Yıl: 2017 Cilt: 41 Sayı: 3 Sayfa Aralığı: 96 - 105 Metin Dili: İngilizce İndeks Tarihi: 27-12-2018

PROLIFERATION OF MC3T3-E1 OSTEOBLASTIC CELLS AFTER SEQUENTIAL RELEASE OF PDGF AND BMP-6. AN IN VITRO STUDY

Öz:
Background and Aim: To evaluate the release kinetics of bone morphogenetic protein (BMP)-6 or -7 loaded nanoparticles (NPs) that located inside the microparticles (MPs) carrying platelet-derived growth factor (PDGF), and test this NP-in-MP system with MC3T3-E1 osteoblastic cells. Materials and Methods: Poly-lactic acid-co-glycolic acid (PLGA) NPs was loaded with BMP-6 or -7 and inserted in sodium alginate MPs loaded with PDGF. To evaluate the osteoblastic effect; proliferation of MC3T3-E1 cells that were treated with BMP-6, -7 and PDGF free solutions (FS) or within the particles (BMP-6 or -7 loaded PLGA NP alone and BMP-6 or -7 loaded PLGA NP in PDGF loaded alginate MP) were assessed at 2, 4, 7, 14 and 21 days. Results: It was shown that while both NP and NP-in-MP systems showed similar burst release at first time periods; especially in 24-72 h time period, NP-in-MP system exhibited a sustained release profile till 14th day. According to proliferation experiments, till the 7th day, both particle and FS groups exhibited similar profiles, but after that time particle groups, especially BMP-7 NP in PDGF MP, reached to statistically higher cell numbers than FS groups. NP-in-MP system exhibited a gradually longer time factor release resulting with delayed but elongated cell proliferation period. Conclusion: Findings indicate that NP-in-MP system might be promising in future for mimicking the natural bone formation process by providing sequential release of PDGF and BMPs, for bone tissue engineering. More comprehensive experiments evaluating mineralization and gene expression profile is necessary to verify these results
Anahtar Kelime:

Konular: Diş Hekimliği

PDGF VE BMP-6’NIN ARDIŞIK SALIMI SONRASI MC3T3-E1OSTEOBLAST HÜCRELERİNİN PROLİFERASYONU. IN VITRO BİRÇALIŞMA

Öz:
Amaç: Mevcut çalışma trombosit kaynaklı büyüme faktörü (platelet-derived growth factor, PDGF) taşıyan mikropartiküller (MP) içerisine hapsedilmiş nanopartiküller (NP)'den kemik morfogenetik protein (bone morphogenetic protein, BMP)6 veya -7'nin salım kinetiğini değerlendirmek ve bu sistemi MC3T3-E1 osteoblastik hücreleri ile test etmektir. Gereç ve Yöntemler: Polilaktik asit-glikolik asit (PLGA) NP'ler BMP-6 veya BMP-7 ile yüklenmiş ve PDGF ile doldurulmuş sodyum aljinat MP'lere yerleştirilmiştir. Osteoblastik etkiyi değerlendirmek için serbest veya partiküller içerisinde yüklü (BMP-6 veya BMP-7 yüklenmiş PLGA NP ile PDGF yüklenmiş aljinat MP içerisinde BMP-6 veya BMP-7 yüklenmiş PLGA NP) BMP-6, -7 ve PDGF ile muamele edilip 2, 4, 7, 14 ve 21. günlerde incelenmiştir. Bulgular: İlk zaman periyotlarında hem NP hem de MP içerisinde NP sistemleri benzer patlayıcı salım miktarı gösterirken özellikle 24-72 saat zaman diliminde MP içerisinde NP sistemi 14. güne kadar uzamış bir salım profili ortaya koymuştur. Proliferasyon deneylerine göre 7. Güne kadar her iki partikül grubu ve serbest solüsyon grupları benzer profiller oluşturmuştur ancak bu periyottan sonra özellikle PDGF MP içerisinde BMP-7 NP grubu olmak üzere partikül grupları, FS gruplarına kıyasla istatistiksel olarak anlamlı düzeyde daha fazla hücre sayısına ulaşmıştır. MP içinde NP sistemi ise dereceli ve daha uzun süren bir faktör salımı yaparak gecikmiş ve uzamış bir yüksek hücre proliferasyon periyodu sağlamıştır. Sonuç: Mevcut deneylerin bulguları MP içinde NP sisteminin PDGF and BMP'lerin ardışık salımını sağlayarak gelecekte kemik doku mühendisliğinde doğal kemik formasyon sürecini taklit edebileceği konusunda ümit vermektedir. Ancak bu sonuçları doğrulamak için mineralizasyon ve gen ekspresyon profillerini içeren daha kapsamlı deneylere ihtiyaç vardır
Anahtar Kelime:

Konular: Diş Hekimliği
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Hakki SS, Bozkurt B, Hakki EE, Kayis SA, Turac G, Yilmaz I et al. Bone morphogenetic protein-2, -6, and -7 differently regulate osteogenic differentiation of human periodontal ligament stem cells. J Biomed Mater Res B Appl Biomater 2014; 102: 119-30.
