Yıl: 2019 Cilt: 23 Sayı: 5 Sayfa Aralığı: 824 - 830 Metin Dili: İngilizce DOI: 10.16984/saufenbilder.469273 İndeks Tarihi: 26-11-2019

Determination of anticancer and antibacterial activities of disubstituted tacrine derivatives

Öz:
The present study describes the biological features of disubstituted tacrine derivatives using cell proliferation andcell cytotoxicity assays. The abilities of tacrine derivatives to inhibit microbial growth and to interact with DNA werealso investigated. Here, the tested compounds (1-4) exhibited selective antiproliferative activity against the cancercell lines (IC50 values 1.1 – 38.9 μg/mL) and showed a similar non-toxic property to cells such as positive control(percent cytotoxicity 7% - 27%). Studies on human pathogenic bacteria showed that the novel tacrine analoguesexhibited significant antimicrobial activities between concentrations of 31.25 μg/mL and 250 μg/mL. The data showthat they can bind to DNA with the groove binding mode with Kb range of 7.4 × 10⁴ - 2.9 × 10⁴ Mˉ¹. As a result, thepreliminary data showed that disubstituted tacrine derivatives exhibited effective pharmacological properties.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • M. Tugrak, H. I. Gul, H. Sakagami, I. Gulcin and C. T. Supuran, “New azafluorenones with cytotoxic and carbonic anhydrase inhibitory properties: 2-Aryl-4-(4-hydroxyphenyl)-5Hindeno[ 1,2-b]pyridin-5-ones,” Bioorganic Chemistry, vol. 81, pp. 433–439, 2018.
  • C. Boulanger, C. Giorgio and P. Vierling. “Synthesis of acridine-nuclear localization signal (NLS) conjugates and evaluation of their impact on lipoplex and polyplex-based transfection,” European Journal of Medicinal Chemistry, vol. 40, no. 12, pp 1295-1306, 2005.
  • M. J. B. Moore, C. M. Schultes, J. Cuesta, F. Cuenca, M. Gunaratnam, F. A. Tanious, W. D. Wilson and S. Neidle, “Trisubstituted Acridines as G-quadruplex Telomere Targeting Agents. Effects of Extensions of the 3,6- and 9-Side Chains on Quadruplex Binding, Telomerase Activity, and Cell Proliferation,” Journal of Medicinal Chemistry, vol. 49, no. 2, pp. 582- 599, 2006.
  • G. F. Han, R. H. Wang, W. T. Zhang, Y. Y. Zhao, Z. Xing and W. Dai, “Synthesis and Crystal Structure of 7,8-Dihydroquinolino[2,3- a]acridine Derivatives,” Synthetic Communication, vol. 39; no.14, pp. 2492-2505, 2009.
  • M. Recanatini, A. Cavalli, F. Belluti, L. Piazzi, A. Rampa, A. Bisi, S. Gobbi, P. Valenti, V. Andrisano, M. Bartolini and V. Cavrini, “SAR of 9-Amino-1,2,3,4-tetrahydroacridine-Based Acetylcholinesterase Inhibitors: Synthesis, Enzyme Inhibitory Activity, QSAR, and Structure-Based CoMFA of Tacrine Analogues,” Journal of Medicinal Chemistry, vol. 43, no.10, pp. 2007-2018, 2000.
  • E. P. Peçanha, C. A. M. Fraga, E. J. Barreiro, M. F. M. Braga, E. F. R. Pereira and E. X. Albuquerque, “Synthesis and Pharmacological Evaluation of a New 2-Azabicyclo[3.3.0]octane Derivative,” Journal of Brazilian Chemical Society, vol. 12, no. 3, pp. 408-412, 2001
  • R. N. Katzman, “Alzheimer's Disease,” The New England Journal of Medicine, vol. 314, no.15, pp. 964-973, 1986.
