(Orta Doğu Teknik Üniversitesi, Mühendislik Bilimleri Bölümü, Ankara, Türkiye)
(Orta Doğu Teknik Üniversitesi, Mühendislik Bilimleri Bölümü, Ankara, Türkiye)
M. Ruşen GEÇİT
(Orta Doğu Teknik Üniversitesi, Mühendislik Bilimleri Bölümü, Ankara, Türkiye)
Proje Grubu: TÜBİTAK MAG ProjeSayfa Sayısı: 66Proje No: 104M172Proje Bitiş Tarihi: 15.10.2006Türkçe

0 0
Değişik kompozisyonlarda biyocam/kalsiyum sülfat temelli kompozit malzemelerin geliştiriilmesi, mekanik ve biyoetkinlik özelliklerinin incelenmesi
  • ABE Y., Kokubo T, Yamamuro T, Apetite coating on ceramics, metals and polymers utilizing a biological process, J. Mater. Sci: Mater in Med., 1, 233-8, (1990).
  • ALDINI N.N., Fini M., Giavaresi G., Toricelli P., Martini I., Giardino R., Ravaglioli A., Krajewski A., Mazzocchi M., Dubini B., Pozi-Bossi M.G., Rustichelli F., Stanic V., Improvement in zirconia osseointegration by means of a biological glass coating: An in vitro and in vivo investigation, J. Biomed. Mater. Res., 61, 282-9, (2002).
  • AOSHIMA H., Miyagisnima A., Nozawa Y., Sadzuka Y., Sonobe, T., Glycerin fatty acid esters as a new lubricant of tablets, International Journal of Pharmaceutics, 293, 25–34, (2005).
  • BAKOS D., Soldan M., Hernandez-Fuentes I., Hydroxyapetite-collagen-hyaluronicacid composite, Biomaterials, 20, 191-5, (1999).
  • BALAZS E:A., Denlinger J.L., Clinical uses of hyaluronan, In the Biology of Hyaluronan, eds. Evered, D. and Whelan, J., Ciba Found. Symp No.143, John Wiley & Sons, Chichester and New York, (1989), Pp. 143 265.
  • BARBUCCI R., Lamponi S., Borzacchiello A., Ambrosio L., Fini M., Torricelli P., Giardino R., Hyaluronic acid hydrogel in the treatment of osteoarthritis, Biomaterials, 23, 4503-13, (2002).
  • BELDA P. M., Mielck J. B.,The difficulty in the assessment of the compression behaviour of powder mixtures: Double layer tablets versus arithmetic additivity rule, European Journal of Pharmaceutics and Biopharmaceutics, 60, 133–145, (2005).
  • BONFIELD W., Grynpas M.D., Tully A.E., Bowman J., Abram J., Hydroxyapetite reinforced polyethylene- a mechanically compatible implant, Biomaterials, 2, 185-9, (1981).
  • BONFIELD W., Hydroxyapetite-reinforced polyethylene as an autologous material for bone replacement, Bioceramics: materials characteristics versus in vivo behaviour, ed. Duchyene P., Lemons J.E., Vol 253, Annals of the New York Academy of Science, (1988).Pp: 173-177.
  • BOSTROM M.P.G., Yang X., Kennan M., Sandhu H., Diacrlo E., Lane J.M., An Unexpected Outcome During Testing of Commercially Available Demineralized Bone Graft Materials, Spine, 26, 1425-28, (2001).
  • CALANDRELLİ L., Immirzi B., Malinconico M., Volpe M.G., Oliva A., Ragione F.D., Preparation and Characterisation of Composites Based on Biodegradable Polymers for in vivo Application, Polymer, 41, 8027-8033, (2000).
  • CAMPOCCIA D., Doherty P., Radice M., Brun P., Abatangelo G., Williams D.F., Semisynthetic resorbable materials from hyaluronan esterification, Biomaterials, 19, 2101- 17,(1998).
  • CAO W., Hench L.L., Bioactive materials, Ceram. Int., 22(493-50723), 1187-95, (1996).
