1 0

Proje Grubu: EEEAG Sayfa Sayısı: 111 Proje No: 106E179 Proje Bitiş Tarihi: 01.08.2009 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Gelecek nesil iletişim ağları için biyolojik-esinli iletişim teknikleri

Öz:
-
Anahtar Kelime:

Konular: Mühendislik, Elektrik ve Elektronik Telekomünikasyon
Erişim Türü: Erişime Açık
  • CIRAC J. I. , S. J. van Enk, P. Zoller, H. J. Kimble, H. Mabuchi, Quantum Communication in a Quantum Network, Physica Scripta T76 (1998) 223–232.
  • AKYILDIZ I. F. , O. B. Akan, C. Chen, J. Fang, W. Su, The state of the art in interplanetary Internet, IEEE Communications Magazine 42 (7) (2004) 108–118.
  • DOBSON S. , S. Denazis, A. Fernandez, D. Gaiti, E. Gelenbe, F. Massacci, P. Nixon, F. Sare, N. Schmidt, F. Zambonelli, A Survey of Autonomic Communications, ACM Transactions on Autonomous and Adaptive Systems (TAAS) 1 (2) (2006) 223–259.
  • ASHOK R. L. , D. P. Agrawal, Next-Generation Wearable Networks, IEEE Computer 36 (11) (2003) 31–39
  • ATAKAN B. , O. B. Akan, An Information Theoretical Approach for Molecular Communication, in: 2nd IEEE/ACM International Conference on Bio-Inspired Models of Network, Information and Computing Systems (IEEE/ACM BIONETICS 2007), Budapest, Hungary, 2007.
  • AKYILDIZ I. F. , D. Pompili, T. Melodia, Underwater acoustic sensor networks: research challenges, Elsevier Ad Hoc Networks 3 (3) (2005) 257–279.
  • AKYILDIZ I. F. , I. H. Kasimoglu, Wireless Sensor and Actor Networks: Research Challenges, Elsevier Ad Hoc Networks 2 (2004) 351–367.
  • DRESSLER F. , A Study of Self-Organization Mechanisms in Ad Hoc and Sensor Networks, Elsevier Computer Communications 31 (13) (2008) 3018–3029.
  • AKYILDIZ I. F. , W.-Y. Lee, M. C. Vuran, S. Mohanty, NeXt generation /dynamic spectrum access/cognitive radio wireless networks: a survey, Elsevier Computer Networks 50 (13) (2006) 2127– 2159.
  • DRESSLER F. , Self-Organization in Sensor and Actor Networks, John Wiley & Sons, 2007.
  • TIMMIS J. , M. Neal, J. Hunt, An Artificial Immune System for Data Analysis, Biosystems 55 (2000) 143–150.
  • CAMAZINE S., J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraula, E. Bonabeau, SelfOrganization in Biological Systems, Princeton University Press, 2003.
  • BONABEAU E. , M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, 1999.
  • AKYILDIZ I. F. ,W. Su, Y. Sankarasubramaniam, E. Cayirci,Wireless sensor networks: a survey, Elsevier Computer Networks 38 (2002) 393–422.
  • AKYILDIZ I. F., X. Wang, W. Wang, Wireless mesh networks: a survey, Elsevier Computer Networks 47 (4) (2005) 445-487.
  • AKAN O. B., I. F. Akyildiz, Event-to-Sink Reliable Transport in Wireless Sensor Networks, IEEE/ACM Transactions on Networking (TON) 13 (5) (2005) 1003–1016.
  • ATAKAN B. , O. B. Akan, Immune System Based Distributed Node and Rate Selection in Wireless Sensor Networks, in: 1st IEEE/ACM International Conference on Bio-Inspired Models of Network, Information and Computing Systems (IEEE/ACM BIONETICS 2006), IEEE, Cavalese, Italy, 2006.
  • DORIGO M. , V. Maniezzo, A. Colorni, The Ant System: Optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics 26 (1) (1996) 1–13.
  • DI CARO G. , F. Ducatelle, L. M. Gambardella, AntHocNet: An adaptive nature-inspired algorithm for routing in mobile ad hoc networks, European Transactions on Telecommunications, Special Issue on Selforganization in Mobile Networking 16 (2005) 443–455.
  • VOGELS W. , R. van Renesse, K. Briman, The Power of Epidemics: Robust Communication for Large-Scale Distributed Systems, ACM SIGCOMM Computer Communication Review 33 (1) (2003) 131–135.
