Local Spin Induced Magnetism In The Monolayer Nanographene

Yıl: 2019 Cilt: 40 Sayı: 3 Sayfa Aralığı: 753 - 761 Metin Dili: İngilizce DOI: 10.17776/csj.568903 İndeks Tarihi: 30-01-2020

Local Spin Induced Magnetism In The Monolayer Nanographene

Öz:
In this paper, we investigated local spin orientation (up or down) effects on magnetizations of the monolayer nanographene by using effective field theory developed by Kaneyoshi. It is found that the monolayer nanographene and its components have very small magnetization (mC1≈mC2≈mC3≈mMLNG≈2.31x10-18≈0) at T≈0.00 for the Jd1<0 (C1-spin up, C2-spin down and C3-spin up). On the other hand, for Jd2<0, Jd3<0, Jd4<0, and Jd5<0, the monolayer nanographene and its components (C1, C2 and C3 atoms) have very large local spin induced magnetization (mC1≈mC2≈mC3≈mMLNG≈1;1>>2.31x10-18) than those of the Jd1<0. These results clearly indicate that the local spin orientation in the monolayer nanographene has very strong effect on its magnetism.
Anahtar Kelime:

Tek Tabakalı Nanografende Lokal Spin Etkili Manyetizma

Öz:
Bu çalışmada, Kaneyoshi tarafından geliştirilen etkin alan teorisi kullanılarak, tek tabakalı nanografenin mıknatıslanmalarına lokal spin yönelimlerinin (yukarı ya da aşağı) etkileri incelendi. Tek tabakalı nanografenin ve bileşenlerinin Jd1<0 (C1-spin yukarı, C2-spin aşağı ve C3-spin yukarı) için T≈0.00'da çok küçük mıknatıslanmaya (mC1≈mC2≈mC3≈mMLNG≈2.31x10-18≈0) sahip olduğu bulundu. Diğer taraftan, Jd2<0, Jd3<0, Jd4<0 ve Jd5<0 için, tek tabakalı nanografen ve bileşenleri (C1, C2 ve C3 atomları), Jd1<0’dakinden çok büyük lokal spin etkili mıknatıslanmaya (mC1≈mC2≈mC3≈mMLNG≈;1>>2.31x10-18) sahiptirler. Bu sonuçlar açıkça, lokal spin yönelimlerinin, tek tabakalı nanografenin manyetizması üzerinde çok güçlü bir etkiye sahip olduğunu göstermektedir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) 666-669.
  • [2] Wallace P. R., The Band Theory of Graphite, Phys. Rev., 71 (1947) 622-634.
  • [3] Geim A. and Novoselov K., The rise of graphene, Nature Mater., 6 (2007) 183-191.
  • [4] Kedzierski J., Hsu P. L., Healey P., Wyatt P. W., Keast C. L., Sprinkle M., Berger C., de Heer W. A., Epitaxial Graphene Transistors on SiC Substrates. Electron Devices, IEEE Trans., 55 (2008) 2078-2085.
  • [5] Wu Y. Q., Ye P. D., Capano M. A., Xuan Y., Sui Y., Qi M., Cooper J. A., Shen T., Pandey D., Prakash G., Reifenberger R., Top-gated graphene field-effect-transistors formed by decomposition of SiC, Appl. Phys. Lett., 92 (2008) 092102.
  • [6] Lin Y. M., Garcia A. V., Han S. J., Farmer D. B., Meric I., Sun Y., Wu Y., Dimitrakopoulos C., Grill A., Avouris P., Jenkins K. A., Wafer-Scale Graphene Integrated Circuit, Science, 332 (2011) 1294-1297.
  • [7] Guo Z., Dong R., Chakraborty P. S., Lourenco N., Palmer J., Hu Y., Ruan M., Hankinson J., Kunc J., Cressler J. D., Berger C., de Heer W.A., Record Maximum Oscillation Frequency in C-Face Epitaxial Graphene Transistors, Nano Lett., 13 (2013) 942-947.