  • R. Szewczak, F. P. Huger, G. M. Bores, V. Haroutunian and K. L. Davis, “(.+-.)-9-Amino- 1,2,3,4-tetrahydroacridin-1-ol. A potential Alzheimer's disease therapeutic of low toxicity,” Journal of Medicinal Chemistry, vol. 31, no 7, pp. 1278-1279, 1988.
  • M. T. McKenna, G. R. Proctor, L. C. Young and A. L. Harvey, “Novel Tacrine Analogues for Potential Use against Alzheimer's Disease: Potent and Selective Acetylcholinesterase Inhibitors and 5-HT Uptake Inhibitors,” Journal of Medicinal Chemistry, vol. 40 no. 22, pp. 3516- 3523, 1997.
  • J. S. da Costa, D. S. Pisoni, C. B. da Silva, C. L. Petzhold, D. Russowsky and M. A. Ceschi, “Lewis Acid Promoted Friedländer Condensation Reactions between Anthranilonitrile and Ketones for the Synthesis of Tacrine and its Analogues,” Journal of Brazilian Chemical Society, vol. 20, no. 8, pp. 1448-1454, 2009.
  • G. Li, G. Hong, X. Li, Y. Zhang, Z. Xu, L. Mao, X. Feng and T. Liu, “Synthesis and activity towards Alzheimer's disease in vitro: Tacrine, phenolic acid and ligustrazine hybrids,” European Journal of Medicinal Chemistry, vol. 148, pp. 238-254, 2018.
  • L. Ismaili, B. Refouvelet, M. Benchekroun, S. Brogi, M. Brindisi, S. Gemma, G. Campiani, S. Filipic, D. Agbaba, G. Esteban, M. Unzeta, K. Nikolic, S. Butini and J. Marco-Contelles, “Multitarget compounds bearing tacrine- and donepezil like structural and functional motifs for the potential treatment of Alzheimer's disease,” Progress in Neurobiology, vol. 151, pp. 4-34, 2017.
  • N. Guzior, A. Wieckowska, D. Panek and B. Malawska, “Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer's disease,” Current Medicinal Chemistry, vol. 22, pp. 373-404, 2015.
  • J. Ruiz, J. Lorenzo, C. Vicente, G. Lopez, J. M. Lopez-de-Luzuriaga, M. Monge, F. X. Aviles, D. Bautista, V. Moreno and A. Laguna, “New palladium(II) and platinum(II) complexes with 9-aminoacridine: structures, luminiscence, theoretical calculations, and antitumor activity,” Inorganic Chemistry, vol. 47 pp. 6990-7001, 2008.
  • X. Chen, K. Zenger, A. Lupp, B. Kling, J. Heilmann, C. Fleck, B. Kraus and M. Decker, “Tacrine-silibinin codrug shows neuro- and hepatoprotective effects in vitro and procognitive and hepatoprotective effects in vivo,” Journal of Medicinal Chemistry, vol. 55, pp. 5231-5242, 2012.
  • H. M. Kuan, “Synthesis and in-vitro anticancer evaluation of bistacrine congeners,” Journal of Pharmacy and Pharmacology, vol. 53: pp. 83- 88, 2001.
  • L. H. Hurley, “DNA and its associated processes as targets for cancer therapy,” Nature Reviews Cancer, vol. 2, pp. 188-200, 2002.
  • Q. Cao, Y. Li, E. Freisinger, P. Z. Qin, R. K. O. Sigel and Z. W. Mao, “G-quadruplex DNA targeted metal complexes acting as potential anticancer drugs,” Inorganic Chemistry Frontiers, vol. 4, pp. 10-32, 2017.
  • H. H. Zou, L. Wang, Z. X. Long, Q. P. Qin, Z. K. Song, T. Xie, S. H. Zhang, Y. C. Liu, B. Lin and Z. F. Chen, “Preparation of 4-([2, 20: 60, 200-terpyridin]-40-yl)-N, Ndiethylaniline NiII and PtII complexes and exploration of their in vitro cytotoxic activities,” European Journal of Medicinal Chemistry, vol. 108: pp. 1-12, 2016.
