Yıl: 2018 Cilt: 18 Sayı: 2 Sayfa Aralığı: 284 - 291 Metin Dili: İngilizce DOI: 10.26650/electrica.2018.02664 İndeks Tarihi: 04-12-2019

A Canonical 3-D P53 Network Model that Determines Cell Fate by Counting Pulses

Öz:
From a system theory perspective, p53 network dynamics is interesting since it can exhibit three dynamical modes of p53, namely low-level equilibrium,oscillation, and high-level equilibrium. Each of these modes are associated with different cell fate outcomes: cell survival, cell cycle arrest, and apoptosis.The literature reveals that a high level (apoptosis) is seen only after ending the oscillation phase, so called two-phase dynamics, which provides thedecision of apoptosis depending on the oscillation duration. This paper proposes that a negative feedback can keep time by counting the pulses ofoscillation to take the decision of apoptosis or cell survival. P53DINP1, which is the mediator of this feedback, is added as a variable to a 2-D oscillatormodel of the p53 network. The resulting canonical 3-D model successfully replicates the two-phase dynamics. That is, it possesses temporary oscillatorybehavior, in which first oscillations (first phase) and then high level state (second phase) are observed. By introducing a new variable to the core oscillatorin the p53 network, this study demonstrates that p53 network can be considered a modular structure, which consists of an oscillator and other variablesthat control this oscillator to contribute to cell fate determination.
Anahtar Kelime:

Konular: Mühendislik, Elektrik ve Elektronik
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • F. Murray-Zmijewski, E. A. Slee, X. Lu, “A complex barcode underlies the heterogeneous response of p53 to stress,” Nat Rev Mol Cell Biol, vol. 9, no. 9, pp. 702-712, 2008.
  • D. Michael, M. Oren, “The p53-Mdm2 module and the ubiquitin system,” Semin Cancer Biol, vol. 13, no. 1, pp. 49-58, 2003.
  • G. Lahav, N. Rosenfeld, A. Sigal, N. Geva-Zatorsky, A. J. Levine, M. B. Elowitz, U. Alon, “Dynamics of the p53-Mdm2 feedback loop in individual cells,” Nat Genet, vol. 36, no. 2, pp. 147-150, 2004.
  • E. Batchelor, A. Loewer, C. Mock, G. Lahav, “Stimulus‐dependent dynamics of p53 in single cells,” Mol Syst Biol, vol. 7, no. 1, p. 488, 2011.
  • E. Batchelor, A. Loewer, G. Lahav, “The ups and downs of p53: Understanding protein dynamics in single cells”, Nat Rev Cancer, vol. 9, no. 5, pp. 371-377, 2009.
  • E. Batchelor, C. S. Mock, I. Bhan, A. Loewer, G. Lahav, “Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage”, Mol Cell, vol. 30, no. 3, pp. 277-289, 2008.
  • J. E. Toettcher, A. Loewer, G. J. Ostheimer, M. B. Yaffe, B. Tidor, G. Lahav, “Distinct mechanisms act in concert to mediate cell cycle arrest”, Proc Natl Acad Sci, vol. 106, no. 3, pp. 785-790, 2009.
  • G. Lahav, “The strength of indecisiveness: oscillatory behavior for better cell fate determination”, Send to Sci STKE, vol. 2004, no. 264, pp. pe55, 2004.
  • F. Essmann, I. H. Engels, G. Totzke, K. Schulze-Osthoff, R. U. Jänicke, “Apoptosis resistance of MCF-7 breast carcinoma cells to ionizing radiation is independent of p53 and cell cycle control but caused by the lack of caspase-3 and a caffeine-inhibitable event”, Cancer Res, vol. 64, no. 19, pp. 7065-7072, 2004.
  • N. D. Marchenko, A. Zaika, U. M. Moll, “Death signal-induced localization of p53 protein to mitochondria a potential role in apoptotic signaling”, J Biol Chem, vol. 275, no. 21, pp. 16202-16212, 2000.
  • M. Mihara, S. Erster, A. Zaika, O. Petrenko, T. Chittenden, P. Pancoska, U. M. Moll, “p53 has a direct apoptogenic role at the mitochondria”, Mol Cell, vol. 11, no. 3, pp. 577-590, 2003.
