Yıl: 2017 Cilt: 37 Sayı: 2 (40. Yıl Özel Baskı) Sayfa Aralığı: 19 - 32 Metin Dili: İngilizce İndeks Tarihi: 20-12-2018

EFFECTS OF FLOW ROUTING PLATE ON MIXED CONVECTION HEAT TRANSFER FROM PROTRUDED HEAT SOURCES

Öz:
In this study, the effect of the flow routing plates on the laminar mixed convection heat transfer in ahorizontal channel that has protruded heat sources at the bottom and top surfaces were investigated numerically andexperimentally. The air was used as the cooling fluid, and protruded heat sources were equipped as 4x8 rows into therectangle channel that has insulated walls. The experimental study was applied for two different Reynolds (Re)numbers. A numerical model complying with the experimental results was created, and numerical investigations wereperformed in different Reynolds and modified Grashof (Gr*) numbers for the 0°, 30°, 60° values of the plate angles(α). The analyses showed that using flow routing plate only increases the heat transfer from the first four heater rowson the bottom surface, and the first and the last heater rows on the top surface. The findings obtained during theexperimental and numerical studies were presented in detail as graphics showing the row averaged Nusselt number(Nurow ave.), the heater temperatures, velocity vectors, and temperature contours.
Anahtar Kelime:

Konular: Termodinamik

AKIŞ YÖNLENDİRİCİ PLAKANIN ÇIKINTILI ISI KAYNAKLARINDAN KARIŞIK KONVEKSİYONLA ISI TRANSERİNE ETKİSİ

Öz:
Bu çalışmada, akış yönlendirici plaka kullanımının alt ve üst yüzeylerinde çıkıntılı ısı kaynakları bulunan yatay bir kanal içerisindeki karışık konveksiyonla laminar ısı transferine etkisi sayısal ve deneysel olarak incelenmiştir. Soğutucu akışkan olarak hava kullanılmış olup ısı kaynakları duvarları yalıtılmış olan dikdörtgen kanal içerisine 8x4’lük diziler halinde yerleştirilmiştir. Deneysel çalışma iki farklı Reynolds sayısı (Re) için yapılmıştır. Deneysel çalışma sonuçları ile uyumlu bir sayısal model oluşturulmuş ve sayısal çalışma 0°, 30°, 60° plaka açıları için farklı Re ve Grashof (Gr) sayılarında gerçekleştirilmiştir. Analizler akış yönlendirici plaka kullanımının yalnızca alt yüzeyde ilk dört ısıtıcı sırası için, üst yüzeyde ise ilk ve son ısıtıcı sıraları için ısı transferini artırdığını göstermiştir. Deneysel ve sayısal çalışma sırasında elde edilen bulgular sıra ortalama Nusselt sayısı (Nusıra ort.), ısıtıcı sıcaklıkları, hız vektörleri ve sıcaklık kontörlerini gösteren grafikler halinde ayrıntılı olarak sunulmuştur.
Anahtar Kelime:

