Yıl: 2018 Cilt: 29 Sayı: 2 Sayfa Aralığı: 162 - 166 Metin Dili: Türkçe İndeks Tarihi: 28-05-2019

Rekombinant DNA Teknolojisinin Veteriner Aşılarda Kullanımı

Öz:
İlk keşfedildiği yıllardan bu yana aşılar, infeksiyöz hastalıkların kontrolü için en etkili, nispeten ucuz maliyetli ve sürdürülebilir bir yöntem olarak kullanılmıştır. Bugün veteriner hekimlikte çoğunlukla canlı attenüe, inaktif ve toksoid aşılar kullanılmakla birlikte, daha güvenilir ve etkili aşılara olan gereksinimden dolayı, rekombinant DNA teknolojisi önemli bir strateji olarak ortaya çıkmıştır. Tüm dünyada bu teknolojinin kullanıldığı aşı geliştirme çalışmaları devam etmektedir. Bu derlemede, veteriner hekimlikte hali hazırda kullanılan ve çeşitli hayvan türlerinin önemli bazı infeksiyonlarını kontrol altına almak için üzerinde çalışmalara devam edilen rekombinant aşılara yer verilmiştir.
Anahtar Kelime:

Konular: Biyoteknoloji ve Uygulamalı Mikrobiyoloji

The Use of Recombinant DNA Technologies in Veterinary Vaccines

Öz:
Since their first exploration, vaccines have been used as the most effective, relatively inexpensive and sustainable method of controlling infectious diseases. Today, most of the licensed veterinary vaccines are in the form of live attenuated, inactive and toxoids. However, recombinant DNA technology has emerged as an important strategy because of the need for more effective and safety vaccines. All over the world, vaccine development studies using this technology are ongoing. In this review, currently used recombinant vaccines in veterinary medicine and also ongoing researches on development of new recombinant vaccines to be used to control some vital infections of various animal species were discussed.
Anahtar Kelime:

Konular: Biyoteknoloji ve Uygulamalı Mikrobiyoloji
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Babu U, Dalloul RA, Okamura M, Lillehoj HS, Xie H, Raybourne RB, Gaines D, Heckert RA, (2004). Salmonella enteritidis clearance and immune responses in chickens following Salmonella vaccination and challenge. Vet Immunol Immunopathol. 101, 251-257.
  • Balamurugan V, Sen A, Saravanan P, Singh RK, (2006). Biotechnology in the production of Recombinant Vaccine or Antigen for Animal Health. J Anim Vet Adv. 5(6), 487-495.
  • Barbour EK, Hamadeh SK, Eidt A, (2000). Infection and immunity in broiler chicken breeders vaccinated with a temperature-sensitive mutant of Mycoplasma gallisepticum and impact on performance of offspring. Poult Sci. 79, 1730-1735.
  • Chalmers WS, Simpson J, Lee SJ, Baxendale W, (1997). Use of a live chlamydial vaccine to prevent ovine enzootic abortion. Vet Rec. 141, 63-67.
  • Confer AW, Ayalew S, Panciera RJ, Montelongo M, Wray JH, (2006). Recombinant Mannheimia haemolytica serotype 1 outer membrane protein PlpE enhances commercial M. haemolytica vaccine-induced resistance against serotype 6 challenge. Vaccine. 24, 2248-2255.
  • Darteil R, Bublot M, Laplace E, Bouquet JF, Audonnet JC, Riviere M, (1995). Herpesvirus of turkey recombinant viruses expressing infectious bursal disease virus (IBDV) VP2 immunogen induce protection against an IBDV virulent challenge in chickens. Virol. 211, 481-490.
  • Davis BS, Chang GJ, Cropp B, Roehrig JT, Martin DA, Mitchel CJI, Bowen R, Bunning ML, (2001). West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzymelinked immunosorbent assays. J Virol. 75, 4040-4047.
  • de Kinkelin P, Bearzotti M, Castric J, Nougayrede P, Lecocq- Xhonneux F, Thiry M, (1995). Eighteen years of vaccination against viral haemorrhagic septicaemia in France. Vet Res. 26, 379-387.
  • Dorneles EMS, Sriranganathan N, Lage AP, (2015). Recent advances in Brucella abortus vaccines. Vet Res. 46, 76.
  • Ellis RW, (1999). New technologies for making vaccines. Vaccine. 17, 1596-1604.
  • Jackwood MW, Hickle L, Kapil S, Silva R, (2008). Vaccine Development Using Recombinant DNA Technology. Animal Agriculture’s Future through Biotechnology(CAST) Part 7,413-40-02.
  • Jackwood MW, Saif YM, (1985). Efficacy of a commercial turkey coryza vaccine (Art-Vax) in turkey poults. Avian Dis. 29, 1130-1139.
  • Jacobs AA, Goovaerts D, Nuijten PJ, Theelen RP, Hartford OM, Foster TJ, (2000). Investigations towards an efficacious and safe strangles vaccine: submucosal vaccination with a live attenuated Streptococcus equi. Vet Rec. 2147, 563-567.
  • Khan S, Ullah MW, Siddique R, (2016). Role of Recombinant DNA Technology to Improve Life. Int J Genomic. 2405954.
  • Lee RW, Strommer J, Hodgins D, Shewen PE, Niu Y, Lo RY, (2001). Towards development of an edible vaccine against bovine pneumonic pasteurellosis using transgenic white clover expressing a Mannheimia haemolytica A1 leukotoxin 50 fusion protein. Infect Immun. 69, 5786-5793.
  • Liang R, van den Hurk JV, Babiuk LA, van Drunen Littelvan den Hurk S, (2006). Priming with DNA encoding E2 and boosting with E2 protein formulated with CpG oligodeoxynucleotides induces strong immune responses and protection from bovine viral diarrhea virus in cattle. J Gen Virol. 87, 2971-2982.
  • Mackowiak M, Maki J, Motes-Kreimeyer L, Harbin T, Van Kampen K, (1999). Vaccination of wildlife against rabies: successful use of a vectored vaccine obtained by recombinant technology. Adv Vet Med. 41, 571-583.
  • Minke JM, Audonnet JC, Fischer L, (2004). Equine viral vaccines: the past, present and future. Vet Res. 35, 425-443.
  • Moriyon I, Grillo MJ, Monreal D, Gonzalez D, Marin C, Lopez-Goni I, Mainar-Jaime RC, Moreno E, Blasco JM, (2004). Rough vaccines in animal brucellosis: structural and genetic basis and present status. Vet Res. 35, 1-38.