  • S. Shreeram, W. K. Hee, O. N. Demidov, C. Kek, H. Yamaguchi, A. J. Fornace, D. V. Bulavin, “Regulation of ATM/P53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase”, J Exp Med, vol. 203, no. 13, pp. 2793-2799, 2006.
  • S. Shreeram, O. Demidov, W. Hee, H. Yamaguchi, N. Onishi, C. Kek, O. Timofeev, C. Dudgeon, A. Fornace, C. Anderson, Y. Minami, E. Appella, D. V. Bulavin, “Wip1 phosphatase modulates ATM-dependent signaling pathways”, Mol cell, vol. 23, no. 5, pp. 757-764, 2006.
  • Y. Darlington, T. Nguyen, S. H. Moon, A. Herron, P. Rao, C. Zhu, X. Lu and L. A. Donehower, “Absence of Wip1 partially rescues Atm deficiency phenotypes in mice”, Oncogene, vol. 31, no. 9, pp. 1155-1165, 2012.
  • Y. Xia, P. Ongusaha, S. W. Lee, Y. C. Liou, “Loss of Wip1 sensitizes cells to stress-and DNA damage-induced apoptosis”, J Biol Chem, vol. 284, no. 26, pp. 17428-17437, 2009.
  • T. Sun, J. Cui, “Dynamics of P53 in response to DNA damage: Mathematical modeling and perspective”, Prog Biophys Mol Biol, vol. 119, no. 2, pp. 175-182, 2015.
  • X. P. Zhang, F. Liu, W. Wang, “Two-phase dynamics of p53 in the DNA damage response”, Proc Natl Acad Sci USA, vol. 108, no. 22, pp. 8990-8995, 2011.
  • G. Demirkıran, G. Kalaycı Demir, C. Güzeliş, “A 2-dimensional Reduced Oscillator Model with Rational Nonlinearities for p53 Dynamics”, 10th International Conference on Electrical and Electronics Engineering (ELECO), 2017, pp. 593-597.
  • G. Demirkıran, G. Kalaycı Demir, C. Güzeliş, “Revealing Determinants of Two-Phase Dynamics of P53 Network under Gamma Irradiation Based On A Reduced 2-D Relaxation Oscillator Model”, IET Syst Biol, vol. 12, no. 1, pp. 26-38, 2018.
  • G. Demirkıran, G. Demir and C. Güzeliş, “A 2-Dimensional Model of Polynomial Type for Oscillatory ATM-Wip1 dynamics in p53 network”, 10th International Conference on Electrical and Electronics Engineering (ELECO), 2017, pp. 598-601.
  • L. Ma, J. Wagner, J. J. Rice, W. Hu, A. J. Levine, G. A. Stolovitzky., “A plausible model for the digital response of p53 to DNA damage,” Proc Natl Acad Sci USA, vol. 102, no. 40, pp. 14266-14271, 2005.
  • T. Uziel, Y. Lerenthal, L. Moyal, Y. Andegeko, L. Mittelman, Y. Shiloh, “Requirement of the MRN complex for ATM activation by DNA damage”, EMBO J, vol. 22, no. 20, pp. 5612-5621, 2003.
  • K. Mouri, J. C. Nacher, T. Akutsu, “A mathematical model for the detection mechanism of DNA double-strand breaks depending on autophosphorylation of ATM”, PLoS One, vol. 4, no. 4, p. e5131, 2009.
  • N. Avcu, G. Kalaycı Demir, F. Pekergin, H. Alyürük, L. Çavaş and C. Güzeliş, “Discriminant-based bistability analysis of a TMG-induced lac operon model supported with boundedness and local stability results”, Turkish Journal of Electrical Engineering & Computer Sciences, pp. 719-732, 2016.
  • N. Avcu, H. Alyürük, G. Kalaycı Demir, F. Pekergin, L. Cavas, C. Güzeliş., “Determining the bistability parameter ranges of artificially induced lac operon using the root locus method”, Comput Biol Med, pp. 75-91, 2015.