  • [8] Fiori G. and Iannaccone G., Multiscale Modeling for Graphene-Based Nanoscale Transistors, Proceedings of the IEEE, 101 (2013) 1653-1669.
  • [9] Schwierz F., Graphene transistors, Nature Nano., 5 (2010) 487-496.
  • [10] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A., Two-dimensional gas of massless LXXXIII Dirac fermions in graphene, Nature, 438 (2005) 197-200.
  • [11] Zhang Y., Jiang Z., Small J. P., Purewal M. S., Tan Y. W., Fazlollahi M., Chudow J. D., Jaszczak J. A., Stormer H. L., Kim P., Landau-Level Splitting in Graphene in High Magnetic Fields, Phys. Rev. Lett., 96 (2006) 136806.
  • [12] Katsnelson M. I., Novoselov K. S., Geim A. K., Chiral tunnelling and the Klein paradox in graphene, Nature Phys., 2 (2006) 620-625.
  • [13] Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K., The electronic properties of graphene, Rev. Modern Phys., 81 (2009) 109-162.
  • [14] Nair R. R., Sepioni M., Tsai I-Ling, Lehtinen O., Keinonen J., Krasheninnikov A. V., Thomson T., Geim A. K., Grigorieva I. V., Spin-half paramagnetism in graphene induced by point defects, Nature Phys., 8 (2012) 199-202.
  • [15] Liu Y., Tang N., Wan X., Feng Q., Li M., Xu Q., Liu F., Du Y., Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen, Scientific Reports, 3 (2013) 02566.
  • [16] Giesbers A. J. M., Uhlirova K., Konecny M., Peters E. C., Burghard M., Aarts J., Flipse C. F. J., Inter-induced room-temperature ferromagnetism in hydrogenated epitaxial graphene, Phys. Rev. Lett., 111 (2013) 166101.
  • [17] Qin S., Guo X., Cao Y., Ni Z., Xu Q., Strong ferromagnetism of reduced graphene oxide, Carbon, 78 (2014) 559-565.
  • [18] Sarkar S. K., Raul K. K., Pradhan S. S., Basu S., Nayak A., Magnetic properties of graphite oxide and reduced graphene oxide, Phys. E, 64 (2014) 78-82.
  • [19] Ning G., Xu C., Hao L., Kazakova O., Fan Z., Wang H., Wang K., Gao J., Qian W., Wei F., Ferromagnetism in nanomesh graphene, Carbon, 51 (2013) 390-396.
  • [20] Raj K. G., Joy P. A., Ferromagnetism at room temperature in activated graphene oxide, Chem. Phys. Lett., 605 (2014) 89-92.
  • [21] Ramakrishna Matte H. S. S., Subrahmanyam K. S., Rao C.N.R., Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects, J. Phys. Chem. C. 113 (2009) 9982–9985.
  • [22] Ray S. C., Soin N., Makgato T., Chuang C. H., Pong W. F., Roy S. S., Ghosh S. K., Strydom A. M., McLaughlin J. A., Graphene supported graphone/graphane bilayer nanostructure material for spintronics, Scientific Reports, 4 (2014) 03862.
  • [23] Jansen H. J. F., Freeman A. J., Structural and electronic properties of graphite via an all-electron total-energy local-density approach, Phys. Rev. B, 35 (1987) 8207-8214.
  • [24] Johansson L., Owman F., Mårtensson P., Persson C., Lindefelt U., Electronic structure of 6H-SiC (0001), Phys. Rev. B, 53 (1996) 13803-13807.
  • [25] Mounet N., Marzari N., First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives, Phys. Rev. B, 71 (2005) 205214.
  • [26] Olse T., Thygesen K. S., Random phase approximation applied to solids, molecules, and graphene-metal interfaces: From van der Waals to covalent bonding, Phys. Rev. B, 87 (2013) 075111.
