Yıl: 2017 Cilt: 17 Sayı: 1 Sayfa Aralığı: 318 - 337 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Yeşil Polimerler ve Uygulamaları

Öz:
Polimerler; istenilen özellikte sentezlenebilme, kolay işlenebilme, korozyona uğramama, hafiflik ve düşük maliyete sahip olma gibi özelliklere sahip gelişmiş materyallerdir. Sahip oldukları bu özellikler sayesinde polimerler, endüstride birçok kullanım alanı bulmuştur ve bu alanlar gün geçtikçe artmaktadır. Endüstriyel polimerler göstermiş oldukları yüksek potansiyel ve özelliklerin aksine, doğal bir süreç ile yok edilememesi sonucu kirlilik oluşturmakta ve ancak maliyetli parçalanma işlemleri sonucunda bertaraf edilebilmektedir. Bununla birlikte, petrol kaynakları gibi tükenir kaynaklardan elde edilmeleri, polimer sektöründe süreklilik ve çevre uyumu açısından yeni arayışlara yol açmıştır. Biyopolimerler, endüstriyel polimerlerin tükenir kaynaklardan elde edilmeleri ve bertarafının zor olması gibi dezavantajları sonucu, başta ambalaj sektörü olmak üzere birçok alanda alternatif materyal olarak ön plana çıkmıştır. Doğal ve sürdürülebilir kaynaklardan elde edilen biyopolimerler, mekanik ve termal özellikleri sayesinde endüstriyel polimerlerin taşıdığı özelliklere eşdeğer özelliklerde olup; biyopolimerlerin ilerleyen yıllarda polimer endüstrisinde önemli bir yere sahip olacağı öngörülmektedir. Bu derleme çalışmasında biyopolimerin çeşitleri hakkında bilgiler verilmiş ve sektörlere göre kullanım alanları incelenmiştir
Anahtar Kelime:

Green Polymers and Applications

Öz:
Polymers are highly sophisticated materials having properties such as being able to be synthesized, easily processed, not to be corroded, light weight and low cost. Polymers are used in many areas of the industry through these properties and these areas are increasing day by day. Contrary to the high potentials and properties of industrial polymers, they lead to pollution due to the fact that they cannot be destroyed by a natural process, and they can only be disposed of as a result of costly fragmentation processes. In addition, their availability from exhaustive sources such as petroleum has led to new quests for continuity and environmental compatibility in the polymer sector. Since industrial polymers have these disadvantages (availability from exhaustive sources and difficult disposal), biopolymers have come to the forefront as alternative materials in many fields, especially in the packaging sector. Biopolymers, which are obtained from natural and sustainable sources, are equivalent to those possessed by industrial polymers through their mechanical and thermal properties. Furthermore, it is predicted that the biopolymers will have an important place in the polymer industry in the following years. In this review study, information about the types of biopolymers has been given and their application areas have been examined according to the sectors.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Adamopoulou, Erini. 2012. Poly (butylene succinate): A promising biopolymer. Department of Industrial Management and Technology. School of Chemical Engineering.
  • Alcázar-Alay, Sylvia Carolina, and Maria Angela Almeida Meireles. 2015. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology (Campinas), 35: 215-36.
  • Ali Akbari Ghavimi, Soheila, Mohammad H Ebrahimzadeh, Mehran Solati‐Hashjin, Abu Osman, and Noor Azuan. 2015. Polycaprolactone/starch composite: Fabrication, structure, properties, and applications. Journal of Biomedical Materials Research Part A, 103: 2482-98.
  • ALMA, Mehmet Hakkı. 1999. Ligninin materyallerde değerlendirilmesi. ÇEV-KOR, 8: 28-29.
  • Anderson, ALISTAIR J, and Edwin A Dawes. 1990. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological reviews, 54: 450-72.
  • Anderson, Christopher D, and Eric S Daniels. 2003. Emulsion polymerisation and latex applications (ISmithers Rapra Publishing).
  • Armentano, I, N Bitinis, E Fortunati, S Mattioli, N Rescignano, R Verdejo, MA Lopez-Manchado, and JM Kenny. 2013. Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science, 38: 1720-47.
  • Augustine, Robin, Rajakumari Rajendran, Uroš Cvelbar, Miran Mozetič, and Anne George. 2013. Biopolymers for health, food, and cosmetic applications. Handbook of Biopolymer-Based Materials: From Blends and Composites to Gels and Complex Networks: 801-49.
  • Averous, Luc. 2004. Biodegradable multiphase systems based on plasticized starch: a review. Journal of Macromolecular Science, Part C: Polymer Reviews, 44: 231-74.