  • Elbaz NM, Khalil IA, Abd-Rabou AA El-Sherbiny IM. Chitosanbased nano-in-microparticle carriers for enhanced oral delivery and anticancer activity of propolis. Int J Biol Macromol 2016; 92: 254–269.
  • Goh CH, Heng PWS, Chan LW. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydrate Polymers 2012; 88: 1–12
  • Arnett TR. Extracellular pH regulates bone cell function. J Nutr 2008; 138: 415S–418S.
  • Basmanav FB, Kose GT, Hasirci V. Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterials 2008; 29: 4195-4204.
  • Soran Z, Aydın RS, Gumusderelioglu M. Chitosan scaffolds with BMP-6 loaded alginate microspheres for periodontal tissue engineering. Microencapsul 2012; 29: 770-780.
  • Sosnik A. Alginate Particles as Platform for Drug Delivery by the Oral Route: State-of-the-Art. ISRN Pharm 2014; 2014: 926157
  • Reinhold SE, Schwendeman SP. Effect of polymer porosity on aqueous self-healing encapsulation of proteins in PLGAmicrospheres. Macromol Biosci 2013; 13: 1700-1710.
  • Ansari T, Farheen Hasnain MS, Hoda MN, Nayak AK. Microencapsulation of pharmaceuticals by solvent evaporation technique: a review. Elixir Pharm 2012; 47: 8821–8827.
  • Yun-Seok R, Chun-Woong P, Patrick PD. Sustained-release injectable drug delivery: A review of current and future systems. Pharmaceut Tech 2010; 6: 1–7.
  • Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Control Release 2005; 102: 313–332.
  • Varde NK, Pack DW. Microspheres for controlled release drug delivery. Expert Opin Biol Ther 2004; 4: 35–51.
  • Krishnamurthy S, Gnanasammandhan MK, Xie C, Huang K, Cui MY, Chan JM. Monocyte Cell Membrane-derived Nanoghosts for Targeted Cancer Therapy. Nanoscale 2016; 8: 6981–6985.
  • Bose RJC, Lee SH, Park H. Lipid polymer hybrid nanospheres encapsulating antiproliferative agents for stent applications. J Industrial Eng Chem 2016; 36: 284–292.
  • Jose S, Juna BC, Cinu TA, Jyoti H, Aleykutty NA. Carboplatin loaded Surface modified PLGA nanoparticles: Optimization, characterization, and in vivo brain targeting studies. Colloids Surf B Biointerfaces. 2016; 142: 307-314.
  • Bose RJC, Ahn JC, Yoshie A, Park S, Park H, Lee SH. Preparation of cationic lipid layered PLGA hybrid nanoparticles for gene delivery. J Control Release 2015; 213: e92-93.
  • Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA 2011; 108: 10980–10985.
  • Krishnakumar D, Kalaiyarasi D, Bose J, Jaganathan KS. Evaluation of mucoadhesive nanoparticle based nasal vaccine. J Pharm Investigation 2012; 42: 315–326.
  • Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S et al. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomater Res 2016; 20: 10.
  • Yang J, Li Y, Jin S, Xu J, Wang PC, Liang XJ et al. Engineered biomaterials for development of nucleic acid vaccines. Biomater Res 2015; 19: 5.
  • Gupta PN, Khatri K, Goyal AK, Mishra N, Vyas SP. M-cell targeted biodegradable PLGA nanoparticles for oral immunization against hepatitis B. J Drug Target 2007; 15: 701-713.
  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012; 161: 505–522.
  • Yao Q, Yang Y, Pu X, Yang L, Hou Z, Dong Y et al. Preparation, characterization and osteoblastic activity of chitosan/ polycaprolactone/in situ hydroxyapatite scaffolds. J Biomater Sci Polym Ed 2012; 23: 1755-1770.
  • Desai KG, Park HJ. Study of gamma-irradiation effects on chitosan microparticles. Drug Deliv 2006; 13: 39-50.
  • Mantripragada VP, Jayasuriya AC. IGF-1 Release Kinetics from Chitosan Microparticles Fabricated Using Environmentally Benign Conditions. Mater Sci Eng C Mater Biol Appl 2014; 42: 506-516.
