Çok işlevli cam ve seramik ürünleri için yarı iletken fotokatalitik ince filmlerin geliştirilmesi

1 2

Proje Grubu: MAG Sayfa Sayısı: 104 Proje No: 106M168 Proje Bitiş Tarihi: 01.09.2008 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Çok işlevli cam ve seramik ürünleri için yarı iletken fotokatalitik ince filmlerin geliştirilmesi

Öz:
-
Anahtar Kelime:

Erişim Türü: Erişime Açık
  • Albery W.J., Barlett P.N. The Recombination of Photogenerated Minority Carriers in the Depletion Layer of Semiconductor Electrodes, Journal of The Electrochemical Society 130(8), 1699-1706, (1983).
  • Aguado J., VanGrieken R., Lopez-Munoz M.J., Marugan J., A comprehensive study of the synthesis, characterization and activity of TiO2 and mixed TiO2/SiO2 photocatalysts, Applied Catalysis A: General 312, 202–212 (2006).
  • Amezaga-Madrid P., Nevarez Moorillon G.V., Orrantia-Borunda E., Miki-Yoshida M., Photoinduced Bactericidal Activity Against Pseudomonas aeruginosa by TiO2 Based Thin Films, FEMS Microbiology Letters, 211, 183–188, (2002).
  • Amezaga-Madrid P., Silveyra-Morales R., Cordoba-Fierro L., Nevarez-Moorillo´n G.V., , Miki-Yoshida M., Orrantia-Borunda E., Solis F.J., TEM Evidence of Ultrastructural Alteration on Pseudomonas Aeruginosa by Photocatalytic TiO2 Thin Films, Journal of Photochemistry and Photobiology B: Biology 70, 45–50, (2003).
  • Amlouk A., Mir, L, Kraiem S., Saadoun M., Alaya S., Pierre A.C., Luminescence of TiO2:Pr Nanoparticles Incorporated in Silica Aerogel, Materials Science and Engineering:B 146(1-3), 74-79, (2008).
  • Arabatzis I.M., Stergiopoulos T., Andreeva D. Kitova S, Neophytides S.G., Falaras P., Characterization and Photocatalytic Activity of Au/TiO2 Thin Films for Azo-Dye Degradation, Journal of Catalysis, 220(1), 127-135, (2003).
  • Bandara J., Ranasinghe R., The effect of MgO Coating on Photocatalytic Activity of SnO2 for the Degradation of Chlorophenol and Textile Colorants; the Correlation Between the Photocatalytic Activity and the Negative Shift of Flat b and Potential of SnO2, Applied Catalysis A-General, 319, 58-63, (2007).
  • Bard A.J., Photoelectrochemistry and Heterogeneous Photocatalysis at Semiconductors, Journal Of Photochemistry, 10(1), 59-75, (1979).
  • BeganskieneA, RaudonisR., Jokhadar S.Z. Batista U., Kareiva A., Modified sol-gel coatings for biotechnological applications, Functional Materials and Nanotechnologies, Journal of Physics: Conference Series 93, 012050, 1-6, (2007).
  • Benedix R., Dehn F., Quaas J., Orgass M., Application of Titanium Dioxide Photocatalysis to Create Self-Cleaning Building Materials, LACER, 5, 157-167, (2000).
  • Brinker C.J., Hurd A.J., Schunk P.R., Frye G.C.,Ashley C. S., Review of Sol-Gel Thin Film Formation, Journal of Non-Crystalline Solids, 147-48, 424-436, (1992).
  • Carp, O., Huisman C.L., Reler A., Photoinduced Reactivity of Titanium Dioxide, Progress in Solid State Chemistry, 32(1), 331-177, (2004).
  • Carraway E.R., Hoffman A.J., Hoffmann M.R., Photocatalytic Oxidation of Organic Acids on Quantum-Sized Semiconductor Colloids, Environmental Science and Technology, 28(5), 786-793 (1994).
  • Cheng, S., Tsai S.J., Lee Y.F., Photocatalytic Decomposition of Phenol over Titanium Oxide of Various Structures, Catalysis Today, 26(1), 87-96 (1995).