  • Z. F. Chen, Q. P. Qin, J. L. Qin, Y. C. Liu, K. B. Huang, Y. L. Li, T. Meng, G. H. Zhang, Y. Peng, X. J. Luo and H. Liang, “Stabilization of Gquadruplex DNA, inhibition of telomerase activity and tumor cell apoptosis of organoplatinum(II) complexes with oxoisoaporphine,” Journal of Medicinal Chemistry, vol. 58, pp. 2159-2179, 2015.
  • M. J. B. Moore, C. M. Schultes, J. Cuesta, F. Cuenca, M. Gunaratnam, F. A. Tanious, W. D. Wilson and S. Neidle, “Trisubstituted acridines as G-quadruplex telomere targeting agents. Effects of extensions of the 3, 6-and 9-side chains on quadruplex binding, telomerase activity, and cell proliferation,” Journal of Medicinal Chemistry, vol. 49 pp. 582-599, 2006.
  • S. M. Gowan, R. Heald, M. F. G. Stevens and L. R. Kelland, “Potent inhibition of telomerase by small-molecule pentacyclic acridines capable of interacting with G-quadruplexes,” Molecular Pharmacology, vol. 60 pp. 981-988, 2001.
  • R. A. Heald, C. Modi, J. C. Cookson, I. Hutchinson, C. A. Laughton, S. M. Gowan, L. R. Kelland and M. F. G. Stevens, “Antitumor polycyclic acridines. 8. Synthesis and telomerase-inhibitory activity of methylated pentacyclic acridinium salts,” Journal of Medicinal Chemistry, vol. 45, pp. 590-597, 2002.
  • V. Caprio, B. Guyen, Y. O. Boahen, J. Mann, S. M. Gowan, L. M. Kelland, M. A. Read and S. Neidle, “A novel inhibitor of human telomerase derived from 10H-indolo [3, 2-b] quinoline,” Bioorganic Medicinal Chemistry Letters, vol. 10, pp. 2063-2066, 2000.
  • D. Y. Zeng, G. T. Kuang, S. K. Wang, W. Peng, S. L. Lin, Q. Zhang, X. X. Su, M. H. Hu, H. Wang, J. H. Tan, Z. S. Huang, L. Q. Gu and T. M. Ou, “Discovery of novel 11-triazole substituted benzofuro[3,2-b]quinoline derivatives as c-myc Gquadruplex specific stabilizers via click chemistry,” Journal of Medicinal Chemistry, vol. 60, pp. 5407-5423, 2017.
  • M. I. F. Bachiller, C. Perez, L. Monjas, J. Rademann and M. I. R. Franco, “New Tacrinee4-Oxo-4H-chromene hybrids as multifunctional agents for the treatment of Alzheimer's disease, with cholinergic, antioxidant, and b-amyloid-reducing properties,” Journal of Medicinal Chemistry, vol. 55, pp. 1303-1317, 2012.
  • E. H. Rydberg, B. Brumshtein, H. M. Greenblatt, D. M. Wong, D. Shaya, L. D. Williams, P. R. Carlier, Y. P. Pang, I. Silman and J. L. Sussman, “Complexes of alkylene-linked Tacrine dimers with torpedo californica acetylcholinesterase: binding of bis(5)-tacrine produces a dramatic rearrangement in the active-site gorge,” Journal of Medicinal Chemistry, vol. 49, pp. 5491-5500, 2006.
  • T. M. Ou, Y. J. Lu, J. H. Tan, Z. S. Huang, K. Y. Wong and L. Q. Gu, “G-quadruplexes: targets in anticancer drug design,” ChemMedChem vol. 3, pp. 690-713, 2008.
  • M. Ekiz, A. Tutar, S. Ökten, “Convenient Synthesis of Disubstituted Tacrine Derivatives via Electrophilic and Copper Induced Reactions,” Tetrahedron. vol. 72, pp. 5323- 5330, 2016.