Konular: Termodinamik
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Yang, S. J., 2002, A numerical investigation of heat transfer enhancement for electronic devices using an oscillating vortex generator. Numerical Heat Transfer: Part A: Applications, 42(3), 269-284.
  • Wu, J. M. and Tao, W. Q., 2008, Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part A: Verification of field synergy principle, International Journal of Heat and Mass Transfer, 51(5), 1179-1191.
  • Valencia, A., 1999, Heat transfer enhancement due to self-sustained oscillating transverse vortices in channels with periodically mounted rectangular bars, International Journal of Heat and Mass Transfer, 42(11), 2053-2062.
  • Teamah, M. A., El-Maghlany, W. M. and Dawood, M. M. K., 2011, Numerical simulation of laminar forced convection in horizontal pipe partially or completely filled with porous material, International Journal of Thermal Sciences, 50(8), 1512-1522.
  • Sripattanapipat, S. and Promvonge, P., 2009, Numerical analysis of laminar heat transfer in a channel with diamond-shaped baffles, International Communications in Heat and Mass Transfer, 36(1), 32-38.
  • Sohankar, A., 2007, Heat transfer augmentation in a rectangular channel with a vee-shaped vortex generator, International Journal of Heat and Fluid Flow, 28(2), 306-317.
  • Smith, R. E. and Wehofer, S., 1985, From measurement uncertainty to measurement communications, credibility, and cost control in propulsion ground test facilities. Journal of Fluids Engineering, 107(2), 165-172.
  • Perng, S. W., Wu, H. W. and Jue, T. C., 2012, Numerical investigation of heat transfer enhancement on a porous vortex-generator applied to a block-heated channel, International Journal of Heat and Mass Transfer, 55(11), 3121-3137.
  • Perng, S. W. and Wu, H. W. 2008, Numerical investigation of mixed convective heat transfer for unsteady turbulent flow over heated blocks in a horizontal channel, International Journal of Thermal Sciences, 47(5), 620-632.
  • Oztop, H. F., Varol, Y. and Alnak, D. E., 2009, Control of heat transfer and fluid flow using a triangular bar in heated blocks located in a channel, International Communications in Heat and Mass Transfer, 36(8), 878-885.
  • Myrum, T. A., Qiu, X. and Acharya, S., 1993, Heat transfer enhancement in a ribbed duct using vortex generators, International journal of heat and mass transfer, 36(14), 3497-3508.
  • Moffat, R. J., 1982, Contributions to the theory of singlesample uncertainty analysis. ASME, Transactions, Journal of Fluids Engineering, 104(2), 250-58.
  • Min, C., Qi, C., Wang, E., Tian, L. and Qin, Y., 2012, Numerical investigation of turbulent flow and heat transfer in a channel with novel longitudinal vortex generators, International Journal of Heat and Mass Transfer, 55(23), 7268-7277.
  • Korichi, A., Oufer, L. and Polidori, G., 2009, Heat transfer enhancement in self-sustained oscillatory flow in a grooved channel with oblique plates, International Journal of Heat and Mass Transfer, 52(5), 1138-1148.
  • Kline, S. J., 1985, The purposes of uncertainty analysis, Journal of Fluids Engineering, 107(2), 153-160.
  • Fu, W. S., Chen, C. J., Wang, Y. Y. and Huang, Y., 2012, Enhancement of mixed convection heat transfer in a three-dimensional horizontal channel flow by insertion of a moving block, International Communications in Heat and Mass Transfer, 39(1), 66-71.