  • Garrait G, Beyssac E, Subirade M. Development of a novel drug delivery system: chitosan nanoparticles entrapped in alginate microparticles. J Microencapsul 2014; 31: 363-372.
  • Zhou W, Zhao M, Zhao Y, Mou Y. A fibrin gel loaded with chitosan nanoparticles for local delivery of rhEGF: preparation and in vitro release studies. J Mater Sci Mater Med 2011; 22: 1221– 1230.
  • Cetin M, Aktas Y, Vural I, Capan Y, Dogan LA, Duman M et al. Preparation and In Vitro Evaluation of bFGF-Loaded Chitosan Nanoparticles. Drug Deliv 2007; 14: 525-529.
  • Begam H, Nandi SK, Kundu B, Chanda A. Strategies for delivering bone morphogenetic protein for bone healing. Mater Sci Eng C Mater Biol Appl 2017; 70: 856-869.
  • Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2008; 2: 81–96.
  • Zhang F, Tang Z, Hou X, Lennartsson J, Li Y, Koch AW et al. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc Natl Acad Sci USA 2009; 106: 6152-6157.
  • Greenberg JI, Shields DJ, Barillas SG, Acevedo LM, Murphy E, Huang J et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 2008; 456(7223): 809- 813.
  • Lynch SE, Wisner-Lynch L, Nevins M, Nevins ML. A new era in periodontal and periimplant regeneration: use of growth-factor enhanced matrices incorporating rhPDGF. Compend Contin Educ Dent 2006; 27: 672–678.
  • Ronnstrand L, Heldin CH. Mechanisms of platelet-derived growth factor-induced chemotaxis. Int J Cancer 2001; 91: 757– 762.
  • Hollinger JO, Hart CE, Hirsch SN, Lynch S, Friedlaender GE. Recombinant human platelet-derived growth factor: biology and clinical applications. J Bone Joint Surg Am 2008; 90: 48-54
  • Vukicevic S, Oppermann H, Verbanac D, Jankolija M, Popek I, Curak J et al. The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing. Int Orthop 2014; 38: 635–647
  • Song K, Krause C, Shi S, Patterson M, Suto R, Grgurevic L et al. Identification of a key residue mediating bone morphogenetic protein (BMP)-6 resistance to noggin inhibition allows for engineered BMPs with superior agonist activity. J Biol Chem 2010; 285: 12169–12180
  • Vukicevic S, Grgurevic L. BMP-6 and mesenchymal stem cell differentiation. Cytokine Growth Factor Rev 2009; 20: 441–448.
  • Bernardo ME, Emons JA, Karperien M, Nauta AJ, Willemze R, Roelofs H et al. Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation compared with other sources. Connect Tissue Res 2007; 48: 132–140.
  • Akman AC, Seda Tigli R, Gümüsderelioglu M, Nohutcu RM. Bone morphogenetic protein 6 loaded chitosan scaffolds enhance the osteoblastic characteristics of Mc3t3 E1 cells. Artif Organs 2010; 34: 65–74
  • Friedman MS, Long MW, Hankenson KD. Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. J Cell Biochem 2006; 98: 538–554.
  • Huang KK, Shen C, Chiang CY, Hsieh YD, Fu E. Effects of bone morphogenetic protein 6 on periodontal wound healing in a fenestration defect of rats. J Periodontal Res 2005; 40: 1–10.
  • Onishi T, Ishidou Y, Nagamine T, Yone K, Imamura T, Kato M et al. Distinct and overlapping patterns of localization of bone morphogenetic protein (BMP) family members and a BMP type II receptor during fracture healing in rats. Bone 1998; 22: 605–612.
  • Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 2003; 85: 1544–1552.
  • Celeste AJ, Iannazzi JA, Taylor RC, Hewick RM, Rosen V, Wang EA et al. Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone. Proc Natl Acad Sci USA 1990; 87: 9843–9847.
  • Wozney JM, Rosen V, Byrne M, Celeste AJ, Moutsatsos I, Wang EA. Growth factors influencing bone development. J Cell Sci 1990; 13: 149–156.
  • Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci 2004; 4: 743–765.
APA KEÇELİ H, Bayram C, ERCAN N, Türk M, arat e, NOHUTÇU R (2017). PROLIFERATION OF MC3T3-E1 OSTEOBLASTIC CELLS AFTER SEQUENTIAL RELEASE OF PDGF AND BMP-6. AN IN VITRO STUDY. , 96 - 105.
Chicago KEÇELİ H. Gencay,Bayram Cem,ERCAN Nuray,Türk Mustafa,arat esra,NOHUTÇU Rahime M. PROLIFERATION OF MC3T3-E1 OSTEOBLASTIC CELLS AFTER SEQUENTIAL RELEASE OF PDGF AND BMP-6. AN IN VITRO STUDY. (2017): 96 - 105.
