day Method (SDDM) is not applicable to estimate the optimuminsulation thickness for the buildings where the WMRP is mounted. Because SDDM method uses indoor airtemperature as a base temperature, hence heat generation through the WMRP cannot be taken into account. In thenew method, important parameters were obtained from the series of the CFD analysis for different thermaltransmittance coefficient (U) and outdoor air temperature (To) values are used to create an empirical equation for theestimation of Tp (new base temperature) with the multiple polynomial regression method. Then the numerical resultswere validated with experimental results which were obtained from the real-size test chamber. Using the new methodoptimum insulation thickness, net energy saving and payback periods for radiant wall heating systems were calculated(for Istanbul climate) and compared with the results which were obtained using the standard degree-day method(SDDM). The results showed that, the SDDM significantly lower (85-95%) estimates the optimum insulationthickness and can’t be used for the buildings where the WMRP is used. The new method can be used for radiant wallheating systems where the performance of radiant heating systems is significantly affected by the insulationcapabilities and has a great importance in the sizing process of the radiant systems.Keywords: Radiant wall heating; Optimum insulation thickness; New degree-day method.
Anahtar Kelime:

Konular: Termodinamik

IŞINIMLA DUVARDAN ISITMA SİSTEMLERİNDE YALITIM KALINLIĞI OPTİMİZASYONUNDA KULLANILABİLECEK YENİ BİR YÖNTEM

Öz:
Bu çalışmada ışınım ısıtma panellerin kullandığı duvarlardaki yalıtım kalınlığının optimizasyonu için, duvarlardaki ısı üretimini dikkate alan, yeni bir derece-gün yöntemi (NDDM) geliştirilmiştir. Standard Derece-Gün Yöntemi (SDDM) temel sıcaklık olarak mahal hava sıcaklığını dikkate almakta ve duvara monte edilmiş ışınım panellerindeki ısı üretimini dikkate alamamaktadır. Bu yüzden standart yöntem ile ışınım panellerin bulundugu duvarlar için yalıtım kalınlığı optimizasyonu yapmak imkansızdır. Önerilen yeni metotta kullanılan yeni temel sıcaklık değerinin (Tp) elde edilmesinde kullanılan ampirik ifade (3. dereceden polinom) farklı yapı ısı geçirgenlik katsayısı (U) ve farklı dış hava sıcaklıkları (To) parametreleri için sayısal analizlerden elde edilmiştir. Daha sonra sayısal çalısmaların sonuçları aynı şartlarda yürütülen gerçek ölçekli deney sisteminde doğrulanmıştır. İstanbul iklim şartları için yeni yöntem ve eski yontem kullanılarak ideal yalıtım kalınlıkları, enerji tasarrufları ve geri dönüş süreleri hesaplanmış, iki yöntemden elde edilen sonuçlar kıyaslanmiştir. Sonuçlara göre eski yöntemle hesaplanan ideal yalıtım kalınlığı yeni yöntemden elde edilen değerin çok altında (%85-95) kalmaktadır. Bu yüzden standart yöntemin ısı üretimi olan duvarlarda kullanılmasının mümkün olmadığı görulmüştür. Önerilen yeni yöntem ise, ışınımla ısıtma sistemlerinin projelendirilmesinde önemli bir kriter olan ısı kayıplarının hesaplanması ve ideal yalıtım kalınlığının belirlenmesinde kullanılabilecektir.
Anahtar Kelime:

Konular: Termodinamik
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Yıldız A., Gürlek G., Erkek M., Özbalta N., 2008, Economical and environmental analyses of thermal insulation thickness in buildings, J. of Thermal Science and Technology, 28, 2, 25-34.
  • Ucar A., Balo F., 2010, Determination of the energy savings and the optimum insulation thickness in the four different insulated exterior walls, Renewable Energy, 35, 88-94
  • Ucar A., 2010, Thermo-economic analysis method for optimization of insulation thickness for the four different climatic regions of Turkey, Energy, 35, 1854-1864.
  • Tye-Gingras M., Gosselin L., 2012, Comfort and energy consumption of hydronic heating radiant ceilings and walls based on CFD analysis, Building and Environment, 54, 1-13.
  • TSE 825, 2008, Standard: Thermal Insulation Requirements for Buildings.
  • Stetiu C., 1999, Energy and peak power savings potential of radiant cooling systems in U.S. commercial buildings, Energy and Buildings, 30, 127-138.