  • Fu, WS. and Tong, BH., 2004, Numerical investigation of heat transfer characteristics of the heated blocks in the channel with a transversely oscillating cylinder, International Journal of Heat and Mass Transfer, 47(2), 341-351.
  • Fu, W. S., Ke, W. W. and Wang, K. N., 2001, Laminar forced convection in a channel with a moving block, International journal of heat and mass transfer, 44(13), 2385-2394.
  • FLUENT, A. 2011, Release 14.0, User Guide, Ansys. Inc., Lebanon, US.
  • Davidson, A. S. L., 2001, Effect of inclined vortex generators on heat transfer enhancement in a threedimensional channel Numerical Heat Transfer: Part A: Applications, 39(5), 433-448.
  • Chompookham, T., Thianpong, C. and Kwankaomeng, S., and Promvonge, P., 2010, Heat transfer augmentation in a wedge-ribbed channel using winglet vortex generators, International Communications in Heat and Mass Transfer, 37(2), 163-169.
  • Beig, S. A., Mirzakhalili, E. and Kowsari, F., 2011, Investigation of optimal position of a vortex generator in a blocked channel for heat transfer enhancement of electronic chips, International Journal of Heat and Mass Transfer, 54(19), 4317-4324.
APA Kurşun B, SİVRİOĞLU M (2017). EFFECTS OF FLOW ROUTING PLATE ON MIXED CONVECTION HEAT TRANSFER FROM PROTRUDED HEAT SOURCES. , 19 - 32.
Chicago Kurşun Burak,SİVRİOĞLU Mecit EFFECTS OF FLOW ROUTING PLATE ON MIXED CONVECTION HEAT TRANSFER FROM PROTRUDED HEAT SOURCES. (2017): 19 - 32.
MLA Kurşun Burak,SİVRİOĞLU Mecit EFFECTS OF FLOW ROUTING PLATE ON MIXED CONVECTION HEAT TRANSFER FROM PROTRUDED HEAT SOURCES. , 2017, ss.19 - 32.
AMA Kurşun B,SİVRİOĞLU M EFFECTS OF FLOW ROUTING PLATE ON MIXED CONVECTION HEAT TRANSFER FROM PROTRUDED HEAT SOURCES. . 2017; 19 - 32.
Vancouver Kurşun B,SİVRİOĞLU M EFFECTS OF FLOW ROUTING PLATE ON MIXED CONVECTION HEAT TRANSFER FROM PROTRUDED HEAT SOURCES. . 2017; 19 - 32.
IEEE Kurşun B,SİVRİOĞLU M "EFFECTS OF FLOW ROUTING PLATE ON MIXED CONVECTION HEAT TRANSFER FROM PROTRUDED HEAT SOURCES." , ss.19 - 32, 2017.
ISNAD Kurşun, Burak - SİVRİOĞLU, Mecit. "EFFECTS OF FLOW ROUTING PLATE ON MIXED CONVECTION HEAT TRANSFER FROM PROTRUDED HEAT SOURCES". (2017), 19-32.
APA Kurşun B, SİVRİOĞLU M (2017). EFFECTS OF FLOW ROUTING PLATE ON MIXED CONVECTION HEAT TRANSFER FROM PROTRUDED HEAT SOURCES. Isı Bilimi ve Tekniği Dergisi, 37(2 (40. Yıl Özel Baskı)), 19 - 32.
Chicago Kurşun Burak,SİVRİOĞLU Mecit EFFECTS OF FLOW ROUTING PLATE ON MIXED CONVECTION HEAT TRANSFER FROM PROTRUDED HEAT SOURCES. Isı Bilimi ve Tekniği Dergisi 37, no.2 (40. Yıl Özel Baskı) (2017): 19 - 32.
MLA Kurşun Burak,SİVRİOĞLU Mecit EFFECTS OF FLOW ROUTING PLATE ON MIXED CONVECTION HEAT TRANSFER FROM PROTRUDED HEAT SOURCES. Isı Bilimi ve Tekniği Dergisi, vol.37, no.2 (40. Yıl Özel Baskı), 2017, ss.19 - 32.
AMA Kurşun B,SİVRİOĞLU M EFFECTS OF FLOW ROUTING PLATE ON MIXED CONVECTION HEAT TRANSFER FROM PROTRUDED HEAT SOURCES. Isı Bilimi ve Tekniği Dergisi. 2017; 37(2 (40. Yıl Özel Baskı)): 19 - 32.
Vancouver Kurşun B,SİVRİOĞLU M EFFECTS OF FLOW ROUTING PLATE ON MIXED CONVECTION HEAT TRANSFER FROM PROTRUDED HEAT SOURCES. Isı Bilimi ve Tekniği Dergisi. 2017; 37(2 (40. Yıl Özel Baskı)): 19 - 32.
IEEE Kurşun B,SİVRİOĞLU M "EFFECTS OF FLOW ROUTING PLATE ON MIXED CONVECTION HEAT TRANSFER FROM PROTRUDED HEAT SOURCES." Isı Bilimi ve Tekniği Dergisi, 37, ss.19 - 32, 2017.
ISNAD Kurşun, Burak - SİVRİOĞLU, Mecit. "EFFECTS OF FLOW ROUTING PLATE ON MIXED CONVECTION HEAT TRANSFER FROM PROTRUDED HEAT SOURCES". Isı Bilimi ve Tekniği Dergisi 37/2 (40. Yıl Özel Baskı) (2017), 19-32.