  • Board, NIIR. 2012. Polymers and Plastics Technology Handbook. In.: ISBN 81-78-33076-8. http://www. niir. org/books/book/polymersplasticstechnology-handbook-niir-board/isbn- 8178330768/zb,, 54, a, 0, 0, a/index. html (Acc. 2012-02-12).
  • Bogati, Dhani Raj. 2011. Cellulose based biochemicals and their applications.
  • Bordes, Perrine, Eric Pollet, and Luc Avérous. 2009. Nano-biocomposites: biodegradable polyester/nanoclay systems. Progress in polymer science, 34: 125-55.
  • Brar, Satinder Kaur, Gurpreet Singh Dhillon, and Carlos Ricardo Soccol. 2014. Biotransformation of waste biomass into high value biochemicals (Springer).
  • Canisag, Hazal. 2015. Bio-Crosslinking of Starch Films with Oxidized Sucrose.
  • Cha, Dong Su, and Manjeet S Chinnan. 2004. Biopolymer-based antimicrobial packaging: a review. Critical reviews in food science and nutrition, 44: 223-37.
  • Cheema, Umber, Michael Ananta, and Vivek Mudera. 2011. Collagen: applications of a natural polymer in regenerative medicine (INTECH Open Access Publisher).
  • Chen, Jason. 2016. Global Markets and Technologies for Bioplastics. In.
  • Clarinval, AM. 2002. Classification and comparison of thermal and mechanical properties of commercialized polymers. In International Congress & Trade Show, The Industrial Applications of Bioplastics, 3-5.
  • Finkenstadt, Victoria L, and Brent Tisserat. 2010. Poly (lactic acid) and Osage Orange wood fiber composites for agricultural mulch films. Industrial crops and products, 31: 316-20.
  • Flaris, Vicki, and Gurpreet Singh. 2009. Recent developments in biopolymers. Journal of Vinyl and Additive Technology, 15: 1-11.
  • Garlotta, Donald. 2001. A literature review of poly (lactic acid). Journal of Polymers and the Environment, 9: 63-84.
  • Ghaffar, AMEA. 2002. Development of a biodegradable material based on poly (3-hydroxybutyrate) PHB. Martin-Luther University, Wittenberg: 115.
  • Glenn, Gregory M, William Orts, Syed Imam, Bor-Sen Chiou, and Delilah F Wood. 2014. Starch plastic packaging and agriculture applications.
  • Gonnade, Yogita R, Kamlesh Niranjane, and Arati Ambatkar. 2014. Lipid: An Emerging Platform For Lipid Based Drug Delivery System.
  • Hamad, K, M Kaseem, HW Yang, F Deri, and YG Ko. 2015. Properties and medical applications of polylactic acid: A review. Express Polymer Letters, 9: 435-55.
  • Hu, Thomas Q. 2002. Chemical modification, properties, and usage of lignin (Springer).
  • Ikada, Yoshito, and Hideto Tsuji. 2000. Biodegradable polyesters for medical and ecological applications. Macromolecular rapid communications, 21: 117-32.
  • Jamshidian, Majid, Elmira Arab Tehrany, Muhammad Imran, Muriel Jacquot, and Stéphane Desobry. 2010. Poly‐Lactic Acid: production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9: 552-71.
  • Jenkins, Paul J, Ruth E Cameron, and Athene M Donald. 1993. A universal feature in the structure of starch granules from different botanical sources. Starch‐Stärke, 45: 417-20.
  • Ji, Xin, Cheng Xing, Xueshen Shi, and Jianping Chen. 2013. Modified Starch Material of Biocompatible Hemostasis. In.: Google Patents.
  • Jiménez, Alberto, María José Fabra, Pau Talens, and Amparo Chiralt. 2015. Polysaccharides as Valuable Materials in Food Packaging. Functional Polymers in Food Science: From Technology to Biology, Volume 1: Food Packaging: 211.
  • Kalia, Susheel, and Luc Avérous. 2016. Biodegradable and Biobased Polymers for Environmental and Biomedical Applications (John Wiley & Sons).
  • Kapich, Alexander N, Kenneth A Jensen, and Kenneth E Hammel. 1999. Peroxyl radicals are potential agents of lignin biodegradation. FEBS letters, 461: 115-19.
  • Kim, Hee‐Soo, Han‐Seung Yang, and Hyun‐Joong Kim. 2005. Biodegradability and mechanical properties of agro‐flour–filled polybutylene succinate biocomposites. Journal of Applied Polymer Science, 97: 1513-21.