  • TSUCHIYA T. , T. Kikuno, An Adaptive Mechanism for Epidemic Communication,in: 1st International Workshop on Biologically Inspired Approaches to Advanced Information Technology (BioADIT2004), Vol.LNCS 3141, Springer, Lausanne, Switzerland, 2004.
  • CARRERAS I. , D. Miorandi, G. S. Canright, K. Engo-Monsen, Understanding the Spread of Epidemics in Highly Mobile Networks, in: 1st IEEE/ACM International Conference on Bio-Inspired Models of Network, Information and Computing Systems (IEEE/ACM BIONETICS 2006), IEEE, Cavalese, Italy, 2006.
  • CHLAMTAC I. , M. Conti, J. J. Liu, Mobile ad hoc networking: imperatives and challenges, Elsevier Ad Hoc Networks 1 (1) (2003) 13–64.
  • HOFMEYR S. A. , S. Forrest, Architecture for an Artificial Immune System, Evolutionary Computation 8 (4) (2000) 443–473.
  • HENDERSON T. C. , R. Venkataraman, G. Choikim, G. Choikim, Reaction-Difusion Patterns in Smart Sensor Networks, in: IEEE International Conference on Robotics and Automation (ICRA 2004), IEEE, New Orleans, LA, 2004, pp. 654–658.
  • YOSHIDA A. , K. Aoki, S. Araki, Cooperative control based on reaction-diusion equation for surveillance system, in: 9th International Conference on Knowledge-Based & Intelligent Information & Engineering Systems (KES 2005), Vol. LNCS 3684, Melbourne, Australia, 2005.
  • ATAKAN B. , O¨ . B. Akan, Immune System-based Energy Ecient and Reliable Communication inWireless Sensor Networks, in: F. Dressler, I. Carreras (Eds.), Advances in Biologically Inspired Information Systems - Models, Methods, and Tools, Vol. 69 of Studies in Computational Intelligence (SCI), Springer, Berlin, Heidelberg, New York, 2007, pp. 187–208.
  • METCALFE B. , The next-generation Internet, IEEE Internet Computing 4 (1) (2000) 58–59.
  • DORIGO M. , G. Di Caro, L. M. Gambardella, Ant Algorithms for Discrete Optimization, Artificial Life 5 (2) (1999) 137-172.
  • ATAKAN B. , O. B. Akan, Biologically-inspired Spectrum Sharing in Cognitive Radio Networks, in: IEEE Wireless Communications and Networking Conference (IEEE WCNC 2007), Hong Kong, China, 2007.
  • RICHMOND C. A. , Fireflies Flashing in Unison, Science 71 (1847) (1930) 537–538.
  • DRESSLER F. , Self-Organized Event Detection in Sensor Networks using Bio-inspired Promoters and Inhibitors, in: 3rd ACM/ICST International Conference on Bio-Inspired Models of Network, Information and Computing Systems (Bionetics 2008), ACM, Hyogo, Japan, 2008.
  • DRESSLER F. , Bio-inspired Feedback Loops for Self-Organized Event Detection in SANETs, in: 3rd IEEE/IFIP International Workshop on Self-Organizing Systems (IWSOS 2008), Vol. LNCS 5343, Springer, Vienna, Austria, 2008, pp. 256–261, to appear.
  • BOUKERCHE A. , H. Oliveira, E. Nakamura, A. Loureiro, Vehicular Ad Hoc Networks: A New Challenge for Localization-Based Systems, Elsevier Computer Communications 31 (12) (2008) 2838– 2849.
  • NEAL M. , J. Timmis, Once More Unto the Breach: Towards Artificial Homeostasis?, in: L. N. De Castro, F. J. Von Zuben (Eds.), Recent Developments in Biologically Inspired Computing, Idea Group, 2005, pp. 340–365.
  • LABELLA T. H. , M. Dorigo, J.-L. Deneubourg, Self-Organised Task Allocation in a Group of Robots, in: 7th International Symposium on Distributed Autonomous Robotic Systems (DARS04), Toulouse, France, 2004.
  • LABELLA T. H. , F. Dressler, A Bio-Inspired Architecture for Division of Labour in SANETs, in: F. Dressler, I. Carreras (Eds.), Advances in Biologically Inspired Information Systems - Models, Methods, and Tools, Vol. 69 of Studies in Computational Intelligence (SCI), Springer, Berlin, Heidelberg, New York, 2007, pp. 209–228.
