Şengül UYSAL
(Department of Biology, Science Faculty, Selcuk University, 42250, Konya, Turkey)
Ramazan CEYLAN
(Department of Biology, Science Faculty, Selcuk University, 42250, Konya, Turkey)
Abdurrahman AKTÜMSEK
(Department of Biology, Science Faculty, Selcuk University, 42250, Konya, Turkey)
GÖKALP ÖZMEN GÜLER
(Department of Biological Education, Ahmet Kelesoglu Education Faculty, Necmettin Erbakan University, 42090, Konya, Turkey)
Carene PİCOT
(Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius)
GÖKHAN ZENGİN
(Department of Biological Education, Ahmet Kelesoglu Education Faculty, Necmettin Erbakan University, 42090, Konya, Turkey)
M. Fawzi MAHOMOODALLY
(Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius)
Yıl: 2018Cilt: 48Sayı: 1ISSN: 2548-0731 / 2587-2087Sayfa Aralığı: 18 - 24İngilizce

183 0
In vitro multiple pharmacological targets of Colutea cilicica Boiss. & Balansa against key enzymes linked to neurodegenerative diseases, diabetes, and hyperpigmentation
Prevention and treatment of noncommunicable diseases such as neurodegenerative diseases, diabetes, and hyperpigmentationusing medicinal plants has attracted increasing attention during the past few decades. In this study, Colutea cilicicaBoiss. & Balansa extracts (ethyl acetate, methanol, and water) were evaluated against key enzymes involved in neurodegenerativediseases, diabetes, and hyperpigmentation. The antioxidant (free radical scavenging, reducing power, β-carotene/linoleic acid, and phosphomolybdenum) and metal chelation properties were also investigated. The methanol extracts of C.cilicica vigorously inhibited the activities of acetylcholinesterase and butyrylcholinesterase (1.33 and 0.68 mg galantamineequivalents (GALAE)/g extract, respectively). It was observed that C. cilicica extracts possessed a higher inhibitory potentialfor α-glucosidase (2.71–1.23 mmol acarbose equivalents (ACAE)/g extract) than that for α-amylase (0.57–0.12 mmol ACAE/gextract). The water extract of C. cilicica showed potent radical scavenging capacity against DPPH (2, 2-diphenyl-1-picrylhydrazyl)and ABTS (2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (42.46 and 57.70 mg trolox equivalents (TE)/g extract,respectively). Phytochemical determination showed that C. cilicica water extract (17.26 mg rutin equivalents (RE)/g extract)was rich in flavonoids compared with ethyl acetate and methanol extracts (2.78 and 2.83 mg RE/g extract, for the respectiveextracts). These findings reveal the interesting potential of C. cilicica as a valuable source of phytochemicals that can be usedagainst common noncommunicable diseases, particularly against enzymes involved in neurodegenerative diseases.
Fen > Eczacılık > Farmakoloji ve Eczacılık
DergiAraştırma MakalesiErişime Açık
  • Ademiluyi AO, Oboh G (2013). Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (alpha-amylase and alpha-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Exp Toxicol Pathol 65(3): 305-309. [CrossRef ]
  • Ahmed F, Ghalib RM, Sasikala P, Ahmed KKM (2013). Cholinesterase inhibitors from botanicals. Pharmacogn Rev 7(14): 121-130. [CrossRef]
  • Al-Rimawi F, Rishmawi S, Ariqat SH, Khalid MF, Warad I, Salah Z (2016). Anticancer Activity, Antioxidant Activity, and Phenolic and Flavonoids Content of Wild Tragopogon porrifolius Plant Extracts. J Evid Based Complementary Altern Med 2016: 1-7 [CrossRef ]
  • Amadoruge PC, Barnham KJ (2011). Alzheimer’s disease and metals: a review of the involvement of cellular membrane receptors in metallosignalling. Int J Alzheimers Dis 2011: 1-9. [CrossRef ]
  • Botić T, Defant A, Zanini P, Žužek MC, Frangež R, Janussen D, Kersken D, Knez Ž, Mancini I, Sepčić K (2017). Discorhabdin alkaloids from Antarctic Latrunculia spp. sponges as a new class of cholinesterase inhibitors. Eur J Med Chem 136: 294-304. [CrossRef ]
  • Butterfield DA, Reed T, Newman SF, Sultana R (2007). Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic Biol Med 43(5), 658-677. [CrossRef ]
  • Cespedes CL, Balbontin C, Avila JG, Dominguez M, Alarcon J, Paz C, Burgos V, Ortiz L, Peñaloza-Castro I, Seigler DS. (2017). Inhibition on cholinesterase and tyrosinase by alkaloids and phenolics from Aristotelia chilensis leaves. Food Chem Toxicol 109: 984-995. [CrossRef]
  • Chigayo K, Mojapelo PEL, Mnyakeni-Moleele S, Misihairabgwi JM (2016). Phytochemical and antioxidant properties of different solvent extracts of Kirkia wilmsii tubers. Asian Pac J Trop Biomed 6(12): 1037-1043. [CrossRef ]
  • Coomber R, Alshameeri Z, Masia F, Mela F, Parker MJ (2017). Hip fractures and Parkinson’s disease: a case series. Injury 48: 2730- 2735. [CrossRef ]
  • Davis P (1997). Flora of Turkey and the East Aegean Islands. (Vol. 3): Edinburgh Univ. Press, Edinburgh.