  • Kim, In-Yong, Seog-Jin Seo, Hyun-Seuk Moon, Mi-Kyong Yoo, In-Young Park, Bom-Chol Kim, and ChongSu Cho. 2008. Chitosan and its derivatives for tissue engineering applications. Biotechnology advances, 26: 1-21.
  • Kim, Seungdo, and Bruce Dale. 2005. 'Life cycle assessment study of biopolymers (Polyhydroxyalkanoates)-Derived from NoTilled Corn (11 pp)', The International Journal of Life Cycle Assessment, 10: 200-10.
  • Koronis, Georgios, Arlindo Silva, and Mihail Fontul. 2013. Green composites: a review of adequate materials for automotive applications.
  • Composites Part B: Engineering, 44: 120-27. Kumar, Majeti NV Ravi. 2000. A review of chitin and chitosan applications. Reactive and functional polymers, 46: 1-27.
  • Labet, Marianne, and Wim Thielemans. 2009. Synthesis of polycaprolactone: a review. Chemical Society Reviews, 38: 3484-504.
  • Lee, Chi H, Anuj Singla, and Yugyung Lee. 2001. Biomedical applications of collagen. International journal of pharmaceutics, 221: 1- 22.
  • Lee, Sang Yup. 1996. Bacterial polyhydroxyalkanoates. Biotechnology and bioengineering, 49: 1-14. Li, Gang. 2010. Biodegradable blends of polycaprolactone with thermoplastic starch. École Polytechnique de Montréal.
  • Liu, Lifang, Jianyong Yu, Longdi Cheng, and Weiwei Qu. 2009. Mechanical properties of poly (butylene succinate)(PBS) biocomposites reinforced with surface modified jute fibre. Composites Part A: Applied Science and Manufacturing, 40: 669-74.
  • Lochhead, Robert Y. 2007. The role of polymers in cosmetics: recent trends. In ACS symposium series, 3-56. Oxford University Press.
  • Maynes, Richard. 2012. Structure and function of collagen types (Elsevier).
  • Miller, Stephen A. 2013. Sustainable polymers: opportunities for the next decade. ACS Macro Letters, 2: 550-54.
  • Muthuraj, R, M Misra, and AK Mohanty. 2015. University of Guelph, Guelph, ON, Canada.
  • Niaounakis, M. 2015. Biopolymers: Applications and trends. In.: Elsevier Science Publishing Company Incorporated: Oxford, UK.
  • Oakley, Philip. 2010. Reducing the water absorption of thermoplastic starch processed by extrusion. University of Toronto.
  • Pardeike, Jana, Aiman Hommoss, and Rainer H Müller. 2009. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. International journal of pharmaceutics, 366: 170-84.
  • Peng, BL, N Dhar, HL Liu, and KC Tam. 2011. Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. The Canadian Journal of Chemical Engineering, 89: 1191-206.
  • Petersen, Karina, Per Væggemose Nielsen, Grete Bertelsen, Mark Lawther, Mette B Olsen, Nils H Nilsson, and Grith Mortensen. 1999. Potential of biobased materials for food packaging.
  • Trends in Food Science & Technology, 10: 52-68. Rabasco Álvarez, Antonio María, and María Luisa González Rodríguez. 2000. Lipids in pharmaceutical and cosmetic preparations.
  • Rai, Mahendra, Avinash P Ingle, Indarchand Gupta, and Adriano Brandelli. 2015. Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery. International journal of pharmaceutics, 496: 159-72.
  • Rao, MG, P Bharathi, and RM Akila. 2014. A comprehensive review on biopolymers. Sci. Revs. Chem. Commun, 4: 61-68.
  • Rasal, Rahul M, Amol V Janorkar, and Douglas E Hirt. 2010. Poly (lactic acid) modifications. Progress in polymer science, 35: 338-56.
  • Reddy, Narendra, Roopa Reddy, and Qiuran Jiang. 2015. Crosslinking biopolymers for biomedical applications. Trends in biotechnology, 33: 362- 69.
  • Robertson, Gordon L. 2016. Food packaging: principles and practice (CRC press). Shanks, Robert, and Ing Kong. 2012. Thermoplastic elastomers.
  • Shokri, Javad, and Khosro Adibkia. 2013. Application of cellulose and cellulose derivatives in pharmaceutical industries. Cellulose—Medical, Pharmaceutical and Electronic Applications.
  • Shoulders, Matthew D, and Ronald T Raines. 2009. Collagen structure and stability. Annual review of biochemistry, 78: 929.
  • Sin, Lee Tin, Abdul Razak Rahmat, and Wan AWA Rahman. 2012. Polylactic acid: PLA biopolymer technology and applications (William Andrew).