  • LEIBNITZ K. , N. Wakamiya, M. Murata, Resilient Multi-Path Routing Based on a Biological Attractor Selection Scheme, in: 2nd International Workshop on Biologically Inspired Approaches to Advanced Information Technology (Bio-ADIT 2006), Vol. LNCS 3853, Springer, Osaka, Japan, 2006, pp. 48–63.
  • LEIBNITZ K. , N. Wakamiya, M. Murata, Biologically-Inspired Self- Adaptive Multi-Path Routing in Overlay Networks, Communications of the ACM, Special Issue on Self-Managed Systems and Services 49 (3) (2006) 63–67.
  • AKYILDIZ I. F. , F. Brunetti, C. Bl´azquez, Nanonetworks: A New Communication Paradigm, Elsevier Computer Networks 52 (2008) 2260–2279.
  • ALBERTS B. , D. Bray, J. Lewis, M. Ra, K. Roberts, J. D. Watson, Molecular Biology of the Cell, 3rd Edition, Garland Publishing, Inc., 1994.
  • NAKANO T. , T. Suda, M. Moore, R. Egashira, A. Enomoto, K. Arima, Molecular Communication for Nanomachines Using Intercellular Calcium Signaling, in: 5th IEEE Conference on Nanotechnology (IEEE NANO 2005), Nagoya, Japan, 2005, pp. 478–481.
  • EIGEN M. , P. Schuster, The Hypercycle: A Principle of Natural Self Organization, Springer, 1979.
  • ASHBY W. R. , Principles of the Self-Organizing System, in: H. von Foerster, G. W. Zopf (Eds.), Principles of Self-Organization, Pergamon Press, 1962, pp. 255–278.
  • WANG M. , T. Suda, The Bio-Networking Architecture: A Biologically Inspired Approach to the Design of Scalable, Adaptive, and Survivable /Available Network Applications, in: 1st IEEE Symposium on Applications and the Internet (SAINT), San Diego, CA, 2001.
  • SUZUKI J. , T. Suda, Adaptive Behavior Selection of Autonomous Objects in the Bio-Networking Architecture, in: 1st Annual Symposium on Autonomous Intelligent Networks and Systems, Los Angeles, CA, 2002.
  • LEE C. , H.Wada, J. Suzuki, Towards a Biologically-inspired Architecture for Self-Regulatory and Evolvable Network Applications, in: F. Dressler, I. Carreras (Eds.), Advances in Biologically Inspired Information Systems - Models, Methods, and Tools, Vol. 69 of Studies in Computational Intelligence (SCI), Springer, Berlin, Heidelberg, New York, 2007, pp. 21–46.
  • WEBB B. , What does robotics oer animal behaviour?, Animal Behavior 60 (5) (2000) 545–558.
  • DRESSLER F. , Bio-Inspired Networking - Self-organizing Networked Embedded Systems, in: R. P. W¨urtz (Ed.), Organic Computing, Springer, Berlin, Heidelberg, New York, 2008, pp. 285–302.
  • LEIBNITZ K. , N. Wakamiya, M. Murata, Biologically Inspired Networking, in: Q. Mahmoud (Ed.), Cognitive Networks: Towards Self-Aware Networks, John Wiley & Sons, 2007, pp. 1–21.
  • DRESSLER F. , I. Carreras (Eds.), Advances in Biologically Inspired Information Systems - Models, Methods, and Tools, Vol. 69 of Studies in Computational Intelligence (SCI), Springer, 2007.
  • LEE U. , E. Magistretti, M. Gerla, P. Bellavista, P. Li´o, K.-W. Lee, Bio-inspired Multi-Agent Data Harvesting in a Proactive Urban Monitoring Environment, Elsevier Ad Hoc NetworksAvailable online: 10.1016/j.adhoc.2008.03.009.
  • DI CARO G. , M. Dorigo, AntNet: Distributed Stigmergetic Control for Communication Networks, Journal of Artificial Intelligence Research 9 (1998) 317–365.
  • WANG J., E. Osagie, P. Thulasiraman, R. K. Thulasiram, HOPNET: A Hybrid ant colony OPtimization routing algorithm for Mobile ad hoc NETwork, Elsevier Ad Hoc NetworksAvailable online: 10.1016/j.adhoc.2008.06.001.
  • MICHLMAYR E. , Self-Organization for Search in Peer-to-Peer Networks, in: F. Dressler, I. Carreras (Eds.), Advances in Biologically Inspired Information Systems - Models, Methods, and Tools, Vol. 69 of Studies in Computational Intelligence (SCI), Springer, Berlin, Heidelberg, New York, 2007, pp. 247–266.
