0 0

Proje Grubu: MAG Sayfa Sayısı: 156 Proje No: 105M085 Proje Bitiş Tarihi: 01.07.2007 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Görüntü yöntemlerinin beton mikro yapısının ve çelik birleşimlerin deformasyon davranışlarının belirlenmesinde uygulanması

Öz:
-
Anahtar Kelime:

Erişim Türü: Erişime Açık
  • ASCHENBRENNER, B. C., A New Method of Expressing Particle Sphericity, Journal of Sedimentary Petrology, 26, Pp: 15-31, (1956).
  • ASTM A 370-05 Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM, Philadelphia, (2005).
  • ASTM C 127 Standard Test Method for Specific Gravity and Absorption of Coarse Aggregate, ASTM, Philadelphia, (1988).
  • ASTM C 128 Standard Test Method for Specific Gravity and Absorption of Fine Aggregate, ASTM, Philadelphia, (1988).
  • ASTM C 131 Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine, ASTM, Philadelphia, (1989).
  • ASTM C 136 Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM, Philadelphia, (1992).
  • ASTM C 138 Standard Test Method for Unit Weight, Yield, and Air Content (Gravimetric) of Concrete, ASTM, Philadelphia, (1992).
  • ASTM C 143 Standard Test Method for Slump of Hydraulic Cement Concrete, ASTM, Philadelphia, (1990).
  • ASTM C 192 Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM, Philadelphia, (1990).
  • ASTM C 566, Standard Test Method for Total Moisture Content of Aggregate by Drying, ASTM, Philadelphia, (1989).
  • ASTM C 702 Standard Practice for Reducing Field Samples of Aggregate to Testing Size, ASTM, Philadelphia, (1987).
  • ASTM D 2488 Standard Practice for Description and Identification of Soils (Visual - Manual Procedure), ASTM, Philadelphia, (2000).
  • AWS D1.1/D1.1M-2004 Structural Welding Code – Steel, American Welding Society, (2004).
  • BARKSDALE, R. D., Kemp, M. A., Sheffield, W. J., Hubbard, J. L., Measurement of Aggregate Shape, Surface Area, and Roughness, Transportation Research Record, No. 1301, Pp: 107-116, (1991).
  • BARKSDALE, R. D., Itani, S. Y., Influence of Aggregate Shape on Base Behavior, Transportation Research Record, No. 1227, Pp: 173-182, (1989).
  • BARRETT, P. J., The Shape of Rock Particles, a Critical Review, Sedimentology, 27, Pp: 291-303, (1980).
  • BAXES, G. A., Digital Image Processing : A Practical Primer, Englewood Cliffs, Prentice Hall, N.J., (1984).
  • BLUM, H., A Transformation for Extracting New Descriptors of Shape, WhatenDunn, W., Models of the Perception of Speech and Visual Form, MIT Press, Pp: 362-280, (1967).
  • BRODDA, R., Weber, J. W., Leicht-und Normalbetone mit Ausfallkörnung und stetiger Sieblinie, Beton, 27, 9, Pp: 340-342, (1977).
  • CALABİ, L.,Hartnett, W. E., Shape Recognition, Prairie Fires, Convex Deficiencies and Skeletons, American Math Monthly, 75, Pp: 335-342, (1968).
  • CASTLEMAN, K. R., Digital Image Processing, Prentice Hall, N.J., (1996).
  • CHANDAN, C., Sivakumar. E., Masad, E., Fletcher, T., Application of Imaging Techniques to Geometry Analysis of Aggregate Particles, Journal of Computing in Civil Engineering, 18, Pp: 75-82, (2004).
  • CORDON, W. A., Gillespie, H. A., Variables in Concrete Aggregates and Portland Cement Paste which Influence the Strength of Concrete, ACI Materials Journal, 60, Pp: 1029-1050, (1963).
  • DAS, A., A Revisit to Aggregate Shape Parameters, Workshop on Aggregates – flakiness and elongation indices – (WSOA – 2006), New Delhi, (2006).
  • DE ROOVER, C., Vantomme, J., Wastiels, J., Taerwe, L., Deformation Analysis of a Modular Connection Sysytem by Digital Image Correlation, Experimental Techniques, Pp: 26-6, (2002).
