The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes

Yıl: 2019 Cilt: 9 Sayı: 1 Sayfa Aralığı: 113 - 133 Metin Dili: İngilizce İndeks Tarihi: 23-10-2019

The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes

Öz:
In this study, microbial fuel cells were designed using E. aerogenes, an importantproton producing bacterium, to determine energy efficiency. In the design of these fuelcells, nafion membrane is preferred as a proton permeable membrane. Potassiumferricyanide was used in the cathode section when the anode partition mediator wasprefered as methylene blue. Within the scope of the study, the efficiency of theelectrode route on the optimization and energy efficiency of fuel pellets prepared usingE. aerogenes was determined. A comparative study was carried out using graphite,composite and copper electrodes as the electrode type. In the experiment with copperelectrode, the highest voltage value was read as 0.23 V, 0.38 V on the compositeelectrode and 0.52 V on the carbon electrode. It is determined that the electrode givingthe highest voltage is the carbon electrode. Furthermore, optimization of designedmicrobial fuel cell’s nutrient, pH and microorganism incubation time has been realized.
Anahtar Kelime:

vgb+ Rekombinant Enterobacter aerogenes Kullanılan Mikrobiyal Yakıt Pillerinde Enerji Verimliliği Üzerine Elektrot Türünün Etkisi

Öz:
Bu çalışma kapsamında önemli bir proton üreten bakteri türü olan E. aerogenes kullanılarak mikrobiyal yakıt hücreleri tasarımı gerçekleştirilerek enerji verimlilikleri belirlenmiştir. Bu yakıt hücrelerinin tasarımında proton geçirgen membrane olarak nafyon membran tercih edilmiştir. Anot bölmesi medyatörü metilen mavisi olarak tercih edilirken katot bölmesinde Potasyum ferrisiyanid kullanılmıştır. Çalışma kapsamında E. aerogenes kullanılarak hazırlanan yakıt pillerinin optimizasyonu ve enerji verimliliği üzerine elektrot türünün etkinliği belirlenmiştir. Elektrot türü olarak grafit, alaşım ve bakır elektrotlar kullanılarak kıyaslamalı bir çalışma gerçekleştirilmiştir. bakır elektrotla yapılan denemede en yüksek voltaj değeri 0.23 V, kompozit elektrotda 0.38 V, karbon elektrotta ise 0.52 V olarak okunmuştur. En yüksek voltaj miktarını veren elektrotun karbon elektrot olduğu saptanıştır. Ayrıca hazırlanan mikrobiyal yakıt pilinin, besiyeri, pH ve mikroorganizma inkübasyon süre optimizasyonları gerçekleştirilmiştir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Andújar, J. M., Segura, F., Fuel cells: History and updating. A walk along two centuries, Renewable and Sustainable Energy Reviews, 13 (9), 2309–2322, 2009.
  • Mekhilef, S., Saidur, R., Safari, A., Comparative study of different fuel cell Technologies, Renewable and Sustainable Energy Reviews, 16 (1), 981–989, 2012.
  • Mohan, Y., Kumar, S., Manoj Muthu, D. D., Electricity generation using microbial fuel cells, Int J Hydrogen Energy, 33, 423 – 426, 2008.
  • Samrot, A. V., Senthilkumar, P., Pavankumar, K., Akilandeswari, G. C., Rajalakshmi, N., Dhathathreyan, K. S., Electricity generation by Enterobacter cloacae SU-1 in mediator less microbial fuel cell, Int J Hydrogen Energy, 35, 7723 – 7729, 2010.
  • Du, Z., Li, H., and Gu, T. A., State of art review on microbial fuel cells: A promisig technology for wastewater treatment and bioenergy, Biotechnology Advances, 25, 464-482, 2007.
  • Xia, X,, Cao, X., Liang, P., Huang, X., Yang, S., Zhao, G., Electricity generation from glucose by a Klebsiella sp. in microbial fuel cells, Bıoenergy and Bıofuels, Appl Microbiol Biotechnol, 87, 383–390, 2010.