  • FORESTIERO A. , C. Mastroianni, G. Spezzano, Antares: an Ant-Inspired P2P Information System for a Self-Structured Grid, in: 2nd IEEE/ACM International Conference on Bio-Inspired Models of Network, Information and Computing Systems (IEEE/ACM BIONETICS 2007), Budapest, Hungary, 2007.
  • MIROLLO R. E. , S. H. Strogatz, Synchronization of Pulse-Coupled Biological Oscillators, SIAM Journal on Applied Mathematics 50 (6) (1990) 1645–1662.
  • TYRRELL A. , G. Auer, C. Bettstetter, Fireflies as Role Models for Sychronization in Ad Hoc Networks, in: 1st IEEE/ACM International Conference on Bio-Inspired Models of Network, Information and Computing Systems (IEEE/ACM BIONETICS 2006), IEEE, Cavalese, Italy, 2006.
  • TYRRELL A. , G. Auer, C. Bettstetter, Biologically Inspired Synchronization for Wireless Networks, in: F. Dressler, I. Carreras (Eds.), Advances in Biologically Inspired Information Systems - Models, Methods, and Tools, Vol. 69 of Studies in Computational Intelligence (SCI), Springer, Berlin, Heidelberg, New York, 2007, pp. 47–62.
  • TYRRELL A. , G. Auer, Imposing a Reference Timing onto Firefly Synchronization in Wireless Networks, in: 65th IEEE Vehicular Technology Conference (VTC2007-Spring), IEEE, Dublin, Ireland, 2007, pp. 222–226.
  • WAKAMIYA N. , M. Murata, Synchronization-Based Data Gathering Scheme for Sensor Networks, IEICE Transactions on Communications, Special Issue on Ubiquitous Networks E88-B (3) (2005) 873–881.
  • BABAOGLU O. , T. Binci, M. Jelasity, A. Montresor, Firefly-inspired Heartbeat Synchronization in Overlay Networks, in: 1st IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2007), IEEE, Boston, MA, 2007, pp. 77- 86.
  • TURING A. M. , The Chemical Basis for Morphogenesis, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 237 (641) (1952) 37–72.
  • HYODO K. , N. Wakamiya, E. Nakaguchi, M. Murata, Y. Kubo, K. Yanagihara, Experiments and Considerations on Reaction-Diusion based Pattern Generation in a Wireless Sensor Network, in: IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (IEEE WoWMoM 2007), IEEE, Helsinki, Finland, 2007, pp. 1–6.
  • DIETRICH I. , F. Dressler, On the Lifetime of Wireless Sensor Networks, ACM Transactions on Sensor Networks (TOSN) 5 (1), to appear.
  • NEGLIA G. , G. Reina, Evaluating Activator-Inhibitor Mechanisms for Sensors Coordination, in: 2nd IEEE/ACM International Conference on Bio-Inspired Models of Network, Information and Computing Systems (IEEE/ACM BIONETICS 2007), Budapest, Hungary, 2007.
  • DRESSLER F. , I. Dietrich, R. German, B. Kr¨uger, Ecient Operation in Sensor and Actor Networks Inspired by Cellular Signaling Cascades, in: 1st ACM/ICST International Conference on Autonomic Computing and Communication Systems (Autonomics 2007), ACM, Rome, Italy, 2007.
  • CASTRO L. N. de , J. Timmis, Artificial Immune Systems: A New Computational Intelligence Approach, Springer, 2002.
  • KEPHART J. O. , A Biologically Inspired Immune System for Computers, in: 4th International Workshop on Synthesis and Simulation of Living Systems, MIT Press, Cambridge, MA, 1994, pp. 130– 139.
  • HOFMEYR S. A. , An Immunological Model of Distributed Detection and Its Application to Computer Security, Ph.d thesis, University of New Mexico (1999).
  • STEPNEY S. , R. E. Smith, J. Timmis, A. M. Tyrrell, M. J. Neal, A. N. W. Hone, Conceptual Frameworks for Artificial Immune Systems, International Journal of Unconventional Computing 1 (3) (2005) 315–338.
  • LE BOUDEC J.-Y. , S. Sarafijanovic, An Artificial Immune System Approach to Misbehavior Detection in Mobile Ad-Hoc Networks, in: 1st International Workshop on Biologically Inspired Approaches to Advanced Information Technology (Bio-ADIT2004), Vol. LNCS 3141, Springer, Lausanne, Switzerland, 2004, pp. 96–111.