  • CHO B.C., Park J.W., Baik B.S., Kwon I.C., Kim I.S., The role of hyaluronic acid, chitosan, and calcium sulfate and their combined effect on early bony consolidation in distraction osteogenesis of a canine model, J Craniofac Surg, 13, 783-93, (2002).
  • COOK S.D., Salkeld S.L.., Patron L.P., Barrack R.L., The Effect of Demineralized Bone Matrix Gel on Bone Ingrowth and Fixation of Porous Implants, The Journal of Arthroplasty,17, 4, 402-8, (2002).
  • COOMBES A.G.A., Verderio E., Shaw B., Li X., Griffin M., Downes S., Biocomposites of Non-crosslinked Natural and Synthetic Polymers, Biomaterials, 23, 2113-2118, (2002).
  • CORDEN T.J., Jones I.A., Rudd C.D., ve ark., Physical and Biocompatibility Properties of Poly--caprolactone Produced Using in situ Polymerisation: a Novel Manufacturing Technique for Long-Fibre Composite Materials, Biomaterials, 21, 713-724, (2000).
  • DUCHEYNE P., Quiu Q., Bioactive ceramics: The effect of surface reactivity on bone formation and bone cell function, Biomaterials, 20, 2287-2303, (1999).
  • ENGSTROM P.E., Shi X.Q., Tronje G., Larsson A., Welander U., Frithiof L., Engstrom G.N., The Effect of Hyaluronan on Bone and Soft Tissue and Immune Response in Wound Healing, J Periodontol, 72,9, 1192-200, (2001).
  • FINI M., Giavaresi G., Aldini N. N., Torricelli P., Botter R., Beruto D., Giardino R., “A bone substitute composed of polymethylmethacrylate and a-tricalcium phosphate: results in terms of osteoblast function and bone tissue formation, Biomaterials 23, 4523–4531, (2002).
  • FREEMAN M.A.R., Bradley G.W., Ravel P.A., Observation upon the interface between bone and polymethylmetacrylate cement, J. Bone Joint Surg., 64B, 489-93, (1982).
  • GRIGOLO B., Lisignoli G., Piacentini A., Fiorini M., Gobbi P., Mazzotti G., Duca M., Pavesio A., Facchini A., Evidence for redifferentiation of human chondocytes grown on a hiyaluronan based biomaterial (HYAFF11): molecular, immunohistochemical and ultrastructural analysis, Biomaterials, 23, 1187-95, (2002).
  • HAMADOUCHE M., Meunier A., Greenapan D.C., Blanchat C., Zhong J.P., La Torre G.P., Sedel L., Bioactivity of sol-gel bioactive glass coated alumina implants, J. Biomed. Mater. Res., 52, 442-9, (2000).
  • HUANG L., Cheng Y.Y., Koo P.L., Lee K.M., Qin L., Cheng J.C., Kumta S.M., The effect of hiyaluronan on osteoblast proliferation and differentiation in rat calvarial-derived cell cultures, J. Biomed. Mater. Res., 66A(4), 880-4, (2003).
  • HUISKES R., Mechanical failure in total hip arthoplasty with cement, Curr. Orthop., 7, 239- 47, (1993).
  • HABRAKEN W.J.E.M., Wolke J.G.C., Jansen J.A., Ceramic Composites as Matrices and Scaffolds for Drug Delivery in Tissue Engineering, Advanced Drug Delivery Reviews, 59, 234-248, (2007).
  • HING K.A., Wilson L.F., Buckland T., Comperative Performance of Three Ceramic Graft Substitutes, The Spine Journal, 7, 475-490, (2007).
  • KELEB E.I., Vermeire A, Vervaet C., Remon. J.P., Cold extrusion as a continuous single-step granulation and tabletting process, European Journal of Pharmaceutics and Biopharmaceutics, 52, 359–368, (2001).
  • KOBAYASHI M., Nakamura T., Shinzato S., Mousa W.F., Nishio K., Ohsawa K., Kokubo T., Kikutani T., Effect of bioactive filler content on mechanical properties and osteoconductivity of bioactive bone cement, J. Biomed. Mater. Res., 46, 447-57, (1999).