  • Ellis JM, Fell MJ (2017). Current approaches to the treatment of Parkinson’s Disease. Bioorg Med Chem Lett 18: 4247-4255. [CrossRef]
  • Eser F, Altundag EM, Gedik G, Demirtas I, Onal A, Selvi B (2017). Anti-inflammatory effect of D-pinitol isolated from the leaves of Colutea cilicica Boiss et Bal. on K562 cells. Turk J Biochem 42(4): 445-450. [CrossRef ]
  • García-Blanco A, Baquero M, Vento M, Gil E, Bataller L, CháferPericás C (2017). Potential oxidative stress biomarkers of mild cognitive impairment due to Alzheimer disease. J Neurol Sci 373: 295-302. [CrossRef ]
  • Ghasemzadeh A, Ghasemzadeh N (2011). Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J Med Plants Res 5(31): 6697-6703. [CrossRef ]
  • Grochowski DM, Uysal S, Aktumsek A, Granica S, Zengin G, Ceylan R, Locatelli M, Tomczyk, M. (2017). In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem Let 20: 365-372. [CrossRef ]
  • Jambocus NGS, Ismail A, Khatib A, Mahomoodally F, Saari N, Mumtaz MW, Hamid AA (2017). Morinda citrifolia L. leaf extract prevent weight gain in Sprague-Dawley rats fed a high fat diet. Food Nutr Res 61(1): 1-14. [CrossRef ]
  • Jiang P, Xiong J, Wang F, Grace MH, Lila MA, Xu R. (2017). Alphaamylase and alpha-glucosidase Inhibitory Activities of Phenolic Extracts from Eucalyptus grandis × E. urophylla Bark. J Chem 2017: 1-7. [CrossRef ]
  • Kandimalla R, Thirumala V, Reddy PH (2017). Is Alzheimer’s disease a type 3 diabetes? A critical appraisal. BBA-Mol Basis Dis 1863(5): 1078-1089. [CrossRef ]
  • Kepp KP (2017). Alzheimer’s disease: How metal ions define β-amyloid function. Coord Chem Rev 351:127-159. [CrossRef ]
  • Kumar S, Pandey AK (2013). Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal, 2013: 1-16. [CrossRef ]
  • Macauley SL, Stanley M, Caesar EE, Yamada SA, Raichle ME, Perez R, Mahan TE, Sutphen CL, Holtzman DM (2015). Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo. J Clin Invest 125(6): 2463-2967. [CrossRef ]
  • Molan AL, Faraj AM, Mahdy AS (2012). Antioxidant activity and phenolic content of some medicinal plants traditionally used in Northern Iraq. Phytopharmacol 2(2): 224-233.