  • KLEINBERG J. , Computing: The wireless epidemic, Nature 449 (2007) 287–288.
  • KHELIL A. , C. Becker, J. Tian, K. Rothermel, An Epidemic Model for Information Diusion in MANETs, in: 5th ACM International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems (ACM MSWiM 2002), ACM, Atlanta, GA, 2002, pp. 54–60.
  • SHAH R. C. , S. Wieth¨olter, A. Wolisz, When does opportunistic routing make sense?, in: 1st International Workshop on Sensor Networks and Systems for Pervasive Computing (PerSeNS 2005), Kauai Island, HI, 2005.
  • HAYASHI H. , T. Hara, S. Nishio, On Updated Data Dissemination Exploiting an Epidemic Model in Ad Hoc Networks, in: 2nd International Workshop on Biologically Inspired Approaches to Advanced Information Technology (Bio-ADIT 2006), Vol. LNCS 3853, Springer, Osaka, Japan, 2006, pp. 306– 321.
  • AHI E. , M. Caglar, O¨ . O¨ zkasap, Stepwise Probabilistic Buering for Epidemic Information Dissemination, in: 1st IEEE/ACM International Conference on Bio-Inspired Models of Network, Information and Computing Systems (IEEE/ACM BIONETICS 2006), IEEE, Cavalese, Italy, 2006.
  • OKUYAMA T. , T. Tsuchiya, T. Kikuno, Improving the Robustness of Epidemic Communication in Scale-Free Networks, in: 2nd International Workshop on Biologically Inspired Approaches to Advanced Information Technology (Bio-ADIT 2006), Vol. LNCS 3853, Springer, Osaka, Japan, 2006, pp. 294– 305.
  • PAPPAS V. , D. Verma, B.-J. Ko, A. Swami, A Circulatory System Approach for Wireless Sensor Networks, Elsevier Ad Hoc NetworksAvailable online: 10.1016/j.adhoc.2008.04.009.
  • WENG G. , U. S. Bhalla, R. Iyengar, Complexity in Biological Signaling Systems, Science 284 (5411) (1999) 92–96.
  • PAWSON T. , Protein modules and signalling networks, Nature 373 (6515) (1995) 573–80.
  • KR¨UGER B. , F. Dressler, Molecular Processes as a Basis for Autonomous Networking, IPSI Transactions on Advances Research: Issues in Computer Science and Engineering 1 (1) (2005) 43– 50.
  • MILO R. , S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network Motifs: Simple Building Blocks of Complex Networks, Nature 298 (2002) 824–827.
  • DECRAENE J. , G. Mitchell, B. McMullin, Evolving Artificial Cell Signaling Networks using Molecular Classifier Systems, in: 1st IEEE/ACMInternational Conference on Bio-Inspired Models of Network, Information and Computing Systems (IEEE/ACM BIONETICS 2006), IEEE, Cavalese, Italy, 2006.
  • DRESSLER F. , I. Dietrich, R. German, B. Kr¨uger, A Rule-based System for Programming SelfOrganized Sensor and Actor Networks, Elsevier Computer NetworksAvailable online: 10.1016/j.comnet.2008.09.007.
  • TSCHUDIN C., Fraglets - a Metabolistic Execution Model for Communication Protocols, in: 2nd Symposium on Autonomous Intelligent Networks and Systems (AINS), Menlo Park, CA, 2003.
  • TSCHUDIN C. , L. Yamamoto, A Metabolic Approach to Protocol Resilience, in: 1st IFIP International Workshop on Autonomic Communication (WAC 2004), Vol. LNCS 3457, Springer, Berlin, Germany, 2004, pp. 191–206.
  • YAMAMOTO L. , D. Schreckling, T. Meyer, Self-Replicating and Self-Modifying Programs in Fraglets, in: 2nd IEEE/ACM International Conference on Bio-Inspired Models of Network, Information and Computing Systems (IEEE/ACM BIONETICS 2007), Budapest, Hungary, 2007.
  • PETROCCHI M. , Crypto-fraglets: networking, biology and security, in: 1st IEEE/ACM International Conference on Bio-Inspired Models of Network, Information and Computing Systems (IEEE/ACM BIONETICS 2006), IEEE, Cavalese, Italy, 2006.