  • KOKUBO T., Kim H.M., Kawashita M., Novel bioactive materials with different mechanical properties, Biomaterials, 24, 2161-75, (2003).
  • LEE G.H., Khoury J.G., Bell J.E., Bulkwalter J.A., Adverse Reactions to OsteoSet Bone Graft Substitute, the Incidence in a Consecutive Series, Iowa Orthop J., 22, 35-38, (2002).
  • LEE S.H, Shin H., Matrices and Scaffold for Delivery of Bioactive Molecules in Bone and Cartilage Tissue Engineering, Advanced Drug Delivery Reviews, 59, 339-359, (2007).
  • LEUENBERGER H., The compressibility and compactibility of powder systems, Int. J. Pharm., 12, 41–55, (1982).
  • LISIGNOLI G., Fini M., Giavaresi G., Aldini N.N., Toneguzzi S., Facchini A., Osteogenesis of large segmental radius defects enhanced by basic fibroblastic growth factor activated bone marrow stromal cells grown on non-woven hyaluronic-based polymer scaffold, Biomaterials, 23, 1043-51, (2002).
  • LISIGNOLI G., Zini N., Remiddi G., Piacentini A., Puggioli A., Trimarchi C., Fini M., Maraldi N.M., Facchini A., Basic fibroblast growth factor enhances in viro mineralization of rat bone marrow stromal cells on non-woven hyaluronic acid based polymer scaffold, Biomaterials, 22, 2095-2105, (2001).
  • MAEDA H., Maquet V., Chen Q.Z., Kasuga T., Jawad H., Boccaccini A.R., Bioactive coatings by vaterite deposition on polymer substrates of different composition and morphology, Materials Science and Engineering C, 27, 741-745, (2007).
  • MONDRINOS M.J., Dembzynski R., Lu L., Byrapogu V.K.C., Wooton D.M., Lelkes P.I., Zhou J., Porogen-based Solid Freeform Fabrication of Polycaprolactone-Calcium Phosphate Scaffolds for Tissue Engineering, Biomaterials, 27, 4399-4408, (2006).
  • NAKAMURA T., Yumamuro Y., Higashi S., Kokubo T., Ito S., A new glass-ceramic for bone replacement: Evaluation of its bonding ability to bone tissue, J. Biomed. Mater. Res., 19, 685-98, (1985).
  • OLIVEIRA A.L., Malafaya P.B., Reis R.L., Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apetite coating in compact and porous polymeric structures, Biomaterials, 24, 2575-84, (2003).
  • RADICE M., Brun P., Cortivo R., Scapinelli R., Battaliard C., Abatangelo G., Hiyaluronan based biopolymers as delivery vehicles for bone marrow derived mesenchymal progenitors, J. Biomed. Mater. Res., 50, 101-9, (2000).
  • RATIER A., Freche M., Lacout J.L., Rodriguez F., Behaviour of an injectable calcium phosphate cement with added tetracycline, Int. J. Pharmaceutic., 274, 261-68, (2004).
  • RATIER A., Gibson I.R., Best S.M., Freche M., Lacout J.L., Rodriguez F., Setting caharacteristics and mechanical behaviour of a calcium phosphate cement containing tetracycline, Biomaterials, 22, 897-901, (2001).
  • RHE S.H., Tanaka J., Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid, Biomaterials, 20, 2155-60, (1999).
  • ROBINSON D., Alk D., Sandblank J., Farber R., Halperin N., Inflammatory Reactions Associated with a Calcium Sulphate Bone Substitute, Ann. Transplant, 4, 91-97, (1999).
  • ROQUES A., Browne M., Thompson J., Rowland C., Taylor A., Investigation of fatigue crack growth in acrylic bone cement using the acoustic emission technique, Biomaterials, 25, 769-78, (2004).
  • RUSSELL J.L. Point of View. Spine, 2001; 26(13):1435-36
  • SAHA S., Pal S., Mechanical propertyies of cement bone: A review, J. Biomed. Mater. Res., 18, 435-62, (1984).