  • S. Ökten, M. Ekiz, A. Tutar, Ü. M. Koçyiğit, B. Bütün, G. Topçu, İ. Gülçin, “SAR Evaluation of Disubstituted Tacrine Analogues as Promising Cholinesterase and Carbonic Anhydrase Inhibitors,” Indian Journal of Pharmaceutical Education and Research, vol. 53, pp. 268-275, 2019.
  • S. Ökten, M. Ekiz, Ü. M. Koçyiğit, A. Tutar, İ. Çelik, M. Akkurt, F. Gökalp, P. Taslimi, İ. Gülçin, “Synthesis, Characterization, Crystal Structures, Theoretical Calculations and Biological Evaluations of Novel Substituted Tacrine Derivatives as Cholinesterase and Carbonic Anhydrase Enzymes Inhibitors,” Journal of Molecular Structure, vol. 1175, pp. 906-915, 2019.
APA Ökten S, Aydın A, TUTAR A (2019). Determination of anticancer and antibacterial activities of disubstituted tacrine derivatives. , 824 - 830. 10.16984/saufenbilder.469273
Chicago Ökten Salih,Aydın Ali,TUTAR Ahmet Determination of anticancer and antibacterial activities of disubstituted tacrine derivatives. (2019): 824 - 830. 10.16984/saufenbilder.469273
MLA Ökten Salih,Aydın Ali,TUTAR Ahmet Determination of anticancer and antibacterial activities of disubstituted tacrine derivatives. , 2019, ss.824 - 830. 10.16984/saufenbilder.469273
AMA Ökten S,Aydın A,TUTAR A Determination of anticancer and antibacterial activities of disubstituted tacrine derivatives. . 2019; 824 - 830. 10.16984/saufenbilder.469273
Vancouver Ökten S,Aydın A,TUTAR A Determination of anticancer and antibacterial activities of disubstituted tacrine derivatives. . 2019; 824 - 830. 10.16984/saufenbilder.469273
IEEE Ökten S,Aydın A,TUTAR A "Determination of anticancer and antibacterial activities of disubstituted tacrine derivatives." , ss.824 - 830, 2019. 10.16984/saufenbilder.469273
ISNAD Ökten, Salih vd. "Determination of anticancer and antibacterial activities of disubstituted tacrine derivatives". (2019), 824-830. https://doi.org/10.16984/saufenbilder.469273
APA Ökten S, Aydın A, TUTAR A (2019). Determination of anticancer and antibacterial activities of disubstituted tacrine derivatives. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(5), 824 - 830. 10.16984/saufenbilder.469273
Chicago Ökten Salih,Aydın Ali,TUTAR Ahmet Determination of anticancer and antibacterial activities of disubstituted tacrine derivatives. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, no.5 (2019): 824 - 830. 10.16984/saufenbilder.469273
MLA Ökten Salih,Aydın Ali,TUTAR Ahmet Determination of anticancer and antibacterial activities of disubstituted tacrine derivatives. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.23, no.5, 2019, ss.824 - 830. 10.16984/saufenbilder.469273
AMA Ökten S,Aydın A,TUTAR A Determination of anticancer and antibacterial activities of disubstituted tacrine derivatives. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2019; 23(5): 824 - 830. 10.16984/saufenbilder.469273
Vancouver Ökten S,Aydın A,TUTAR A Determination of anticancer and antibacterial activities of disubstituted tacrine derivatives. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2019; 23(5): 824 - 830. 10.16984/saufenbilder.469273
IEEE Ökten S,Aydın A,TUTAR A "Determination of anticancer and antibacterial activities of disubstituted tacrine derivatives." Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23, ss.824 - 830, 2019. 10.16984/saufenbilder.469273
ISNAD Ökten, Salih vd. "Determination of anticancer and antibacterial activities of disubstituted tacrine derivatives". Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/5 (2019), 824-830. https://doi.org/10.16984/saufenbilder.469273