  • BUSTAMANTE C. , Y. Chelma, N. Forde, D. Izhaky, Mechanical processes in biochemistry, Annual Review of Biochemistry 73 (2004) 705–748.
  • SUDA T. , M. Moore, T. Nakano, R. Egashira, A. Enomoto, Exploratory Research on Molecular Communication between Nanomachines, in: Conference on Genetic and Evolutionary Computation (GECCO 2005), ACM, 2005.
  • HIYAMA S. , Y. Moritani, T. Suda, R. Egashira, A. Enomoto, M. Moore, T. Nakano, Molecular Com munication, in: NSTI Nanotech 2005, NSTI, 2005.
  • MOORE M. , A. Enomoto, T. Nakano, R. Egashira, T. Suda, A. Kayasuga, H. Kojima, H. Sakakibara, K. Oiwa, A Design of a Molecular Communication System for Nanomachines Using Molecular Motors, in: 4th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW’06), IEEE, Washington, DC, USA, 2006, p. 554.
  • ATAKAN B. , O. B. Akan, On Channel Capacity and Error Compensation in Molecular Communication, Springer Transactions on Computational Systems Biology (TCSB) LNBI 5410, to appear.
  • ATAKAN B. , O. B. Akan, On Molecular Multiple-Access, Broadcast, and Relay Channel in Nanonetworks, in: 3rd ACM/ICST International Conference on Bio-Inspired Models of Network, Information and Computing Systems (Bionetics 2008), ACM, Hyogo, Japan, 2008.
  • MORITANI Y. , S. Hiyama, T. Suda, R. Egashira, A. Enomoto, M. Moore, T. Nakano, Molecular Communications between Nanomachines, in: 24th IEEE Conference on Computer Communications (IEEE INFOCOM 2005), Miami, FL, 2005.
  • MORITANI Y. , S. Hiyama, S. Nomura, K. Akiyoshi, T. Suda, A Communication interface using vesicles embedded with channel forming proteins in molecular communication, in: 2nd IEEE/ACM International Conference on Bio-Inspired Models of Network, Information and Computing Systems (IEEE/ACM BIONETICS 2007), Budapest, Hungary, 2007, pp. 147–149.
  • MORITANI Y. , S. x. S. Hiyama, T. Suda, Molecular Communication for Health Care Applications, in: 4th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW’06), IEEE, Washington, DC, USA, 2006, p. 549.
APA AKAN B (2009). Gelecek nesil iletişim ağları için biyolojik-esinli iletişim teknikleri. , 1 - 111.
Chicago AKAN Barış Özgür Gelecek nesil iletişim ağları için biyolojik-esinli iletişim teknikleri. (2009): 1 - 111.
MLA AKAN Barış Özgür Gelecek nesil iletişim ağları için biyolojik-esinli iletişim teknikleri. , 2009, ss.1 - 111.
AMA AKAN B Gelecek nesil iletişim ağları için biyolojik-esinli iletişim teknikleri. . 2009; 1 - 111.
Vancouver AKAN B Gelecek nesil iletişim ağları için biyolojik-esinli iletişim teknikleri. . 2009; 1 - 111.
IEEE AKAN B "Gelecek nesil iletişim ağları için biyolojik-esinli iletişim teknikleri." , ss.1 - 111, 2009.
ISNAD AKAN, Barış Özgür. "Gelecek nesil iletişim ağları için biyolojik-esinli iletişim teknikleri". (2009), 1-111.
APA AKAN B (2009). Gelecek nesil iletişim ağları için biyolojik-esinli iletişim teknikleri. , 1 - 111.
Chicago AKAN Barış Özgür Gelecek nesil iletişim ağları için biyolojik-esinli iletişim teknikleri. (2009): 1 - 111.
MLA AKAN Barış Özgür Gelecek nesil iletişim ağları için biyolojik-esinli iletişim teknikleri. , 2009, ss.1 - 111.
AMA AKAN B Gelecek nesil iletişim ağları için biyolojik-esinli iletişim teknikleri. . 2009; 1 - 111.
Vancouver AKAN B Gelecek nesil iletişim ağları için biyolojik-esinli iletişim teknikleri. . 2009; 1 - 111.
IEEE AKAN B "Gelecek nesil iletişim ağları için biyolojik-esinli iletişim teknikleri." , ss.1 - 111, 2009.
ISNAD AKAN, Barış Özgür. "Gelecek nesil iletişim ağları için biyolojik-esinli iletişim teknikleri". (2009), 1-111.