  • Moreno Cervantes C, Mimenza Alvarado A, Aguilar Navarro S, Alvarado Avila P, Gutierrez Gutierrez L, Juarez Arellano S, Avila Funes JA (2017). Factors associated with mixed dementia vs Alzheimer disease in elderly Mexican adults. Neurologia, 32(5): 309-315. doi: 10.1016/j.nrl.2015.12.006. [CrossRef ]
  • Mutie PM, Giordano GN, Franks PW (2017). Lifestyle precision medicine: the next generation in type 2 diabetes prevention?. BMC Medicine 15(1): 1-11. [CrossRef ]
  • National Library of Medicine (2017). https://clinicaltrials.gov/ct2/ show/record/NCT00470418
  • Neagu E, Paun G, Albu C, Radu GL (2015). Assessment of acetylcholinesterase and tyrosinase inhibitory and antioxidant activity of Alchemilla vulgaris and Filipendula ulmaria extracts. J Taiwan Inst Chem Eng 52: 1-6. [CrossRef ]
  • NI (2017). https://www.nia.nih.gov/health/how-alzheimers-diseasetreated
  • Olin J, Schneider L (2002). Galantamine for Alzheimer’s disease. Cochrane Database Syst Rev 3: CD001747-CD001747.
  • Omar SH, Scott CJ, Hamlin AS, Obied HK (2017). The protective role of plant biophenols in mechanisms of Alzheimer’s disease. J Nutr Biochem 47: 1-20. [CrossRef ]
  • Peşin Süntar I, Koca U, Küpeli Akkol E, Yılmazer D, Alper M. (2011). Assessment of wound healing activity of the aqueous extracts of Colutea cilicica Boiss. & Bal. fruits and leaves. J Evid Based Complementary Altern Med 2011:1-7. [CrossRef ]
  • Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev 2017, 1-13. [CrossRef]
  • Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M (2017). Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol Sci 38, 592-607. [CrossRef ]
  • Pugazhenthi S, Qin L, Reddy PH (2017). Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. BBA-Mol Basis Dis 1863(5): 1037-1045. [CrossRef]
  • Samaradivakara SP, Samarasekera R, Handunnetti SM,Weerasena OJ (2016). Cholinesterase, protease inhibitory and antioxidant capacities of Sri Lankan medicinal plants. Ind Crops Prod 83: 227- 234. [CrossRef ]
  • Sezik E, Yeşilada E, Honda G, Takaishi Y, Takeda Y, Tanaka T. (2001). Traditional medicine in Turkey X. Folk medicine in central Anatolia. J Ethnopharmacol 75(2): 95-115. [CrossRef ]
  • Sharififar F, Moshafi M, Shafazand E, Koohpayeh A (2012). Acetyl cholinesterase inhibitory, antioxidant and cytotoxic activity of three dietary medicinal plants. Food Chem 130(1): 20-23. [CrossRef ]
  • Slinkard K, Singleton VL (1977). Total phenol analysis: automation and comparison with manual methods. Am J Enol Viticult 28(1), 49-55.
  • Thouri A, Chahdoura H, El Arem A, Omri Hichri A, Ben Hassin R, Achour L. (2017). Effect of solvents extraction on phytochemical components and biological activities of Tunisian date seeds (var. Korkobbi and Arechti). BMC Complement Alt Med 17(1): 1-10. [CrossRef]
  • Tramutola A, Lanzillotta C, Perluigi M, Butterfield DA (2017). Oxidative stress, protein modification and Alzheimer disease. Brain Res Bull 133: 88-96. [CrossRef ]
  • Wang P, Wang ZY (2017). Metal ions influx is a double edged sword for the pathogenesis of Alzheimer’s disease. Ageing Res Rev 35: 265-290. [CrossRef ]
  • Zengin G, Nithiyanantham S, Locatelli M, Ceylan R, Uysal S, Aktumsek A, Selvi PK, Maskovic P (2016). Screening of in vitro antioxidant and enzyme inhibitory activities of different extracts from two uninvestigated wild plants: Centranthus longiflorus subsp. longiflorus and Cerinthe minor subsp. auriculata. Eur J Integr Med 8(3): 286-292. [CrossRef ]
  • Zhang Bw, Xing Y, Wen C, Yu Xx, Sun W, Xiu Zl, Dong,Ys (2017). Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: Structure-activity relationships and the synergism with acarbose. Bioorg Med Chem Lett 27: 5065-5070. [CrossRef ]
  • Zhao Y, Zhao B (2013). Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev 2013: 1-10. [CrossRef ]
  • Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L (2017). Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol 155: 96-119. [CrossRef ]

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.