  • Chang H.T., Wu N.M., Zhu F.Q., A Kinetic Model for Photocatalytic Degradation of Organic Contaminants in a Thin-Film TiO2 Catalyst, Water Research, 34(2), 407-416, (2000).
  • Chang C.C., Chen J.Y., Hsu T.L., Lin C.K., Chan C.C., Photocatalytic properties of porous TiO2/Ag thin films, Thin Solid Films, 516 1743-1747, (2008).
  • Chiou C.H., Wu C.Y., Juang R.S., Photocatalytic Degradation of Phenol and m-Nitrophenol Using Irradiated TiO2 in Aqueous Solutions, Separation and Purification Technology, 62(3), 559-564, (2008).
  • Coleman, H.M., Abdullah M.I., Eggins B.R., Palmer F.L., Photocatalytic degradation of 17-βoestradiol, oestriol and 17-α-wthynyloestradiol in water monitored using fluorescence spectroscopy, Applied Catalysis, B:Environmental, 55(1), 23-30, (2005).
  • Cunningham J., Tobin J:P.J., Meriaudeau P., Oxygen Migration and isotope Exchange During Photoassisted Splittıng of Water-Vapor on TiO2-Carbon Mixtures, Surface Science, 108(3), L465-L469, (1981).
  • Curri M.L., Comparelli R., Cozzoli P.D., Mascolo G., Agostiano A., Colloidal Oxide Nanoparticles for the Photocatalytic Degradation of Organic Dye, Materials Science and Engineering: C, 23(1-2), 285-289, (2003).
  • Dagan G., Tomkiewicz M, TiO2 Aerogels for Photocatalytic Decontamination of Aquatic Environments, Journal of Physical Chemistry, 97(49), 12651-12655, (1993).
  • Davis S.A., Burkett S.L., Mendelson N.H., Mann S., Bacterial Templating or ordered macrostructures in silica and silica surfactant mesophases, Nature, 385, 420–423, (1997).
  • Deiss J.L., Anizan P. El Hadigui S., Wecker C., Steric Stability of TiO2 Nanoparticles in Aqueous Dispersions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 106(1), 59-62, (1996).
  • Deng, X., Yue Y., Gao Z., Gas-Phase Photo-Oxidation of Organic Compounds over Nanosized TiO2 Photocatalysts by Various Preparations, Applied Catalysis B: Environmental, 39(2), 135-147, (2002).
  • Derfus A.M., Chan W.C.W., Bhatia S.N., Probing the Cytotoxicity of Semiconductor Quantum Dots, Nano Letters, 4(1), 11-18, (2004).
  • Diebold U., The Surface Science of Titanium Dioxide, Surface Science Reports, 48, 53-229, (2003).
  • Dionysiou D.D., Burbano A.A., Suidan M.T., Baudin I., Effect of Oxygen in a Thin-Film Rotating Disk Photocatalytic Reactor, Environmental Science and Technology, 36(17), 3834-3843 (2002).
  • Dunlop P.S.M., Byrne J.A., Manga N., Eggins B.R., The photocatalytic removal of bacterial pollutants from drinking water, Journal of Photochemistry and Photobiology A: Chemistry, 148(1-3), 355-363, (2002).
  • Erkan A., Investigation of thin semiconductor coatings and their antimicrobial properties, MSc Thesis, METU, (2005).
  • Euvananont C., Junin C., Inpor K., , Limthongkul P., Thanachayanont C., TiO2 Optical Coating Layers for Self-Cleaning Applications, Ceramics International, 34(4), 1067-1071, (2008).
  • Feng X, Zhai J., Jiang L., The Fabrication and Switchable Superhydrophobicity of TiO2 Nanorod Films, Angewandte Chemie, 44(32), 5115 – 5118, (2005).
  • Fujishima A., Rao T.N., Try D.A., Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C:Photochemistry Reviews 1, 1-21, (2000).
  • Gan W. Y., Chiang, K., Brungs, M., Amal, R. Huijun Z., Dense TiO2 thin film: photoelectrochemical and photocatalytic properties, International Journal of Nanotechnology, 4(5), 574-587, (2007).