  • [27] Ohta T., Bostwick A., Seyller T., Horn K., Rotenberg E., Controlling the electronic structure of bilayer graphene, Science, 313 (2006) 951-954.
  • [28] Masrour R., Bahmad L., Benyoussef A., Size effect on magnetic properties of a nano-graphene bilayer structure: A Monte Carlo study, J. Mag. Mag. Mater., 324 (2012) 3991-3996.
  • [29] Orlof A., Ruseckas J., Zozoulenko I. V., Effect of zigzag and armchair edges on the electronic transport in single-layer and bilayer graphene nanoribbons with defects, Phys. Rev. B, 88 (2013) 125409.
  • [30] Kaneyoshi T., Magnetizations of a nanoparticle described by the transverse Ising model, J. Mag. Mag. Mater., 321 (2009) 3430-3435.
  • [31] Kaneyoshi T., Ferrimagnetic magnetizations of transverse Ising thin films with diluted surfaces, J. Mag. Mag. Mater., 321 (2009) 3630-3636.
  • [32] Kaneyoshi T., Magnetizations of a transverse Ising nanowire, J. Mag. Mag. Mater., 322 (2010) 3410-3415.
  • [33] Kaneyoshi T., Phase diagrams of a transverse Ising nanowire, J. Mag. Mag. Mater., 322 (2010) 3014-3018.
  • [34] Kaneyoshi T., Clear distinctions between ferromagnetic and ferrimagnetic behaviors in a cylindrical Ising nanowire (or nanotube), J. Mag. Mag. Mater., 323 (2011) 2483-2486.
  • [35] Kaneyoshi T., Some characteristic properties of initial susceptibility in a Ising nanotube, J. Mag. Mag. Mater., 323 (2011) 1145-1151.
  • [36] Kaneyoshi T., Ferrimagnetism in a ultra-thin decorated Ising film, J. Mag. Mag. Mater., 336 (2013) 8-13.
  • [37] Kaneyoshi T., Reentrant phenomena in a transverse Ising nanowire (or nanotube) with a diluted surface: Effects of interlayer coupling at the surface, J. Mag. Mag. Mater., 339 (2013) 151-156.
  • [38] Kaneyoshi T., Ferrimagnetic magnetizations in a thin film described by the transverse Ising model, Phys. Stat. Sol. (B), 246 (2009) 2359-2365.
  • [39] Kaneyoshi T., Magnetic properties of a cylindrical Ising nanowire (or nanotube), Phys. Stat. Sol. (B), 248 (2011) 250-258.
  • [40] Kaneyoshi T., Phase diagrams of a cylindrical transverse Ising ferrimagnetic nanotube, effects of surface dilution, Sol. Stat. Comm., 151 (2011) 1528-1532.
  • [41] Kaneyoshi T., The possibility of a compensation point induced by a transverse field in transverse Ising nanoparticles with a negative core–shell coupling, Sol. Stat. Comm., 152 (2012) 883-886.
  • [42] Kaneyoshi T., Ferrimagnetism in a decorated Ising nanowire, Phys. Lett. A, 376 (2012) 2352-2356.
  • [43] Kaneyoshi T., The effects of surface dilution on magnetic properties in a transverse Ising nanowire, Phys. A, 391 (2012) 3616-3628.
  • [44] Kaneyoshi T., Phase diagrams in an Ising nanotube (or nanowire) with a diluted surface; Effects of interlayer coupling at the surface, Phys. A, 392 (2013) 2406-2414.
  • [45] Kaneyoshi T., Characteristic phenomena in nanoscaled transverse Ising thin films with diluted surfaces, Phys. B, 407 (2012) 4358-4364.
  • [46] Kaneyoshi T., Phase diagrams in a ultra-thin transverse Ising film with bond or site dilution at surfaces, Phys. B, 414 (2013) 72-77.
  • [47] Kaneyoshi T., Characteristic behaviors in an ultrathin Ising film with site- (or bond-) dilution at the surfaces, Phys. B, 436 (2014) 208-214.
