Şakir Bor
(Orta Doğu Teknik Üniversitesi, Metalurji ve Malzeme Mühendisliği, Ankara, Türkiye)
ZİYA ESEN
(Orta Doğu Teknik Üniversitesi, Metalurji ve Malzeme Mühendisliği, Ankara, Türkiye)
Güher KOTAN
(Orta Doğu Teknik Üniversitesi, Metalurji ve Malzeme Mühendisliği, Ankara, Türkiye)
Elif TARHAN
(Orta Doğu Teknik Üniversitesi, Metalurji ve Malzeme Mühendisliği, Ankara, Türkiye)
Proje Grubu: TÜBİTAK MAG ProjeSayfa Sayısı: 284Proje No: 104M121Proje Bitiş Tarihi: 15.04.2007Türkçe

0 0
Toz metalurjisi yöntemiyle köpüksü saf titanyum ve Ti6AI4V alaşım üretimi ve karakterizasyonu
  • Andersen O., Waag U., Schneider L., Stephani G. ve Kieback B., Novel Metallic Hollow Sphere Structures, Advanced Eng. Mat., 2 (4),192-195, (2000).
  • Banhart J., Manufacture, characterisation and application of cellular metals and metal foams, Progress in Materials Science, 46, 559-632, (2001)
  • Balshin M. Y., Akad. Sci. USSR 67, 831, (1949).
  • Barbucci R., Integrated Biomaterial Science, Kluwer Academic publishers, New York, (2002), Pp 292.
  • Bram M., PM metallurgy Production and properties of porous titanium, Metal Powder Report, 58(3),38-38, (2003).
  • Da Silva M. G., Ramesh K.T., The rate-dependent deformation and localization of fully dense and porous Ti6Al4V, Mat. Sci. and Eng. A, 232, 11-22,(1997).
  • Davies G.J., Zhen S. Metallic Foams: Their production, properties and applications, J. of Mat. Sci., 18, 1897-1911, (1983).
  • Duckworth W. H.,Young’s modulus of porous materials, J. Am. Ceram. Soc., 34, 1-8, (1951).
  • Eriksson M.ve Carlström E., Application of PM titanium for dental implants, Powder Metallurgy, 46(4), 299-300, (2003).
  • Evans A.G., Hutchinson J.W., Ashby M.F., Multifunctionality of cellular metal systems, Progress in Mat. Sci., 43, 171-221, (1999).
  • Frosch K. H., Sondergeld I., Dresing K., Autologous osteoblasts significantly enhance osseointegration of porous titanium implants,J. of Orthopaedic Research, 21, 213-221, (2003).
  • German R. M., Manipulation of strength during sintering as a basis for obtaining rapid densification without distortion, Materials Transactions, 42 (7), 1400-141, (2001).
  • Gibson L. J. ve Ashby M. F., Cellular Solids; Structure and Properties, 2. Baskı ,Cambridge University Press, Cambridge, (1988), Pp: 7
  • Hattiangadi A. ve Bandyopadhyay A., Strength degradation of nonrandom porous ceramic structures under uniaxial compressive loading, J. Am. Ceram. Soc., 83(11), 2730-2736, (2000).
  • Herteman J.P., Eylon D., ve Froes F.H., Mechanical properties of advanced titanium powder metallurgy compacts, Powder Metallurgy International, 17(3), 116-118, (1985).
  • Jee C.S. Y., Özgüven N., Guo Z. X., ve Evans J.R.G., Preparation of high porosity metal foams, Metall. and Mat. Trans. B, 31, 1345-1352, (2000).
  • Ji S., Gu Q. ve Xia B., Porosity depence of mechanical properties of solid materials, J. Mater. Sci., 41, 1757-1768, (2006).
  • Knudsen F. P., Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size, J. Am. Ceram. Soc., 42, 376-387, (1959).
  • Kováčik J., Correlation between shear modulus and porosity in porous materials, J. Mater. Sci. Letters, 20, 1953-1955, (2001).