  • Gandhe A.R., Naik S.P. Fernandesa J.B., Selective synthesis of N-doped mesoporous TiO2 phases having enhanced photocatalytic activity, Microporous and Mesoporous Materials 87(2), 103-109, (2005).
  • Garcia, J.C., Takashima K., Photocatalytic Degradation of Imazaquin in an Aqueous Suspension of Titanium Dioxide, Journal of Photochemistry and Photobiology A Chemistry, 155(1-3), 215-222, (2003).
  • Giraudon J.M., Nguyen T.B., Leclercq G., Siffert S., Lamonier J.F., Aboukais A., Vantomme A., Su B.L., Chlorobenzene Total Oxidation Over Palladium Supported on ZrO2, TiO2 Nanostructured Supports, Catalysis Today, 137(2-4), 379-384, (2008).
  • Gratzel, M., Energy Resources through Photochemistry and Catalysis, Academic Press Inc. (1983).
  • Grela, M.A., Coronel M.E.J., Colussi A.J., Quantitative Spin-Trapping Studies of Weakly Illuminated Titanium Dioxide Solutions: Implications for the Mechanism of Photocatalysis, Journal of Physical Chemistry, 100(42), 16940-16946 (1996).
  • Goto H., Hanada Y., Ohno T., Matsumura M., Quantitative Analysis of Superoxide ion and Hydrogen Peroxide Produced from Molecular Oxygen on Photoirradiated TiO2 Particles, Journal of Catalysis, 225(1), 223-229 (2004).
  • Guan K.H., Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films, Surface & Coatings Technology, 191(2-3), 155-160, (2005).
  • Guillard C., Debayle D., Gagnaire A., Jaffrezic H., Herrmann J.M., Physical properties and photocatalytic efficiencies of TiO2 films prepared by PECVD and sol–gel methods, Materials Research Bulletin, 39, 1445–1458, (2004).
  • Harbour, J.R., Hair, M.L., Transient radicals in heterogeneous systems: detection by spin trapping, Advances in Colloid and Interfaces Science, 24, 103–141, (1986).
  • Ho W., Yu J.C., Yu J., Photocatalytic TiO2/Glass Nanoflake Array Films, Langmuir, 21, 3486-3492, (2005).
  • Hsiao C.Y., Lee C.L., Ollis D.F., Heterogeneous Photocatalysis - Degradation of DiluteSolutions of Dichloromethane (CH2Cl2), Chloroform (CHCl3), and Carbon-Tetrachloride (CCl4) with Illuminated TiO2 Photocatalyst, Journal of Catalysis, 82(2), 418-423, (1983).
  • Hsiunga T.L., Wanga H.P. , Wang H.C., XANES Studies of Photocatalytic Active Species in nano TiO2–SiO2, Radiation Physics and Chemistry, 75, 2042-2045, (2006).
  • Huang, C.R., Shu H.Y., The reaction kinetics, decomposition pathways and intermediate formations of phenol in ozonation, UV/O3 and UV/H2O2, Journal of Hazardous Matterials, 41(1), 47-64 (1995).
  • Huang Z., Maness P.C., Blake D.M., Wolfrum E.J., Smolinski S., Jacoby W.A., Bactericidal mode of titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry 130(2-3), 163-170, (2000).
  • Đnel O., Tumsek F., The Measurement of Surface Areas of Some Silicates by Solution Adsorption, Turkish Journal of Chemistry, 24, 9-20, (2000).
  • Jaeger, C.D., Bard, A.J., Spin trapping and electron spin.resonance detection of radical intermediates in the photo decomposition of water at TiO2 particulate systems, Journal of Physical Chemistry, 83, 3146–3152, (1979).
  • Jiang D.L., Zhao H.J., Zhang S.Q., John R., Kinetic Study of Photocatalytic Oxidation of Adsorbed Carboxylic Acids at TiO2 Porous Films by Photoelectrolysis, Journal of Catalysis, 223(1), 212-220, (2004).