  • DUDA, R., Hart, P., Pattern Classification and Scene Analysis, John Wiley & Sons, New York, (1973).
  • EFFORD, N., Digital Image Processing: A practical introduction with JAVA, Addison-Wesley, New York, (2000).
  • ERDOĞAN, S. T., Fowler, D. W., Determination of Aggregate Shape Properties Using X-ray Topographic Methods and the Effect of Shape on Concrete Rheology, Research Report: ICAR 106-1, International Center for Aggregates Research, (2005).
  • Gimp-Savvy.com, The RGB Colorspace: http://gimp.savvy.com/BOOK/node.50.html, March 23, (2007).
  • GONZALEZ, R. F., Woods R. E., Digital Image Processing, Addison Wesley, New York, (2001).
  • GÜLER M., Applications of Digital Image Analysis and Processing Methods in Studying Soil Characteristics, (M.Sc.), University of Wisconsin-Madison, Department of Civil and Environmental Engineering, (1997).
  • HARR, M. E., Mechanics of Particulate Media, McGraw-Hill, Inc., New York, (1977).
  • HUDSON, B., Modification to Fine Aggregate Angularity Test, Proceedings of the 7th ICAR Symposium, (1999).
  • JÄHNE, B., Digital Image Processing, Springer, Germany, (2005).
  • JANOO, V. C., Quantification of Shape, Angularity, and Surface Texture of Base Course Materials, CRREL Special Report No. 98-1, Cold Regions Research and Engineering, USA, (1998).
  • KAPLAN, M. F., Flexural and Compressive Strength of Concrete as Affected by the Properties of Coarse Aggregates, ACI Materials Journal, 55, Pp: 1193-1208, (1959).
  • KOSMATKA, S., Bleeding, ASTM Special Technical Publication, No. 169C, Philadelphia, Pp: 89-111, (1994).
  • KRUMBEİN, W. C., Measurement of Geological Significance of Shape and Roundness of Sedimentary Particles, Journal of Sedimentary Petrology, 11, Pp: 64-72, (1941).
  • KRUMBEİN, W. C., Settling-Velocity and Flume-Behavior of Non-Spherical Particles, Transactions of the American Geophysical Union, Pp: 621-633, (1942).
  • KUO, C. Y., Frost, J. D., Lai, J. S., Wang, L. B., Three-Dimensional Image Analysis of Aggregate Particles from Orthogonal Projections, Transportation Research Record, No. 1526, Pp: 98-103, (1996).
  • KUO, C. Y., Rollings, R. S., Lynch, L. N., Morphological Study of Coarse Aggregates Using Image Analysis, Journal of Materials in Civil Engineering, 10, 3, Pp: 135-142, (1998).
  • KUO, C. Y., Freeman, R. B., Imaging Indices for Quantification of Shape, Angularity, and Surface Texture of Aggregates, Transportation Research Record, No. 1721, Pp: 57-65, (2000).
  • KWAN, A. K., Mora, C. F., Chan, H. C., Particle Shape Analysis of Coarse Aggregate Using Digital Image Processing, Cement and Concrete Research, 29, Pp: 1403-1410, (1999).
  • KWAN, A. K., Mora, C. F., Effects of Various Shape Parameters on Packing of Aggregate Particle, Magazine of Concrete Research, 53, 2, Pp: 91-100, (2001).
  • LEES, G., The Measurement of Particle Shape and Its Influence in Engineering Materials, Journal of British Granite and Whinestone Federation, London, 4, 2, Pp: 1-22, (1964).
  • LEGG, F. E. Jr., Concrete Construction Handbook, Dobrowolski, J., McGraw-Hill, (1998).
  • LERNER, B., Contrast Enhancement: http://www.bgu.ac.il/~greg/graphics/stats.front-page.html, November 20, (2005).
  • LEWİS, H. T., Discussion on Walker, S. and Bloem, D. L., Effects of Aggregate Size on Properties of Concrete, ACI Materials Journal, 57, Pp: 283-298, (1960).
  • LEWİS, R., Practical Digital Image Processing, Ellis Horwood Series, West Sussex, England, (1990).
  • MACNAUGHTON, M. F. Discussion on Walker, S. and Bloem, D. L., Effects of Aggregate Size on Properties of Concrete, ACI Materials Journal, 57, Pp: 1220- 1226, (1961).