  • Aldrovandi, A., Marsili, E., Stante, L., Paganin, P., Tabacchioni, S., Giordano, A., Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell, Bioresource Technology, 100, 3252–3260, 2009.
  • Sharma, V., Kundu, P. P., Biocatalysts in microbial fuel cells, Enzyme and Microbial Technology, 47, 179–188, 2010.
  • Rabaey, K., Lissens, G., Siciliano, S. D., Verstraete, W. A., Microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett, 25, 1531–1535, 2003.
  • Daniel, D. K., Mankidy, B. D., Ambarish, K., Manogari, R., Construction and operation of a microbial fuel cell for electricity generation from wastewater, Int J Hydrogen Energy, 34, 7555 – 7560, 2009.
  • Guerrero, A., Larrosa, S. K., Head, I. M., Mateo, F., Ginesta, A., Godinez, C., Effect of temperature on the performance of microbial fuel cells, Fuel 89, 3985– 3994 2010.
  • He, Z., Angenent, L. T., Application of bacterial biocathodes in microbial fuel cells, Electroanalysis, 18 (19-20), 2009-2015, 2006.
  • Min, B., Cheng, S., Logan, B. E., Electricity generation using membrane and salt bridge microbial fuel cells, Water Res, 39, 1675-1686, 2005.
  • Hu, H., Liu, H., Fan, Y., Hydrogen production using single-chamber membrane-free microbial electrolysis cells, Water Res, 42 (15), 4172-4178, 2008.
  • He, Z., Huang, Y., Manohar A. K., Mansfeld, F., Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell, Bioelectrochemistry, 74, 78–82, 2008.
  • Hong, L., Stephen, G., Bruce, E. L., Electrochemically assisted microbial production of hydrogen from acetate, Environ. Sci.Technol, 39, 4317–4320, 2005.
  • Tanisho, S., Wakao, N., Kosako, Y., Biological hydrogen-production by Enterobacter aerogenes, Journal of Chemical Engineering of Japan, 16, 529–530, 1983.
  • Richter, H., McCarthy, K., Nevin, K. P, Johnson, J. P., Rotello, V. M., Lovley, D. R., Electricity generation by Geobacter sulfurreducens attached to gold electrodes, Langmuir, 24, 4376–4379, 2008.
  • Rezaei, F., Xing, D., Wagner, R., Regan, J. M., Richard, T. L., Logan, B. E., Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell, Appl. Environ. Microbiol, 75, 3673–3678, 2009.
  • Watson, V. J., Logan, B. E., Power production in mfcs inoculated with Shewanella oneidensis MR-1 or mixed cultures, Biotechnol. Bioeng, 105, 489–498, 2010.
  • Nimje, V. R., Chen, C. Y., Chen, C. C., Jean, J. S., Reddy, A. S., Fan, C. W., Pan, K. Y., Liu, H. T., Chen, J. L., Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell, J. Power Sources, 190, 258–263, 2009.
  • Lanthier, M., Gregory, K. B., Lovley, D. R., Growth with high planktonic biomass in Shewanella onseidenis fuel cells, FEMS Microbiol. Lett, 278, 29–35, 2008.
  • Kiely, P. D., Call, D. F., Yates, M. D., Regan, J. M., Logan, B.E., Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera, Appl. Microbiol. Biotechnol, 88, 371–380, 2010.
  • Tanisho, S., A strategy for improving the yield of hydrogen by fermentation, Hydrogen Energy Progress, 1 (2), 370–375, 2000.
  • Tanisho, S., Suzuki, Y., Wakao, N., Fermentative hydrogen evolution by Enterobacter aerogenes strain E-82005, International Journal of Hydrogen Energy, 12, 623–627, 1987.
  • Zhang, C., Lv, F.X., Xing, X.H., Bioengineering of the Enterobacter aerogenes strain for biohydrogen production, Bioresource Technology, 102, 8344–8349, 2011.