  • Jing L.Q., Qu Y.C., Wang B.Q., Li S.D., Jiang B.J., Yang L.B., Fu W., Fu H.G., Sun J.Z., Review of Photoluminescence Performance of Nano-Sized Semiconductor Materials and its Relationships with Photocatalytic Activity, Solar Energy Materials and Solar Cells, 90(12), 1773-1787, (2006).
  • Kamat P.V., Murakoshi K., Wada Y., Yanagida S., Semiconductor Nanoparticles, Handbook of Nanostructured Materials and Nanotechnology, Volume 3: Electrical Properties, H.S. Nalwa, Academic Pres, 129, (2000).
  • Kikuchi Y., Sunada K., Iyoda T., Hashimoto K., Fujishima A., Photocatalytic Bactericidal Effect of TiO2 Thin Films: Dynamic View of the Active Oxygen Species Responsible for the Effect, Journal of Photochemistry and Photobiology A: Chemistry, 106(1-3), 51-56, (1997).
  • Y. Koizumi, R.Yamada, M. Nishioka, Y. Matsumura, T. Tsuchido, M. Taya, Deactivation Kinetics of Escherichia coli Cells Correlated with Intracellular Superoxide Dismutase Activity in Photoreaction with Titanium Dioxide Particles, Journal of Chemical Technology and Biotechnology,77, 671-677, (2002).
  • Klein S., Thorimbert S., Maier W.F., Amorphous Microporous Titania–Silica Mixed Oxides: Preparation, Characterization, and Catalytic Redox Properties, Journal of Catalysis, 163(2), 476-488, (1996).
  • Kuhn K.P., Chaberny I.F., Massholder K., Stickler M., Benz V.W., Sonntag H.G., Erdinger L., Disinfection of Surfaces by Photocatalytic Oxidation with Titanium Dioxide and UVA Light, Chemosphere 53, 71–77, (2003).
  • Li D, Xia Y., Fabrication of Titania Nanofibers by Electrospinning, Nano Letters, 3 (4), 555 - 560, (2003).
  • Li W., Ni C., Lin H. Huang C. P., Ismat S.S., Size Dependence of Thermal Stability of TiO2 Nanoparticles, Journal of Applied Physics, 96(11), 6663-6668, (2004).
  • Linsebigler A.L., Lu G., Yates J.T., Photocatalysis on TiO2 Surface: Principles, Mechanism, and Selected Results, Chemical Reviews, 95(3), 735-758 (1995).
  • Maness P.C., Smolinski S., Blake D.M., Huang Z., Wolfrum E.J., Jacoby W.A., Bactericidal Activity of Photocatalytic TiO2 Reaction: Toward an Understanding of Its Killing Mechanism, Applied and Environmental Microbiology, 65(9), 4094-4098, (1999).
  • Mariscal R., López-Granados M., Fierro J.L.G., Sotelo J.L., Martos C., VanGrieken R., Morphology and Surface Properties of Titania-Silica Hydrophobic Xerogels, Langmuir, 16 (24), 9460 -9467, (2000).
  • Matsunaga T., Tomoda R., Nakajima T., Wake H., Photoelectrochemical Sterilization of Microbial Cells by Semiconductor Powders, FEMS Microbiol. Lett., 29(1-2), 211-214, (1985).
  • Mellott N.P., Durucan C., Pantano C.G., Commercial and Laboratory Prepared Titanium Dioxide Thin Films for Self-Cleaning Glasses: Photocatalytic Performance and Chemical Durability, Thin Solid Films, 502 (1-2), 112-120, (2006).
  • Nam W., Han G.Y., Preparation and Characterization of Anodized Pt-TiO2 Nanotube Arrays for Water Splitting, Journal of Chemical Engineering of Japan, 40(3), 266-269, (2007).
  • Negishi N., Tageuchi K., Structural Changes of Transparent TiO Thin Films with Heat Treatment, Materials Letters, 38, 150-153, (1999).
  • Ni M., Leung M.K.H., Leung D.Y.C., Sumathy K., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renewable and Sustainable Energy Reviews, 11, 401-425, (2007).