MLA KEÇELİ H. Gencay,Bayram Cem,ERCAN Nuray,Türk Mustafa,arat esra,NOHUTÇU Rahime M. PROLIFERATION OF MC3T3-E1 OSTEOBLASTIC CELLS AFTER SEQUENTIAL RELEASE OF PDGF AND BMP-6. AN IN VITRO STUDY. , 2017, ss.96 - 105.
AMA KEÇELİ H,Bayram C,ERCAN N,Türk M,arat e,NOHUTÇU R PROLIFERATION OF MC3T3-E1 OSTEOBLASTIC CELLS AFTER SEQUENTIAL RELEASE OF PDGF AND BMP-6. AN IN VITRO STUDY. . 2017; 96 - 105.
Vancouver KEÇELİ H,Bayram C,ERCAN N,Türk M,arat e,NOHUTÇU R PROLIFERATION OF MC3T3-E1 OSTEOBLASTIC CELLS AFTER SEQUENTIAL RELEASE OF PDGF AND BMP-6. AN IN VITRO STUDY. . 2017; 96 - 105.
IEEE KEÇELİ H,Bayram C,ERCAN N,Türk M,arat e,NOHUTÇU R "PROLIFERATION OF MC3T3-E1 OSTEOBLASTIC CELLS AFTER SEQUENTIAL RELEASE OF PDGF AND BMP-6. AN IN VITRO STUDY." , ss.96 - 105, 2017.
ISNAD KEÇELİ, H. Gencay vd. "PROLIFERATION OF MC3T3-E1 OSTEOBLASTIC CELLS AFTER SEQUENTIAL RELEASE OF PDGF AND BMP-6. AN IN VITRO STUDY". (2017), 96-105.
APA KEÇELİ H, Bayram C, ERCAN N, Türk M, arat e, NOHUTÇU R (2017). PROLIFERATION OF MC3T3-E1 OSTEOBLASTIC CELLS AFTER SEQUENTIAL RELEASE OF PDGF AND BMP-6. AN IN VITRO STUDY. Clinical Dentistry and Research, 41(3), 96 - 105.
Chicago KEÇELİ H. Gencay,Bayram Cem,ERCAN Nuray,Türk Mustafa,arat esra,NOHUTÇU Rahime M. PROLIFERATION OF MC3T3-E1 OSTEOBLASTIC CELLS AFTER SEQUENTIAL RELEASE OF PDGF AND BMP-6. AN IN VITRO STUDY. Clinical Dentistry and Research 41, no.3 (2017): 96 - 105.
MLA KEÇELİ H. Gencay,Bayram Cem,ERCAN Nuray,Türk Mustafa,arat esra,NOHUTÇU Rahime M. PROLIFERATION OF MC3T3-E1 OSTEOBLASTIC CELLS AFTER SEQUENTIAL RELEASE OF PDGF AND BMP-6. AN IN VITRO STUDY. Clinical Dentistry and Research, vol.41, no.3, 2017, ss.96 - 105.
AMA KEÇELİ H,Bayram C,ERCAN N,Türk M,arat e,NOHUTÇU R PROLIFERATION OF MC3T3-E1 OSTEOBLASTIC CELLS AFTER SEQUENTIAL RELEASE OF PDGF AND BMP-6. AN IN VITRO STUDY. Clinical Dentistry and Research. 2017; 41(3): 96 - 105.
Vancouver KEÇELİ H,Bayram C,ERCAN N,Türk M,arat e,NOHUTÇU R PROLIFERATION OF MC3T3-E1 OSTEOBLASTIC CELLS AFTER SEQUENTIAL RELEASE OF PDGF AND BMP-6. AN IN VITRO STUDY. Clinical Dentistry and Research. 2017; 41(3): 96 - 105.
IEEE KEÇELİ H,Bayram C,ERCAN N,Türk M,arat e,NOHUTÇU R "PROLIFERATION OF MC3T3-E1 OSTEOBLASTIC CELLS AFTER SEQUENTIAL RELEASE OF PDGF AND BMP-6. AN IN VITRO STUDY." Clinical Dentistry and Research, 41, ss.96 - 105, 2017.
ISNAD KEÇELİ, H. Gencay vd. "PROLIFERATION OF MC3T3-E1 OSTEOBLASTIC CELLS AFTER SEQUENTIAL RELEASE OF PDGF AND BMP-6. AN IN VITRO STUDY". Clinical Dentistry and Research 41/3 (2017), 96-105.