  • Kováčik J., Correlation between Young’s modulus and porosity in porous materials, J. Mater. Sci. Letters, 18, 1007-1010, (1999).
  • Leyens C. ve Peters M., Titanium and Titanyum Alloys, Wiley-VCH GmbH&Co., (2003), Pp.453-466
  • Long M., Rack H. J., Titanium alloys in total joint replacement-a materials science perspective, Biomaterials, 19, 1621-1639, (1998).
  • Murray N.G.D., Dunand D.C., Microstructure evolution during solid-state foaming of titanium, Composite Sci. and Tech., 63, 2311-2316, (2003).
  • Niinomi M., Recent research and development in titanium alloys for biomedical applications and healthcare goods, Sci. & Tech. Of Adv. Mat., 4, 445-454, (2003)
  • Oh I. H., Nomura N. and Hanada S., Microstructures and Mechanical Properties of Porous Titanium Compacts Prepared by Powder Sintering, Mat. Transactions, 43, 3, 443-456, (2002).
  • Nyce A.C. ve Shaffer W. M., Inter. J. Powder Met., 15, 171-178, (1972).
  • Pabst W., Gregorová E., Tichá G., Elasticity of porous ceramics-A critical study of modulusporosity relations, J. Eur. Ceram. Soc.,26(7), 1085-1097, (2006).
  • Phani, K.K., Young’s Modulus- Porosity Relation in Gypsum. Systems,Am. Ceram. Soc. Bull. 65 , 1584-1586, (1986).
  • Pompea W., Worch H., Epple M., Friess W., Gelinsky M., Greil P., Hempele U., Scharnweber D., Schulte K., Functionally graded materials for biomedical applications, Mat. Sci. and Eng. A, 362, 40-60, (2003)
  • Ricceri R. ve Matteazzi P., Powder metallurgy processing of cellular titanium, Int. J. of Powder Metall., 39(3), 53-61, (2003).
  • Savich V.V., Porous titanium materials with increased porosity and pore size, Metal Powder Report, 58(5), 38-38, (2003).
  • Thieme M., Wieters K. P., Bergner F., Scharnweber D., Worch H., Ndop J., Kim T. J., Grill W., Titanium powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants, J. of Mat. Sci.;Materials in Medicine, 12, 225-231, (2001).
  • Xu X., Yi W., German R. M., Densification and strength evolution in solid-state sintering, Part I Experimental Investigation, Journal of Materials Science, 37, 567-575, (2002).
  • Xu X., Lu P., German R.M., Densification and strength evolution in solid state sintering, Part II Strength Model, Journal of Materials Science, 37, 117-126, (2002).
  • Watari F., Yokoyama A., Omori M., Hirai T., Kondo H., Uo M., Kawasaki T., Biocompatibility of materials and development to functionally graded implant for bio-medical applications, Composite Sci. and Tech., 64, 893-904, (2004).
  • Watari F., Yokoyama A., Saso F., Uo M. ve Kawasaki T., Fabrication and properties of functionally graded dental implant, Composites, 28B, 5-11, (1997).
  • Wadley N.G., Cellular metal manufacturing, Advanced Eng. Mat., 4(10), 726-733, (2002).
  • Wen C.E., Mabuchi M., Yamada Y., Shimojima K., Chino Y. ve Asahina T., Processing of Biocompatible Porous Ti and Mg, Scripta Met., 45, 1147-1153, (2001).
  • Wen C. E., Yamada Y., Shimojima K., Chino Y., Hosokawa H. ve Mabuchi M., Novel titanium foam for bone tissue engineering, J. Mater. Res., 17(10), 2633-2639, (2002)
  • Wen C. E., Yamada Y., Shimojima K., Chino Y., Asahina T., Mabuchi M., Processing and mechanical properties of autogenous titanium implant materials, Journal of Mat. Sci.:Materials in Medicine, 13, 397-401, (2002)
  • Zeppelin F., Hirscher M., Stanzick H., Banhart J., Desorption of hydrogen from blowing agents used for foaming metals, Composite Science and Tech., 63, 2293-2300, (2003).

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.