  • Morrow CJ, Markham JF, Whithear KG, (1998). Production of temperature-sensitive clones of Mycoplasma synoviae for evaluation as live vaccines. Avian Dis. 42, 667-670.
  • Nobiron I, Thompson I, Brownlie J, Collins ME, (2003). DNA vaccination against bovine viral diarrhoea virus induces humoral and cellular responses in cattle with evidence for protection against viral challenge. Vaccine. 21, 2082-2092.
  • Paoletti E, (1996). Applications of pox virus vectors to vaccination: An update. Proc Natl Acad Sci USA. 93, 11349- 11353.
  • Pardo MC, Mackowiak M, (1999). Efficacy of a new canine- origin, modified-live virus vaccine against canine coronavirus. Canine Pract. 24, 6-8.
  • Park MS, Steel J, Garcia-Sastre A, Swayne D, Palese P, (2006). Engineered viral vaccine constructs with dual specificity: avian influenza and Newcastle disease. Proc Natl Acad Sci USA. 103, 8203-8208.
  • Pastoret PP, Brochier B, Languet B, Thomas I, Paquot A, Bauduin B, Kieny MP, Lecocq JP, De Bruyn J, Costy F, (1988). First field trial of fox vaccination against rabies with a vaccinia-rabies recombinant virus. Vet Rec. 123, 481-483.
  • Piller KJ, Clemente TE, Jun SM, Petty CC, Sato S, Pascual DW, Bost KL, (2005). Expression and immunogenicity of an Escherichia coli K99 fimbriae subunit antigen in soybean. Planta. 222, 6-18.
  • Serge C, Gael K, Scott EL, (2000). Fish DNA vaccine against infectious hematopoietic necrosis virus: efficacy of various routes of immunisation. Fish Shellfish Immunol. 10, 711-723.
  • Van Oirschot JT, Kaashoek MJ, Rijsewijk FA, (1996). Advances in the development and evaluation of bovine herpesvirus 1 vaccines. Vet Microbiol. 53, 43-54.
APA Sezener M, Ciftci A, FINDIK A (2018). Rekombinant DNA Teknolojisinin Veteriner Aşılarda Kullanımı. , 162 - 166.
Chicago Sezener Merve Gizem,Ciftci Alper,FINDIK ARZU Rekombinant DNA Teknolojisinin Veteriner Aşılarda Kullanımı. (2018): 162 - 166.
MLA Sezener Merve Gizem,Ciftci Alper,FINDIK ARZU Rekombinant DNA Teknolojisinin Veteriner Aşılarda Kullanımı. , 2018, ss.162 - 166.
AMA Sezener M,Ciftci A,FINDIK A Rekombinant DNA Teknolojisinin Veteriner Aşılarda Kullanımı. . 2018; 162 - 166.
Vancouver Sezener M,Ciftci A,FINDIK A Rekombinant DNA Teknolojisinin Veteriner Aşılarda Kullanımı. . 2018; 162 - 166.
IEEE Sezener M,Ciftci A,FINDIK A "Rekombinant DNA Teknolojisinin Veteriner Aşılarda Kullanımı." , ss.162 - 166, 2018.
ISNAD Sezener, Merve Gizem vd. "Rekombinant DNA Teknolojisinin Veteriner Aşılarda Kullanımı". (2018), 162-166.
APA Sezener M, Ciftci A, FINDIK A (2018). Rekombinant DNA Teknolojisinin Veteriner Aşılarda Kullanımı. Etlik Veteriner Mikrobiyoloji Dergisi, 29(2), 162 - 166.
Chicago Sezener Merve Gizem,Ciftci Alper,FINDIK ARZU Rekombinant DNA Teknolojisinin Veteriner Aşılarda Kullanımı. Etlik Veteriner Mikrobiyoloji Dergisi 29, no.2 (2018): 162 - 166.
MLA Sezener Merve Gizem,Ciftci Alper,FINDIK ARZU Rekombinant DNA Teknolojisinin Veteriner Aşılarda Kullanımı. Etlik Veteriner Mikrobiyoloji Dergisi, vol.29, no.2, 2018, ss.162 - 166.
AMA Sezener M,Ciftci A,FINDIK A Rekombinant DNA Teknolojisinin Veteriner Aşılarda Kullanımı. Etlik Veteriner Mikrobiyoloji Dergisi. 2018; 29(2): 162 - 166.
Vancouver Sezener M,Ciftci A,FINDIK A Rekombinant DNA Teknolojisinin Veteriner Aşılarda Kullanımı. Etlik Veteriner Mikrobiyoloji Dergisi. 2018; 29(2): 162 - 166.
IEEE Sezener M,Ciftci A,FINDIK A "Rekombinant DNA Teknolojisinin Veteriner Aşılarda Kullanımı." Etlik Veteriner Mikrobiyoloji Dergisi, 29, ss.162 - 166, 2018.
ISNAD Sezener, Merve Gizem vd. "Rekombinant DNA Teknolojisinin Veteriner Aşılarda Kullanımı". Etlik Veteriner Mikrobiyoloji Dergisi 29/2 (2018), 162-166.