  • MASAD E., Button J. W., Unified Imaging Approach for Measuring Aggregate Angularity and Texture, Computer Aided Civil and Infrastructure Engineering, 15, Pp: 273-280, (2000).
  • MASAD, E., Button, J. W., Papagiannakis, T., Fine Aggregate Angularity: Automated Image Analysis Approach, Transportation Research Record, No. 1721, Pp: 66–72, (2000).
  • MASAD, E., Olcott, D., White, T., Tashman, L., Correlation of Fine Aggregate Shape Imaging Shape Indices with Aspalt Mixture Performance, Transportation Research Record, No.1757, Pp: 148–156, (2001).
  • MASAD, E., Sivakumar K., Advances in the Characterization and Modeling of Civil Engineering Materials Using Imaging Techniques, Journal of Computing in Civil Engineering, 18, 1, Pp: 1-11, (2004).
  • MCANDREW A., Introduction to Digital Image Processing with MATLAB, Thomson Course Technology, USA, (2004).
  • MCINTOSH, J. D., The Selection of Natural Aggregates for Various Types of Concrete Work, Reinf. Concr. Rev., 4, 5, London, Pp: 281-305, (1957).
  • MEHTA, P. K., Monteiro P. J., Concrete: Microstructure, Properties and Materials, McGraw-Hill, New York, (2006).
  • MORA, C. F., Kwan, A. K., Sphericity, Shape Factor, and Convexity Measurement of Coarse Aggregates for Concrete Using Digital Image Processing, Cement and Concrete Research, 30, Pp: 351-358, (2000).
  • NEVİLLE, A. M., Properties of Concrete, Longman Scientefic & Technical, England, (2003).
  • NI Vision Development Module for LabVIEW 8.0, National Instruments, (2006)
  • POPOVİCS, Concrete Materials, Noyes Publications, New Jersey, (1992).
  • QUİROGA P. N., Fowler D. W., The Effects of Aggregates Characteristics on the Performance of Portland Cement Concrete, Research Report: ICAR 104-1F International Center for Aggregates Research, (2003).
  • RAO, C., Tutumluer, E., Kim, I. T., Quantification of Coarse Aggregate Angularity Based on Image Analysis, Transportation Research Record, No. 1787, Pp: 117- 124, (2002).
  • RAO, C., Pan, T., Tutumluer, E., Determination of Coarse Aggregate Surface Texture Using Image Analysis, 16th ASCE Engineering Mechanics Conference, University of Washington, Seattle, (2003).
  • ROSENFELD, A., Kak, A. C., Digital Picture Processing Vol. 2, Acedemic Press, Inc., USA, (1982).
  • RUSS, C. J., The Image Processing Handbook, CRC Press, Inc., Florida, (1992).
  • SPYROU, S. , Davision, J. B., Displacament Measurement in Studies of Steel TStub Connections, Journal of Constructional Steel Research, 57, Pp: 647-659, (2001).
  • SHACKLOCK, B. W., Newman A. J., Teychenne D. C., A Classification of Natural Sands and Its Use in Concrete Mix Design, Proc. of a Symposium on Mix Design and Quality Control of Concrete, Proc. of a Symposium on Mix Design and Quality Control of Concrete, Pp: 199-200, (1954).
  • SHAH, S., COSC 6397 Digital Image Processing Lecture Notes, Department of Computer Science, University of Houston, (2005).
  • SHİLSTONE, J. M., Concrete Mixture Optimization, Concrete International: Design and Construction, 12, 6, Pp: 33-39, (1990).
  • SNEED, E.D., Folk, R. L., Pebbles in the Lower Colorado River, Texas – A study in Particle Morphogenesis, Journal of Geology, 66, 2, Pp: 114-150, (1958).
  • TEKALP, M., Digital Video Processing, Prentice Hall, First Edition, N.J., (1995).
  • TERZAGHİ, K., Peck, R. B., Soil Mechanics in Engineering Practice, John Wiley & Sons, Inc., New York, (1958).
  • YOUNG, I. T., Peverini, R. L., Verbeek, P. W., Van Otterloo, P. J., A New Implementation for the Binary and Minkowski Operators, Computer Graphics and Image Processing, 17, Pp: 189-210, (1981).