  • SANTIS D.R., Catauro M., Silvio.L.D., Manto L., ve ark., Effects of Polymer Amount and Processing Conditions on the in vitro Behaviour of Hybrid Titanium Dioxide/Polycaprolactone Composites, Biomaterials, 28, 2801-2809, (2007).
  • SHINZATO S., Kobayashi M., Mousa W.F., Kamimura M., Neo M., Kitamura Y.,Kokutobo T., Nakamura T., Bioactive polymethylmetacrylate-based bone cement: Comparasion of glass beads, apetite-, wollastonite-containing glass ceramic, and hydroxyapetite fillers on mechanical and biological properties, J. Biomed. Mater. Res., 51, 258-72, (2000).
  • SHINZATO S, Nakamura T, Kawanabe K, Kokubo T., In vivo aging test for a bioactive cement consisting of glass bead filler and PMMA matrix, J. Biomed. Mater. Res. Part B. Appl. Biomater., 68, 132-39, (2004).
  • SHINZATO S, Nakamura T, Ando K, Kokubo T, Kitamura Y., Composites consisting of poly(methyl methacrylate) and alumina powder: An evaluation of their mechanical and biological properties, J. Biomed. Mater. Res., 60, 585-91, (2002).
  • SHINZATO S, Nakamura T, Ando K, Kokubo T, Kitamura Y., PMMA –based bioactive cement Effect of glass bead filler content and histological change with time, J. Biomed. Mater. Res., 59, 225-32, (2002).
  • SINHA V.R., Bansal K., Kaushik R., Kumria R., Trehan A., Poly-ε-Caprolactone microspheres and nanospheres: an overview, International J. of Pharmaceutics, 278, 1-23, (2004).
  • SOLCHAGA L.A., Yoo J.U., Lundberg M., Dennis J.E., Huibregtse B.A., Goldberg V.M., Caplan A.I., Hya-luronan-based polymers in the treatment of osteochondral defects, J Orthop Res., 18, 5, 773-80, (2000).
  • STUBS D., Deakin M., Chapman-Sheath P, Bruce W, Debes J, Gillies RM, Walsh WR., In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model, Biomaterials, 25, 5037-44, (2004).
  • TANASHI M, Yao T., Kakobu T., Minoda M., Miyamoto T., Nakamura T., Yamamuro T., Apetite coating on organic polymers by biomimetic process, J. Ame. Ceram Soc., 7, 2805-8, (1994).
  • WANG J.C., Kanim L. E, Nagakawa I. S, Yamane B. H, Vinters H.V, Dawson E.G., Dosedependent Toxicity of a Commercially Available Demineralized Bone Matrix Material, Spine, 26, 13, 1429-35, (2001).
  • WANG M., Ladizeski N.H., Tanner K.E, Ward IM, Bonfield W., Hydrostically extruded
  • HAPEX (TM), J. Mater. Sci., 35, 1023-30, (2000).
  • WEST D.C., Hampson I.N., Arnold F., Kumar S., Angiogenesis induced by degradation products of hyaluronic acid, Science, 228, 1324, (1984).
  • WONG C.T., Lu W.W., Chan W.K., Cheung K.M.C., Luk K.D.K., Lu D.S., Rabie A.B.M., Deng L.F., Leong J.C.Y, In vivo cancellous bone remodelling on a straontium-containing hydroxyapetite (Sr- ha) bioactive cement, J. Biomed. Mater. Res., 68A, 513-21, (2004).
  • YEE A.J., Bae H.W., Friess D., Robbin M., Johnstone B., Yoo J.U., Augmentation of Rabbit Posterolateral Spondylodesis Using a Novel Demineralized Bone Matrix-Hyaluronan Putty. Spine, 28, 21, 2435-40, (2003).
  • ZHANG K., Ma Y., Francis L.F., Porous polymer/bioactive glass composites for soft-to-hard tissue interfaces, J. Biomed. Mater. Res., 61, 551-63, (2002).
  • ZOU X., Li H., Chen L., Baatrup A., Bunger C., Lind M., Stimulation of porcine bone marrow stromal cells by hiyaluronan, dexamethasone and rhBMP-2, Biomaterials, 25, 5375- 85, (2004).

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.