  • Ohno T., Sarukawa K., Tokieda K., Matsumura M., Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases, Journal of Catalysis, 203(1), 82-86 (2001).
  • Pascual J., Camassel J., Mathieu H., Fine Structure in the Intrinsic Absorption Edge of TiO2, Phys. Rev. B, 18, 5606 (1978).
  • Prairie M.R., Evans L.R., Stange B.M., Martinez S.L., An investigation of TiO2 photocatalysis for the treatment of water contaminated with metals and organic chemicals, Environmental Science and Technololgy, 27(9),1776-1782 (1993).
  • Que W., Zhou Y., Lam L.Y., Chan Y.C., Kam C.H., Preparation and Characterizations of TiO2/Organically Modified Silane Composite Materials Produced by the Sol-Gel Method, Journal of Sol-Gel Science and Technology, 20(2), 187-195 (2001).
  • Rao N.N., Dubey A.K., Mohanty S., Khare P., Jain R., Kaul S.N., Photocatalytic degradation of 2-chlorophenol: A study of kinetics, intermediates and biodegradability, Journal of Hazardous Materials, 101(3), 301-314 (2003).
  • Reddy K.M., Reddy C.V.G., Manorama S.V., Preparation, Characterization, and Spectral Studies on Nanocrystalline Anatase TiO2, Journal of Solid State Chemistry 158, 180-186 (2001).
  • Rivera A.P., Tanaka K., Hisanaga T., Photocatalytic degradation of pollutant over TiO2 in different crystal structure, Applied catalysis, B:Environmental, 3(1), 37-44, (1993).
  • Saito T., Iwase T., Horie J., Morioka T., Mode of Photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci, J. Photochem. Photobiol. B 14, 369– 379. (1992).
  • Santos A., Yustos P., Quintanilla A., Ochoa F.G., Kinetic model of wet oxidation of phenol at basic pH using a copper catalyst, Chemical Engineering Science, 60(17), 4866-4878, (2005).
  • Schwartz J., Contescu C., Contescu A., Methods for Preparation of Catalytic Materials, Chemical Reviews, 95, 477-510, (1995).
  • Sivakumar T., Shanthi K., Kinetic studies on the photo decolourisation of textile dyes (reactive) using ZnO catalyst, Indian Journal of Chemical Technology, 7(3), 121-126, (2000).
  • Sopyan I., Kinetic Analysis on Photocatalytic Degradation of Gaseous Acetaldehyde, Ammonia and Hydrogen Sulfide on Nanosized Porous TiO2 Films, Science and Technology of Advanced Materials, 8(1-2), 33-39, (2007).
  • Sonawane R.S., Kale B.B., Dongare M.K., Preparation and photo-catalytic activity of Fe– TiO2 thin films prepared by sol–gel dip coating, Materials Chemistry and Physics, 85, 52–57, (2004).
  • Sua W., Chen J., Wu L., Wang X., Wang X., Fu X., Visible light photocatalysis on praseodymium(III)-nitrate-modified TiO2 prepared by an ultrasound method, Applied Catalysis B: Environmental, 77(3-4), 264-271, (2008).
  • Sun, L. and J.R. Bolton, Determination of the Quantum Yield for the Photochemical Generation of Hydroxyl Radicals in TiO2 Suspensions, Journal of Physical Chemistry,100(10), 4127-4134, (1996).
  • Sun Q., Vrieling E.G., Vansanten R.A., Sommerdijk N.K.A.J.M., Bioinspired synthesis of mesoporous silicas, Current Opinion in Solid State and Materials Science, 8, 111–120, (2004).
  • Sun C.L., Li J.F., Hu C.H., Jiang H.M., Jiang Z.K.,Ultraviolet Upconversion in Pr :YSiO Crystal by Ar laser (488 nm) Excitation, Europian Physics Journal:D, 39, 303-306, (2006).
  • Sunada K., Kikuchi Y., Hashimoto K., Fujishima A., Bactericidal and detoxification effects of TiO2 film photocatalysts, Environmental Science and Technology 32, 726–728, (1998).