  • YUE, Z.Q., Bekking, W., Morin, I., Application of Digital Image Processing to Quantitative Study of Asphalt Concrete Microstructure, Transportation Research Record, No. 1492, Pp: 53-60, (1995).
  • WADELL, H., Volume, Shape, and Roundness of Rock Particles, Journal of Geology, 40, Pp: 443-451, (1932).
  • WADELL, H., Sphericity and Roundness of Rock Particles, Journal of Geology, 41, Pp: 310-331, (1933).
  • WASHA, G. W., Concrete Construction Handbook, Dobrowolski, J., McGraw-Hill, New York, USA, (1998).
APA GÜLER M, SÖZEN Ş, ÖZEN M (2007). Görüntü yöntemlerinin beton mikro yapısının ve çelik birleşimlerin deformasyon davranışlarının belirlenmesinde uygulanması. , 1 - 156.
Chicago GÜLER Murat,SÖZEN Şahin,ÖZEN MURAT Görüntü yöntemlerinin beton mikro yapısının ve çelik birleşimlerin deformasyon davranışlarının belirlenmesinde uygulanması. (2007): 1 - 156.
MLA GÜLER Murat,SÖZEN Şahin,ÖZEN MURAT Görüntü yöntemlerinin beton mikro yapısının ve çelik birleşimlerin deformasyon davranışlarının belirlenmesinde uygulanması. , 2007, ss.1 - 156.
AMA GÜLER M,SÖZEN Ş,ÖZEN M Görüntü yöntemlerinin beton mikro yapısının ve çelik birleşimlerin deformasyon davranışlarının belirlenmesinde uygulanması. . 2007; 1 - 156.
Vancouver GÜLER M,SÖZEN Ş,ÖZEN M Görüntü yöntemlerinin beton mikro yapısının ve çelik birleşimlerin deformasyon davranışlarının belirlenmesinde uygulanması. . 2007; 1 - 156.
IEEE GÜLER M,SÖZEN Ş,ÖZEN M "Görüntü yöntemlerinin beton mikro yapısının ve çelik birleşimlerin deformasyon davranışlarının belirlenmesinde uygulanması." , ss.1 - 156, 2007.
ISNAD GÜLER, Murat vd. "Görüntü yöntemlerinin beton mikro yapısının ve çelik birleşimlerin deformasyon davranışlarının belirlenmesinde uygulanması". (2007), 1-156.
APA GÜLER M, SÖZEN Ş, ÖZEN M (2007). Görüntü yöntemlerinin beton mikro yapısının ve çelik birleşimlerin deformasyon davranışlarının belirlenmesinde uygulanması. , 1 - 156.
Chicago GÜLER Murat,SÖZEN Şahin,ÖZEN MURAT Görüntü yöntemlerinin beton mikro yapısının ve çelik birleşimlerin deformasyon davranışlarının belirlenmesinde uygulanması. (2007): 1 - 156.
MLA GÜLER Murat,SÖZEN Şahin,ÖZEN MURAT Görüntü yöntemlerinin beton mikro yapısının ve çelik birleşimlerin deformasyon davranışlarının belirlenmesinde uygulanması. , 2007, ss.1 - 156.
AMA GÜLER M,SÖZEN Ş,ÖZEN M Görüntü yöntemlerinin beton mikro yapısının ve çelik birleşimlerin deformasyon davranışlarının belirlenmesinde uygulanması. . 2007; 1 - 156.
Vancouver GÜLER M,SÖZEN Ş,ÖZEN M Görüntü yöntemlerinin beton mikro yapısının ve çelik birleşimlerin deformasyon davranışlarının belirlenmesinde uygulanması. . 2007; 1 - 156.
IEEE GÜLER M,SÖZEN Ş,ÖZEN M "Görüntü yöntemlerinin beton mikro yapısının ve çelik birleşimlerin deformasyon davranışlarının belirlenmesinde uygulanması." , ss.1 - 156, 2007.
ISNAD GÜLER, Murat vd. "Görüntü yöntemlerinin beton mikro yapısının ve çelik birleşimlerin deformasyon davranışlarının belirlenmesinde uygulanması". (2007), 1-156.