  • Singh, Akhilesh V. 2011. Biopolymers in drug delivery: A review. Pharmacologyonline, 1: 666-74.
  • Singh, Anupama, Pramod Kumar Sharma, and Rishabha Malviya. 2011. Eco friendly pharmaceutical packaging material. World Applied Sciences Journal, 14: 1703-16.
  • Siracusa, Valentina, Pietro Rocculi, Santina Romani, and Marco Dalla Rosa. 2008. Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19: 634-43.
  • Sørensen, B. Renewable Energy Conversion, Transmission and Storage, 2007. In.: Amsterdam: Elsevier. X. Synowiecki, Józef, and Nadia Ali Al-Khateeb. 2003. Production, properties, and some new applications of chitin and its derivatives.
  • Van Loosdrecht, MCM, MA Pot, and JJ Heijnen. 1997. Importance of bacterial storage polymers in bioprocesses. Water Science and Technology, 35: 41-47.
  • Vink, Erwin TH, Karl R Rabago, David A Glassner, and Patrick R Gruber. 2003. Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polymer Degradation and stability, 80: 403-19.
  • Wittaya, Thawien. 2012. Rice starch-based biodegradable films: properties enhancement (INTECH Open Access Publisher). Woodings, Calvin. 2001. Regenerated cellulose fibres (Woodhead Publishing).
  • Woodruff, Maria Ann, and Dietmar Werner Hutmacher. 2010. The return of a forgotten polymer— polycaprolactone in the 21st century. Progress in polymer science, 35: 1217-56.
  • Wüstenberg, Tanja. 2014. Cellulose and cellulose derivatives in the food industry: fundamentals and applications (John Wiley & Sons).
  • Xiao, Lin, Bo Wang, Guang Yang, and Mario Gauthier. 2012. Poly (lactic acid)-based biomaterials: synthesis, modification and applications (INTECH Open Access Publisher).
  • Xie, Fengwei, Paul Luckman, John Milne, Lachlan McDonald, Conor Young, Chen Yang Tu, Teo Di Pasquale, Reinhard Faveere, and Peter J Halley. 2014. Thermoplastic Starch. Journal of Renewable Materials, 2: 95-106.
  • Xu, Jun, and Bao‐Hua Guo. 2010. Poly (butylene succinate) and its copolymers: research, development and industrialization. Biotechnology journal, 5: 1149-63.
  • Yu, PH, AL Huang, W Lo, H Chua, and GQ Chen. 1998. Conversion of food industrial wastes into bioplastics. in, Biotechnology for Fuels and Chemicals (Springer).
  • Zhou, Chengjun, and Qinglin Wu. 2012. Recent development in applications of cellulose nanocrystals for advanced polymer-based nanocomposites by novel fabrication strategies (INTECH Open Access Publisher).
  • 1- www.aliexpress.com (20.06.2016)
  • 2- http://www.indiamart.com/evereststarch/pape r-industries-starch.html (01.05.2016)
  • 3- http://www.banpong.co.th/app_adhesive (12.12.2011)
  • 4- http://www.applegateinsulation.com/ (29.05.2016)
  • 5- https://www.landwirtschaftskammer.de/landw irtschaft/ackerbau/nawaro/stofflichenutzung.htm (15.12.2009)
  • 6- http://materia.nl/article/fluid-solid-designs/ (07.11.2013)
  • 7- http://orogoldschool.com/news/chitosan-forwound-care/ (04.07.2016)
  • 8- https://girlmeetsbiochemistry.wordpress.com/ 2013/04/page/2/ (11.04.2013)
  • 9- http://news.harvard.edu/gazette/story/2014/0 5/promising-solution-to-plastic-pollution/ (05.05.2014)
  • 10- http://www.maquet.com/uk/products/collagen / (20.04.2016)
  • 11- http://www.claytonshagal.com/products/skincare-line/indepth-moisturizers/ (12.05.2016)
  • 12- https://www.davol.com/sp/avitene-flour-mch/ (16.06.2016)
  • 13- http://www.biocom.iastate.edu/newsroom/ne wsreleases/lignincarbonfibers.html (28.03.2012)
  • 14- http://www.innobite.eu/project-outputs. (23.07.2016)
  • 15- http://www.vttresearch.com/Impulse/Pages/T owards-bioeconomy-with-the-power-ofwood.aspx (26.05.2015)