  • U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits, Boca Raton: CRC Press, 2006.
  • J. J. Tyson, K. C. Chen, B. Novak, “Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell,” Curr Opinn Cell Biol, vol. 15, no. 2, pp. 221-231, 2003.
  • Q. He, Z. Liu, “Investigation of oscillation accumulation triggered genetic switch in gene regulatory networks,” Journal of theoretical biology, vol. 353, no. 2014, pp. 61-66, 2014.
APA Demirkıran G, Kalaycı Demir G, GÜZELİŞ C (2018). A Canonical 3-D P53 Network Model that Determines Cell Fate by Counting Pulses. , 284 - 291. 10.26650/electrica.2018.02664
Chicago Demirkıran Gökhan,Kalaycı Demir Güleser,GÜZELİŞ Cüneyt A Canonical 3-D P53 Network Model that Determines Cell Fate by Counting Pulses. (2018): 284 - 291. 10.26650/electrica.2018.02664
MLA Demirkıran Gökhan,Kalaycı Demir Güleser,GÜZELİŞ Cüneyt A Canonical 3-D P53 Network Model that Determines Cell Fate by Counting Pulses. , 2018, ss.284 - 291. 10.26650/electrica.2018.02664
AMA Demirkıran G,Kalaycı Demir G,GÜZELİŞ C A Canonical 3-D P53 Network Model that Determines Cell Fate by Counting Pulses. . 2018; 284 - 291. 10.26650/electrica.2018.02664
Vancouver Demirkıran G,Kalaycı Demir G,GÜZELİŞ C A Canonical 3-D P53 Network Model that Determines Cell Fate by Counting Pulses. . 2018; 284 - 291. 10.26650/electrica.2018.02664
IEEE Demirkıran G,Kalaycı Demir G,GÜZELİŞ C "A Canonical 3-D P53 Network Model that Determines Cell Fate by Counting Pulses." , ss.284 - 291, 2018. 10.26650/electrica.2018.02664
ISNAD Demirkıran, Gökhan vd. "A Canonical 3-D P53 Network Model that Determines Cell Fate by Counting Pulses". (2018), 284-291. https://doi.org/10.26650/electrica.2018.02664
APA Demirkıran G, Kalaycı Demir G, GÜZELİŞ C (2018). A Canonical 3-D P53 Network Model that Determines Cell Fate by Counting Pulses. Electrica, 18(2), 284 - 291. 10.26650/electrica.2018.02664
Chicago Demirkıran Gökhan,Kalaycı Demir Güleser,GÜZELİŞ Cüneyt A Canonical 3-D P53 Network Model that Determines Cell Fate by Counting Pulses. Electrica 18, no.2 (2018): 284 - 291. 10.26650/electrica.2018.02664
MLA Demirkıran Gökhan,Kalaycı Demir Güleser,GÜZELİŞ Cüneyt A Canonical 3-D P53 Network Model that Determines Cell Fate by Counting Pulses. Electrica, vol.18, no.2, 2018, ss.284 - 291. 10.26650/electrica.2018.02664
AMA Demirkıran G,Kalaycı Demir G,GÜZELİŞ C A Canonical 3-D P53 Network Model that Determines Cell Fate by Counting Pulses. Electrica. 2018; 18(2): 284 - 291. 10.26650/electrica.2018.02664
Vancouver Demirkıran G,Kalaycı Demir G,GÜZELİŞ C A Canonical 3-D P53 Network Model that Determines Cell Fate by Counting Pulses. Electrica. 2018; 18(2): 284 - 291. 10.26650/electrica.2018.02664
IEEE Demirkıran G,Kalaycı Demir G,GÜZELİŞ C "A Canonical 3-D P53 Network Model that Determines Cell Fate by Counting Pulses." Electrica, 18, ss.284 - 291, 2018. 10.26650/electrica.2018.02664
ISNAD Demirkıran, Gökhan vd. "A Canonical 3-D P53 Network Model that Determines Cell Fate by Counting Pulses". Electrica 18/2 (2018), 284-291. https://doi.org/10.26650/electrica.2018.02664