  • Sunada K., Watanabea T., Hashimoto K., Studies on photokilling of bacteria on TiO2 thin film, Journal of Photochemistry and Photobiology A: Chemistry, 156(1-3), 227-233, (2003).
  • Tahiri H., Serpone N., Mao R.L., Application of Concept of Relative Photonic Efficiencies and Surface Characterization of a New Titania Photocatalyst Designed for Environmental Remediation, Journal of Photochemistry and Photobiology, A: Chemistry, 93(2-3), 199-203, (1996).
  • Tian Z.R.R., Voigt J.A., Liu J., Mckenzie B., Zhengrong R., Xu H., Large Oriented Arrays and Continuous Films of TiO2-Based Nanotubes, J. Am. Chem. Soc., 125 (41), 12384 - 12385, (2003).
  • Trapalis C.C., Keivanidis P., Kordas G., Zaharescu M., Crisan M., Szatvanyi A., Gartner M.,TiO (Fe3+) Nanostructured Thin Films with Antibacterial Properties, Thin Solid Films, 433 186–190, (2003).
  • Tsai S.J., Cheng S., Effect of TiO2 Crystalline Structure in Photocatalytic Degradation of Phenolic Contaminants, Catalyis Today, 33(1-3), 227-237, (1997).
  • Tsai C.C., Teng H., Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments, Chemistry of Materials, 18, 367-373, (2006).
  • Tseng J.M., Huang C.P., Removal of Chlorophenols from Water by Photocatalytic Oxidation, Water Science and Technology, 23(1-3), 377-387, (1991).
  • Tsuge Y., Kim J., Sone Y., Kuwaki O., Shiratori S., Fabrication of Transparent TiO2 film With High Adhesion by Using Self-Assembly Methods: Application to Super-Hydrophilic Film, Thin Solid Films, 516(9), 2463-2468, (2008).
  • Uhlmann D.R., Suratwala T.., Davıdson K., Boulton J.M., Teowee G., Sol-gel derived coatings on glass, Journal of non-crystalline solids, 218, 113-122, (1997).
  • Vonach W., Getoff N., Photocatalytic Splitting of Liquid Water By N-TiO2 Suspension, Zeıtschrıft Fur Naturforschung, Section A-A Journal of Physical Scıences, 36(8), 876-879, (1981).
  • Wang J.H., Ray M.B., Application of Ultraviolet Photooxidation to Remove Organic Pollutants in the Gas Phase, Separation and Purification Technology, 19(1-2), 11-20, (2000).
  • Wang C.Y., Tang H.J., Pang S.H., Enhancing Sunlight Photocatalytic Efficiency of SelfCleaning Glass by Coating ZnFe2O4-TiO2 Film, Rare Metal Materials and Engineering, 37, 548-551, (2008).
  • Watson, S.S., Beydoun D., Scott J.A., Amal R., The Effect of Preparation Method on the Photoactivity of Crystalline Titanium Dioxide Particles, Chemical Engineering Journal, 95(1- 3), 213-220, (2003).
  • Wong M.S., Cha J.N., Choi K.S., Deming T.J., Stucky G.D., Assembly of nanoparticles into hollow spheres using block copolypeptides, Nano Letters, 2(6), 583–7, (2002).
  • Wu K.R., Wang J.J., Liu W.C., Chen Z.S. Wu J.K., Deposition of Graded TiO2 Films Featured Both Hydrophobic and Photo-Induced Hydrophilic Properties, Applied Surface Science, 252, 5829–5838, (2006).
  • Yang X.M., Wang X.N., Liang C.H., Sub W., Wanga C., Fengb Z., Lib C., Qiua J., Aerobic Oxidation of Alcohols over Au/TiO2: An Insight on the Promotion Effect of Water on the Catalytic Activity of Au/TiO2, Catalysis Communications, 9(13), 2278-2281, (2008).
  • Yogi C., Kojima K., Wada N., Tokumoto H., Takai T., Mizoguchi T., Tamiaki H., Photocatalytic Degradation of Methylene Blue by TiO2 Film and Au Particles-TiO2 Composite Film, Thin Solid Films, 516(17), 5881-5884, (2008).