  • 16- http://www.industriagomma.it/index.php/2015 /12/14/articoli-in-gomma-per-lautomotive-ilmercato-cresce/ (14.12.2015)
  • 17- http://www.izocam.com.tr/p97-izocamflex- %E2%80%93-elastomeric-rubber.html (13.03.2016)
  • 18- http://www.everychina.com/m-thermallyconductive-adhesives (05.02.2016)
  • 19- http://www.pharmaceuticalonline.com/doc/amesoporous-silica-carrier-optimized-forliquisolid-and-lipid-based-formulations-0001 (06.11.2013)
  • 20- http://resourcesofnature.com/cosmeticingredi ents/newcosmeticingredients.html (18.04.2016)
  • 21- http://www.dsm.com/markets/medical/en_US /products-page/metal-plastic-machining.html (25.02.2016)
  • 22- http://biovation.com/ (17.06.2015)
  • 23- http://mediworld2015.blogspot.com.tr/2015/0 3/recipe-forantibacterial-plastic-plastic.html (27.03.2015)
  • 24- http://www.ptonline.com/articles/biodegradab le-polyesters-packaging-goes-green (06.09.2002)
  • 25- http://packwebasia.com/component/tags/tag/ 26-biodegradable-packaging (14.09.2015)
  • 26- http://microtecco.com/processingtechnologies/bio-plastic-production/what-isbio-plastic/ (19.08.2014)
  • 27- http://biomassmagazine.com/articles/10820/m etabolix-q2-results-show-commercial-progressin-pha-products (20.08.2014)
  • 28- http://www.europeanbioplastics.org/market/applications-sectors/ (21.03.2015)
  • 29- http://biomassmagazine.com/articles/11179/p erstorp-steps-up-investment-in-bioplasticsmarket (11.11.2014)
  • 30- https://www.theengineer.co.uk/issues/25- june-2012/lightening-the-load-new-materialsfor-automotive/ (25.06.2012)
  • 31- http://www.corbion.com/bioplastics/plamarkets/automotive (30.04.2016)
  • 32- http://www2.mazda.com/en/csr/environment/ special_features/2006_04_01.html (04.01.2006)
  • 33- http://materbi.com/en/carrier-bags-gallery/ (21.02.2015)
  • 34- http://cdn.intechopen.com/pdfs/34062/InTech -Starch_protective_loose_fill_foams.pdf (28.03.2012)
  • 35- https://msu.edu/~narayan/researchareas.htm (24.05.2016)
  • 36- http://biopolymers.conferenceseries.com/2016 (04-05.08.2016)
APA YORUÇ A, Uğraşkan V (2017). Yeşil Polimerler ve Uygulamaları. , 318 - 337.
Chicago YORUÇ Afife Binnaz Hazar,Uğraşkan Volkan Yeşil Polimerler ve Uygulamaları. (2017): 318 - 337.
MLA YORUÇ Afife Binnaz Hazar,Uğraşkan Volkan Yeşil Polimerler ve Uygulamaları. , 2017, ss.318 - 337.
AMA YORUÇ A,Uğraşkan V Yeşil Polimerler ve Uygulamaları. . 2017; 318 - 337.
Vancouver YORUÇ A,Uğraşkan V Yeşil Polimerler ve Uygulamaları. . 2017; 318 - 337.
IEEE YORUÇ A,Uğraşkan V "Yeşil Polimerler ve Uygulamaları." , ss.318 - 337, 2017.
ISNAD YORUÇ, Afife Binnaz Hazar - Uğraşkan, Volkan. "Yeşil Polimerler ve Uygulamaları". (2017), 318-337.
APA YORUÇ A, Uğraşkan V (2017). Yeşil Polimerler ve Uygulamaları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17(1), 318 - 337.
Chicago YORUÇ Afife Binnaz Hazar,Uğraşkan Volkan Yeşil Polimerler ve Uygulamaları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 17, no.1 (2017): 318 - 337.
MLA YORUÇ Afife Binnaz Hazar,Uğraşkan Volkan Yeşil Polimerler ve Uygulamaları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol.17, no.1, 2017, ss.318 - 337.
AMA YORUÇ A,Uğraşkan V Yeşil Polimerler ve Uygulamaları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 2017; 17(1): 318 - 337.
Vancouver YORUÇ A,Uğraşkan V Yeşil Polimerler ve Uygulamaları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 2017; 17(1): 318 - 337.
IEEE YORUÇ A,Uğraşkan V "Yeşil Polimerler ve Uygulamaları." Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17, ss.318 - 337, 2017.
ISNAD YORUÇ, Afife Binnaz Hazar - Uğraşkan, Volkan. "Yeşil Polimerler ve Uygulamaları". Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 17/1 (2017), 318-337.