  • Sisman N., Kahya E., Aras N., Aras H., 2007, Determination of optimum insulation thicknesses of the external wall and roof (ceiling) for Turkey’s different degree-day regions, Energy and Policy, 35, 5151-5155.
  • Seyam S., Huzayyin A., El-Batsh H., Nada S., 2014, Experimental and numerical investigation of the radiant panel heating system using scale room model, Energy and Buildings, 82, 130-141.
  • Rhee K., Kim W.K., 2015, A 50 year review of basic and applied research in radiant heating and cooling systems for the built environment, Building and Environment, 91, 166-190.
  • Özel G., Açıkkalp E., Görgün B., Yamık H., Caner N., 2015, Optimum insulation thickness determination using the environmental and life cycle cost analyses based entransy approach, Sustainable Energy Technologies and Assessments, 11, 87–91.
  • Özkan D.B., Onan C., 2011, Optimization of insulation thickness for different glazing areas in buildings for various climatic regions in Turkey, Applied Energy, 88, 1331-1342.
  • Ozel M., 2011, Effect of wall orientation on the optimum insulation thickness by using a dynamic method, Applied Energy, 88, 2429-2435.
  • Olesen B.W., Bonnefoi F., Michel E., De Carli M., 2000, Heat exchange coefficient between floor surface and space by floor cooling – theory or a question of definition, ASHRAE Transactions, DA-00-8-2, 684–694.
  • Miriel J., Serres L., Trombe A., 2002, Radiant ceiling panel heating-cooling systems: experimental and simulated study of the performances, thermal comfort and energy consumptions, Applied Thermal Engineering, 22, 1861-1873.
  • Koca A., 2011, Duvardan, Yerden, Tavandan Isıtma Soğutma Panellerinin Geliştirilmesi Performans Analizleri ve Örnek Bir Oda Modellenmesi, Msc Thesis, Istanbul Technical University, Istanbul, Turkey.
  • Koca A., Gemici Z., Topaçoğlu Y., Çetin G., Acet R.C., Kanbur B.B., 2013, Radyant ısıtma ve soğutma sistemlerinin ısıl konfor analizleri, 11. Ulusal tesisat mühendisliği kongresi, İzmir, 2025-2042.
  • Koca A., Gemici Z., Bedir K., 2013, Thermal comfort analysis of novel low exergy radiant heating cooling system and energy saving potential comparing to conventional systems, Proceedings of the Sixth International Exergy, Energy and Environment Symposium (IEEES-6), Rize, 579-590.
  • Koca A., Gemici Z., Topacoglu Y., Cetin G., Acet R.C., Kanbur B.B., 2014, Experimental investigation of heat transfer coefficients between hydronic radiant heated wall and room, Energy and Buildings, 82, 211-221.
  • Koca A., Gemici Z., Bedir K., 2014, Thermal comfort analysis of novel low exergy radiant heating cooling system and energy saving potential comparing to conventional systems, Book Chapter, Progress in Exergy, Energy and Environment, 38, 435-445.
  • Koca A., Atayilmaz O., Agra O., 2016, Experimental investigation of heat transfer and dehumidifying performance of novel condensing panel, Energy and Building, 129, 120-137.
  • Kilkis B., 2006, Cost optimization of hybrid HVAC system with composite radiant wall panels, Applied Thermal Engineering, 26, 10-17.
  • Kaynakli O., 2013, Optimum thermal insulation thicknesses and payback periods for building walls in turkey, J. of Thermal Science and Technology, 33, 2, 45-55.
  • Kaynakli O., 2012, A review of the economical and optimum thermal insulation thickness for building applications, Renewable and Sustainable Energy Reviews, 16, 415-425.
  • Kaynakli O., 2008, A study on residential heating energy requirement and optimum insulation thickness, Renewable Energy, 33, 1164-1172.
  • Kaya M., İlker F., Comaklı Ö., 2016, Economic analysis of effect on energy saving of thermal insulation at buildings in Erzincan province, J. of Thermal Science and Technology, 36, 1, 47-55.
  • Kanbur B.B., Atayilmaz S.O., Koca A., Gemici Z., Teke İ., 2013, A study on the optimum insulation thickness and energy savings of a radiant heating panel mounted wall for various parameters, 7. Mediterranean congress of climatization, İstanbul, 791-797.
  • Kanbur B.B., Atayılmaz S.O., Koca A., Gemici Z., Teke İ., 2013, Radyant ısıtma panellerinde açığa çıkan ısı akılarının sayısal olarak incelenmesi, 19. Ulusal Isı Bilimi ve Tekniği Kongresi, Samsun, 1498-1502.