  • Zhang F., Zhao J., Shen T., Hidaka H., Pelizzetti E., Serpone N., TiO2-Assisted Photodegradation of Dye Pollutants II. Adsorption and Degradation Kinetics of Eosin in TiO2 Dispersions Under Visible Light Irradiation, Applied Catalysis B Environmental,15(1-2), 147- 156, (1998).
  • Zhang X., Fujishima A., Jin M., Emeline A.V., Murakami T., Double-Layered TiO2-SiO2 Nanostructured Films with Self-Cleaning and Antireflective Poperties, Journal of Physical Chemistry B, 110, 25142-25148, (2006).
  • Zhou Y, Antonietti M., Synthesis of Very Small TiO2 Nanocrystals in a Room-Temperature Ionic Liquid and Their Self-Assembly toward Mesoporous Spherical Aggregates, Journal of American Chemical Soicety, 125, 14960-14961, (2003).
APA KARAKAŞ G, BAKIR U (2008). Çok işlevli cam ve seramik ürünleri için yarı iletken fotokatalitik ince filmlerin geliştirilmesi. , 1 - 104.
Chicago KARAKAŞ GÜRKAN,BAKIR Ufuk Çok işlevli cam ve seramik ürünleri için yarı iletken fotokatalitik ince filmlerin geliştirilmesi. (2008): 1 - 104.
MLA KARAKAŞ GÜRKAN,BAKIR Ufuk Çok işlevli cam ve seramik ürünleri için yarı iletken fotokatalitik ince filmlerin geliştirilmesi. , 2008, ss.1 - 104.
AMA KARAKAŞ G,BAKIR U Çok işlevli cam ve seramik ürünleri için yarı iletken fotokatalitik ince filmlerin geliştirilmesi. . 2008; 1 - 104.
Vancouver KARAKAŞ G,BAKIR U Çok işlevli cam ve seramik ürünleri için yarı iletken fotokatalitik ince filmlerin geliştirilmesi. . 2008; 1 - 104.
IEEE KARAKAŞ G,BAKIR U "Çok işlevli cam ve seramik ürünleri için yarı iletken fotokatalitik ince filmlerin geliştirilmesi." , ss.1 - 104, 2008.
ISNAD KARAKAŞ, GÜRKAN - BAKIR, Ufuk. "Çok işlevli cam ve seramik ürünleri için yarı iletken fotokatalitik ince filmlerin geliştirilmesi". (2008), 1-104.
APA KARAKAŞ G, BAKIR U (2008). Çok işlevli cam ve seramik ürünleri için yarı iletken fotokatalitik ince filmlerin geliştirilmesi. , 1 - 104.
Chicago KARAKAŞ GÜRKAN,BAKIR Ufuk Çok işlevli cam ve seramik ürünleri için yarı iletken fotokatalitik ince filmlerin geliştirilmesi. (2008): 1 - 104.
MLA KARAKAŞ GÜRKAN,BAKIR Ufuk Çok işlevli cam ve seramik ürünleri için yarı iletken fotokatalitik ince filmlerin geliştirilmesi. , 2008, ss.1 - 104.
AMA KARAKAŞ G,BAKIR U Çok işlevli cam ve seramik ürünleri için yarı iletken fotokatalitik ince filmlerin geliştirilmesi. . 2008; 1 - 104.
Vancouver KARAKAŞ G,BAKIR U Çok işlevli cam ve seramik ürünleri için yarı iletken fotokatalitik ince filmlerin geliştirilmesi. . 2008; 1 - 104.
IEEE KARAKAŞ G,BAKIR U "Çok işlevli cam ve seramik ürünleri için yarı iletken fotokatalitik ince filmlerin geliştirilmesi." , ss.1 - 104, 2008.
ISNAD KARAKAŞ, GÜRKAN - BAKIR, Ufuk. "Çok işlevli cam ve seramik ürünleri için yarı iletken fotokatalitik ince filmlerin geliştirilmesi". (2008), 1-104.