  • [48] Jiang W., Li X. X., Liu L. M., Chen J. N., Zhang F., Hysteresis loop of a cubic nanowire in the presence of the crystal field and the transverse field, J. Mag. Mag. Mater., 353 (2014) 90-98.
  • [49] Ertaş M., Kocakaplan Y., Dynamic behaviors of the hexagonal Ising nanowire, Phys. Lett. A, 378 (2014) 845-850.
  • [50] Kantar E., Keskin M., Thermal and magnetic properties of ternary mixed Ising nanoparticles with core-shell structure: effective-field theory approach, J. Mag. Mag. Mater., 349 (2014) 165-172.
  • [51] Magoussi H., Zaim A., Kerouad M., Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube, Chin. Phys. B, 22 (2013) 116401.
  • [52] Kocakaplan Y., Kantar E., Keskin M., Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique, Eur. Phys. J. B, 86 (2013) 40659.
  • [53] Jiang W., Li X. X., Liu L. M., Surface effects on a multilayer and multisublattice cubic nanowire with core/shell. Phys. E, 53 (2013) 29-35.
  • [54] Deviren B., Şener Y., Keskin M., Dynamic magnetic properties of the kinetic cylindrical Ising nanotube, Phys. A, 392 (2013) 3969-3983.
  • [55] Wang C. D. and Ma R. G., Force induced phase transition of honeycomb-structured ferroelectric thin film, Phys. A, 392 (2013) 3570-3577.
  • [56] Bouhou S., Essaoudi I., Ainane A., Saber M., Ahuja R., Dujardin F., Phase diagrams of diluted transverse Ising nanowire, J. Mag. Mag. Mater., 336 (2013) 75-82.
  • [57] Zaim A., Kerouad M., Boughrara M., Effects of the random field on the magnetic behavior of nanowires with core/shell morphology, J. Mag. Mag. Mater., 331 (2013) 37-44.
  • [58] Şarlı N., Band structure of the susceptibility, internal energy and specific heat in a mixed core/shell Ising nanotube, Phys. B, 411 (2013) 12-25.
  • [59] Şarlı N., Keskin M., Two distinct magnetic susceptibility peaks and magnetic reversal events in a cylindrical core/shell spin-1 Ising nanowire, Sol. Stat. Comm., 152 (2012) 354-359.
  • [60] Keskin M., Şarlı N., Deviren B., Hysteresis behaviors in a cylindrical Ising nanowire, Sol. Stat. Comm., 151 (2011) 1025-1030.
  • [61] Yüksel Y., Akıncı Ü., Polat H., Investigation of bond dilution effects on the magnetic properties of a cylindrical Ising nanowire, Phys. Stat. Sol. (B), 250 (2013) 196-206.
  • [62] Akıncı Ü., Effects of the randomly distributed magnetic field on the phase diagrams of the Ising Nanowire II: continuous distributions, J. Mag. Mag. Mater., 324 (2012) 4237-4244.
  • [63] Akıncı Ü., Effects of the randomly distributed magnetic field on the phase diagrams of Ising nanowire I: discrete distributions, J. Mag. Mag. Mater., 324 (2012) 3951-3960.
  • [64] Şarlı N., Akbudak S., Polat Y., Ellialtıoğlu M. R., Effective distance of a ferromagnetic trilayer Ising nanostructure with an ABA stacking sequence, Phys. A, 434 (2015) 194-200.
  • [65] Şarlı N., Akbudak S., Ellialtıoğlu M. R., The peak effect (PE) region of the antiferromagnetic two layer Ising nanographene, Phys. B, 452 (2014) 18-22.
  • [66] Lu Z. M., Si N., Wang Y. N., Zhang F., Meng J., Miao H. L., Jiang W., Unique magnetism in different sizes of center decorated tetragonal nanoparticles with the anisotropy, Phys. A, 523 (2019) 438-456.