  • Jeong J.W., Mumma S.A., Bahnfleth W.P., 2003, Energy conservation benefits of a dedicated outdoor air system with parallel sensible cooling by ceiling radiant panels, ASHRAE Transactions, 109.
  • International Energy Agency, 2013, Report: World Energy Outlook.
  • Hasan A., 1999, Optimizing insulation thickness for buildings using life-cycle cost. Appl. Energ., 63, 115-124.
  • Franc S., 1999, Economic viability of cooling ceiling systems, Energy and Building, 30, 195–201.
  • Erikci Çelik S.N., Zorer Gedik G., Parlakyildiz B., Koca A., Çetin M.G, Gemici Z., 2016, Yüzeyden ısıtma soğutma sistemli modüler hibrid duvar tasarımı ve performansının değerlendirilmesi, 2. Ulusal yapi fiziği ve çevre kontrolü kongresi, İstanbul, 243-252.
  • Erikci Çelik S.N., Zorer Gedik G., Parlakyildiz B., Koca A., Çetin M.G, Gemici Z., 2016, The performance evaluation of the modular design of hybrid wall with surface heating and cooling system, A/Z ITU Journal of the Faculty of Architecture, 13, 12, 31-37 (DOI: 10.5505/itujfa.2016.48658).
  • EN 1264-5 Standard, 2008, Water based surface embedded heating and cooling systems. Part 5: heating and cooling surfaces embedded in floors, ceilings and walls - determination of the thermal output.
  • Energy and Natural Resources Ministry of Turkey, 2013, Report: General Energy Balance Table.
  • Ekici B.B., Gulten A.A., Aksoy U.T., 2012, A study on the optimum insulation thicknesses of various types of external walls with respect to different materials, fuels and climate zones in Turkey, Applied Energy, 92, 211-217.
  • Duman Ö., Koca A., Acet R.C., Çetin G., Gemici Z., 2015, A study on optimum insulation thickness in walls and energy savings based on degree day approach for 3 different demo-sites in Europe, Proceedings of International Conference CISBAT 2015 Future Buildings and Districts Sustainability from Nano to Urban Scale, Lausanne, 155-160 (doi:10.5075/epfl-cisbat2015-155- 160).
  • Dombaycı Ö.A., Gölcü M., Pancar Y., 2006, Optimization of insulation thickness for external walls using different energy sources, Applied Energy, 83, 921-928.
  • Dikmen N., 2011, Performance analysis of the external wall thermal insulation systems applied in residences, J. of Thermal Science and Technology, 31, 1, 67-76.
  • De Rosa M., Bianco V., Scarpa F., Tagliafico L.A., 2014, Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach, Applied Energy, 128, 217-229.
  • Çomaklı K., Yüksel B., 2004, Environmental impact of thermal insulation thickness in buildings, Applied Thermal Engineering, 24, 933-940.
  • Çomaklı K., Yüksel B., 2003, Optimum insulation thickness of external walls for energy saving, Applied Thermal Engineering, 23, 473-479.
  • Cvetkovi D., Bojic M., 2014, Optimization of thermal insulation of a house heated by using radiant panels, Energy and Buildings, 85, 329-336.
  • BS EN 14037-5 Standard, 2016, Free hanging heating and cooling surfaces for water with a temperature below 120°C. Open or closed heated ceiling surfaces. Test method for thermal output.
  • BS EN 15377-1 Standard, 2008, Heating systems in buildings. Design of embedded water based surface heating and cooling systems. Determination of the design heating and cooling capacity.
  • Bolattürk A., Dağıdır C., 2013, Determination of optimum insulation thickness for buildings in Hot climate regions by considering solar radiation, J. of Thermal Science and Technology, 33, 1, 87-99.
  • Bolattürk A., 2008, Optimum insulation thicknesses for building walls with respect to cooling and heating degree-hours in the warmest zone of Turkey, Building and Environment, 43, 1055-1064.
  • Bojic M., Cvetkovic D., Bojic L., 2015, Decreasing energy use and influence to environment by radiant panel heating using different energy sources, Applied Energy, 138, 404-413.
  • ASHRAE, 2008, Handbook-fundamentals Panel heating and cooling, ASHRAE, Atlanta.
  • Arslan O., Köse R., 2006, Thermo-economic optimization of insulation thickness considering condensed vapor in buildings, Energy and Buildings, 38, 1400-1408.
  • ANSI/ASHRAE, 2005, Standard 138: Method of Testing for Rating Ceiling Panels for Sensible Heating and Cooling.