  • Erenler Özalp, Ş., Cloning, Isolation and Expression of L-Asparaginase Gene (ANSb) to Different Gram-Negative Bacteria, Inonu University-Institute of Science and Technology, Department of Biology, Ph.D. Thesis, 2007.
  • Gould, J.L., Unusual life, TUBITAK Popular Science Books, Ankara, 61–74, 1999.
  • Zhang, Y., Yu, H., Shi, Y., Yang, S and Shen, Z., Effect of Vitreoscilla hemoglobin biosynthesis in Escherichia coli on production of poly(β- hydroxybutyrate) and fermentative parameters, FEMS Microbiology Letters, 214, 223–227, 2002.
  • Li, Y., Zhuang, L., Zhou, S., Yuan, Y., Enhanced performance of air-cathode twochamber microbial fuel cells with high-pH anode and low-pH cathode, Bioresour. Technol, 101, 3514–3519, 2010.
  • Sun, J., Hu, Y., Bi, Z., Cao, Y., Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single chamber microbial fuel cell, Bioresour. Technol, 100, 3185–3192, 2009.
  • Liu, L., Li, F.B., Feng, C.H., Li, X.Z., Microbial fuel cell with an azo-dyefeeding cathode, Appl. Microbiol. Biotechnol, 85, 175–183, 2009.
  • Li, Z., Zhang, X., Lin, J., Han, S., Lei, L., Azo dye treatment with simultaneous electricity production in an anaerobic–aerobic sequential reactor and microbial fuel cell coupled system, Bioresour. Technol, 101 (34), 4440–4445, 2010.
  • Sun, J., Bi, Z., Hou, B., Cao, Y., Hu, Y., Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode, Water Res, 45, 283–291, 2011.
  • Cao, Y., Hu, Y., Sun, J., Hou, B., Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell, Bioelectrochemistry, 79, 71–76, 2010.
  • Erenler Özalp, Ş., Effects of Bacterial Hemoglobin Gene on the Physiological and Metabolic Activities of Enterobacter aerogenes, Inonu University - Institute of Science, Department of Biology, M.Sc. Thesis, 2001.
APA ERENLER S (2019). The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes. , 113 - 133.
Chicago ERENLER SEBNEM The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes. (2019): 113 - 133.
MLA ERENLER SEBNEM The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes. , 2019, ss.113 - 133.
AMA ERENLER S The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes. . 2019; 113 - 133.
Vancouver ERENLER S The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes. . 2019; 113 - 133.
IEEE ERENLER S "The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes." , ss.113 - 133, 2019.
ISNAD ERENLER, SEBNEM. "The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes". (2019), 113-133.
APA ERENLER S (2019). The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes. Adıyaman Üniversitesi Fen Bilimleri Dergisi, 9(1), 113 - 133.
Chicago ERENLER SEBNEM The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes. Adıyaman Üniversitesi Fen Bilimleri Dergisi 9, no.1 (2019): 113 - 133.
MLA ERENLER SEBNEM The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes. Adıyaman Üniversitesi Fen Bilimleri Dergisi, vol.9, no.1, 2019, ss.113 - 133.
AMA ERENLER S The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes. Adıyaman Üniversitesi Fen Bilimleri Dergisi. 2019; 9(1): 113 - 133.
Vancouver ERENLER S The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes. Adıyaman Üniversitesi Fen Bilimleri Dergisi. 2019; 9(1): 113 - 133.
IEEE ERENLER S "The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes." Adıyaman Üniversitesi Fen Bilimleri Dergisi, 9, ss.113 - 133, 2019.
ISNAD ERENLER, SEBNEM. "The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes". Adıyaman Üniversitesi Fen Bilimleri Dergisi 9/1 (2019), 113-133.