  • [67] Wu C., Shi K. L., Zhang Y., W. Jiang, Magneticproperties of iron nanowire encapsulated in carbon nanotubes doped with copper, J. Magn. Magn. Mater. 465 (2018) 114-121.
  • [68] Zou C. L., Guo D. Q., Zhang F., Meng J., Miao H. L., Jiang W., Phys. E, 104 (2018) 138-145.
  • [69] Wang K., Yin P., Zhang Y., Jiang W., Phase diagram and magnetization of a graphene nanoisland structure, Phys. A, 505 (2018) 268-279.
  • [70] Wang J. M., Jiang W., Zhou C. L., Shi Z., Wu C., Magnetic properties of a nanoribbon: An effective-field theory, Superlattices and Microstructures, 102 (2017) 359-372.
  • [71] Jiang W., Wang Y. N., Guo A. B., Yang Y. Y., Shi K. L., Magnetization plateaus and the susceptibilities of a nano-graphenes and wich-like structure, Carbon, 110 (2016) 41-47.
  • [72] Kaneyoshi T., Differential Operator Technique In The Ising Spin Systems, Acta. Phys. Pol. A 83 (1993) 703-737.
  • [73] Yıldız Y. G., Origin of the hardness in the monolayer nanographene. Phys. Lett. A, 383 (2019) 2333-2338.
APA YILDIZ Y (2019). Local Spin Induced Magnetism In The Monolayer Nanographene. , 753 - 761. 10.17776/csj.568903
Chicago YILDIZ YASİN GÖKTÜRK Local Spin Induced Magnetism In The Monolayer Nanographene. (2019): 753 - 761. 10.17776/csj.568903
MLA YILDIZ YASİN GÖKTÜRK Local Spin Induced Magnetism In The Monolayer Nanographene. , 2019, ss.753 - 761. 10.17776/csj.568903
AMA YILDIZ Y Local Spin Induced Magnetism In The Monolayer Nanographene. . 2019; 753 - 761. 10.17776/csj.568903
Vancouver YILDIZ Y Local Spin Induced Magnetism In The Monolayer Nanographene. . 2019; 753 - 761. 10.17776/csj.568903
IEEE YILDIZ Y "Local Spin Induced Magnetism In The Monolayer Nanographene." , ss.753 - 761, 2019. 10.17776/csj.568903
ISNAD YILDIZ, YASİN GÖKTÜRK. "Local Spin Induced Magnetism In The Monolayer Nanographene". (2019), 753-761. https://doi.org/10.17776/csj.568903
APA YILDIZ Y (2019). Local Spin Induced Magnetism In The Monolayer Nanographene. Cumhuriyet Science Journal, 40(3), 753 - 761. 10.17776/csj.568903
Chicago YILDIZ YASİN GÖKTÜRK Local Spin Induced Magnetism In The Monolayer Nanographene. Cumhuriyet Science Journal 40, no.3 (2019): 753 - 761. 10.17776/csj.568903
MLA YILDIZ YASİN GÖKTÜRK Local Spin Induced Magnetism In The Monolayer Nanographene. Cumhuriyet Science Journal, vol.40, no.3, 2019, ss.753 - 761. 10.17776/csj.568903
AMA YILDIZ Y Local Spin Induced Magnetism In The Monolayer Nanographene. Cumhuriyet Science Journal. 2019; 40(3): 753 - 761. 10.17776/csj.568903
Vancouver YILDIZ Y Local Spin Induced Magnetism In The Monolayer Nanographene. Cumhuriyet Science Journal. 2019; 40(3): 753 - 761. 10.17776/csj.568903
IEEE YILDIZ Y "Local Spin Induced Magnetism In The Monolayer Nanographene." Cumhuriyet Science Journal, 40, ss.753 - 761, 2019. 10.17776/csj.568903
ISNAD YILDIZ, YASİN GÖKTÜRK. "Local Spin Induced Magnetism In The Monolayer Nanographene". Cumhuriyet Science Journal 40/3 (2019), 753-761. https://doi.org/10.17776/csj.568903