  • Al-Homoud M.S., 2005, Performance characteristics and practical applications of common building thermal insulation materials, Build Environment, 40, 353-66.
  • Acikgoz O., Kincay O., 2015, Experimental and numerical investigation of the correlation between radiative and convective heat-transfer coefficients at the cooled wall of a real-sized room, Energy and Building, 108, 257-266.
APA KOCA A, ÇETİN G, VELİŞAN E (2017). A NEW METHOD FOR THE OPTIMIZATION OF INSULATION THICKNESS FOR RADIANT WALL HEATING SYSTEMS. , 75 - 88.
Chicago KOCA Ali İhsan,ÇETİN Gürsel,VELİŞAN Eser A NEW METHOD FOR THE OPTIMIZATION OF INSULATION THICKNESS FOR RADIANT WALL HEATING SYSTEMS. (2017): 75 - 88.
MLA KOCA Ali İhsan,ÇETİN Gürsel,VELİŞAN Eser A NEW METHOD FOR THE OPTIMIZATION OF INSULATION THICKNESS FOR RADIANT WALL HEATING SYSTEMS. , 2017, ss.75 - 88.
AMA KOCA A,ÇETİN G,VELİŞAN E A NEW METHOD FOR THE OPTIMIZATION OF INSULATION THICKNESS FOR RADIANT WALL HEATING SYSTEMS. . 2017; 75 - 88.
Vancouver KOCA A,ÇETİN G,VELİŞAN E A NEW METHOD FOR THE OPTIMIZATION OF INSULATION THICKNESS FOR RADIANT WALL HEATING SYSTEMS. . 2017; 75 - 88.
IEEE KOCA A,ÇETİN G,VELİŞAN E "A NEW METHOD FOR THE OPTIMIZATION OF INSULATION THICKNESS FOR RADIANT WALL HEATING SYSTEMS." , ss.75 - 88, 2017.
ISNAD KOCA, Ali İhsan vd. "A NEW METHOD FOR THE OPTIMIZATION OF INSULATION THICKNESS FOR RADIANT WALL HEATING SYSTEMS". (2017), 75-88.
APA KOCA A, ÇETİN G, VELİŞAN E (2017). A NEW METHOD FOR THE OPTIMIZATION OF INSULATION THICKNESS FOR RADIANT WALL HEATING SYSTEMS. Isı Bilimi ve Tekniği Dergisi, 37(2 (40. Yıl Özel Baskı)), 75 - 88.
Chicago KOCA Ali İhsan,ÇETİN Gürsel,VELİŞAN Eser A NEW METHOD FOR THE OPTIMIZATION OF INSULATION THICKNESS FOR RADIANT WALL HEATING SYSTEMS. Isı Bilimi ve Tekniği Dergisi 37, no.2 (40. Yıl Özel Baskı) (2017): 75 - 88.
MLA KOCA Ali İhsan,ÇETİN Gürsel,VELİŞAN Eser A NEW METHOD FOR THE OPTIMIZATION OF INSULATION THICKNESS FOR RADIANT WALL HEATING SYSTEMS. Isı Bilimi ve Tekniği Dergisi, vol.37, no.2 (40. Yıl Özel Baskı), 2017, ss.75 - 88.
AMA KOCA A,ÇETİN G,VELİŞAN E A NEW METHOD FOR THE OPTIMIZATION OF INSULATION THICKNESS FOR RADIANT WALL HEATING SYSTEMS. Isı Bilimi ve Tekniği Dergisi. 2017; 37(2 (40. Yıl Özel Baskı)): 75 - 88.
Vancouver KOCA A,ÇETİN G,VELİŞAN E A NEW METHOD FOR THE OPTIMIZATION OF INSULATION THICKNESS FOR RADIANT WALL HEATING SYSTEMS. Isı Bilimi ve Tekniği Dergisi. 2017; 37(2 (40. Yıl Özel Baskı)): 75 - 88.
IEEE KOCA A,ÇETİN G,VELİŞAN E "A NEW METHOD FOR THE OPTIMIZATION OF INSULATION THICKNESS FOR RADIANT WALL HEATING SYSTEMS." Isı Bilimi ve Tekniği Dergisi, 37, ss.75 - 88, 2017.
ISNAD KOCA, Ali İhsan vd. "A NEW METHOD FOR THE OPTIMIZATION OF INSULATION THICKNESS FOR RADIANT WALL HEATING SYSTEMS". Isı Bilimi ve Tekniği Dergisi 37/2 (40. Yıl Özel Baskı) (2017), 75-88.