2 1

Proje Grubu: MAG Sayfa Sayısı: 117 Proje No: 104M432 Proje Bitiş Tarihi: 31.12.2008 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Biyouyumlu kemik çimentosu formülasyonlarının geliştirilmesi

Öz:
-
Anahtar Kelime:

Konular: İnşaat Mühendisliği İnşaat ve Yapı Teknolojisi
Erişim Türü: Erişime Açık
  • 1. Anuta D. A., Low viscosity bone cement, USP 4,341,691, (1982).
  • 2. Azom/www.azom.com/last accessed date April 2005
  • 3. Belkoff S. M., Sanders J. C., Jasper L. E., The effect of the monomer-to-powder ratio on the material properties of acrylic bone cement, Journal of Biomedical Materials Research Applied Biomaterials, 63, 396–399, (2002).
  • 4. Bigi A., Bracci B., Panzavolta S., Effect of added gelatin on the properties of calcium phosphate cement, Biomaterials, 25, 2893–2899 (2004).
  • 5. Billmeyer F. W., Jr., Textbook of Polymer Science, John Wiley & Sons, New York, Third Edition, (1984).
  • 6. Brauer G. M., Davenport R. M., Hansen W. C., Accelerating effect of amines on polymerization of methyl methacrylate, Modern Plastics, 34, 154-256, (1956).
  • 7. Brauer G. M., Steinberger D. R., Stansbury J. W., Dependence of curing time, peak temperature, and mechanical properties on the composition of bone cement, Journal of Biomedical Materials Research, 20, 839-852, (1986).
  • 8. Bubendorfer A., Liu X., Ellis AV., Microfabrication of PDMS microchannels using SU-8/PMMA moldings and their sealing to polystyrene substrates, Smart Materials ans Structures, 16, 367–371, (2007).
  • 9. Buchholz H.W., Engelbrecht E., Intracondylar total endoprosthesis of the knee joint. Model 'St. Georg', Chirurg, 44, 373-378, (1970).
  • 10. Caravia L., Dowson D., Fisher J., Jobbins B., The influence of bone and bone cement debris on counterface roughness in sliding wear tests of ultra-high molecular weight polyethylene on stainless steel, Proceedings of the Institution of Mechanical Engineers, 204, 65–70, (1990).
  • 11. Cervantes-Uc J. M., Vázquez-Torres H., Cauich-Rodríguez J. V., Vázquez-Lasa B., del Barrio J. S. R., Comparative study on the properties of acrylic bone cements prepared with either aliphatic or aromatic functionalized methacrylates, Biomaterials, 26, 4063-4072, (2005).
  • 12. Çökeliler D., Erkut S., Zemek J., Biederman H., Mutlu M., Modification of glass fibers to improve reinforcement: A plasma polymerization technique, Dental Materials, 23, 335-342, (2007).
  • 13. Dalby M. J., Di Silvio L., Harper E. J., Bonfield W., Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response, Biomaterials, 23, 569-576, (2002).
  • 14. Demian H. W., Shalaby W. S., Bone cement composition containing microencapsulated radiopacifier and method of making same, USP 5,795,922, (1998).
  • 15. DiPisa J. A., Sih G. S., Berman A. T., The temperature problem at the bone-acrylic cement interface of the total hip replacement, Clinical Orthopedics and Related Research, 121: 95-98, (1976).
  • 16. Dunne N. J., Orr J. F., Curing characteristics of acrylic bone cement, Journal of Materials Science: Materials in Medicine 13, 17-22, (2002).
  • 17. Evrard P., Lahille M., Avenel M., Compositions for surgical cement, based on at least one acrylic monomer and at least one acrylic polymer, USP 4, 490,497, (1984).
  • 18. Farrar D. F., Rose J., Rheological properties of PMMA bone cements during curing, Biomaterials, 22, 3005-3013, (2001).
  • 19. Fujishiro Y., Takahashi K., Sato T., Preparation and compressive strength of αtricalcium phosphate/gelatin gel composite cement, Journal of Biomedical Materials Research, 54, 525–530, (2001).
  • 20. Ginebra M. P., Albuixech L., Fernáandez-Barragáan E., Aparicio C., Gil F. J., San Romáan J., Váazquez B., Planell J. A., Mechanical performance of acrylic bone cements containing different radiopacifying agents, Biomaterials, 23, 1873-1882, (2002).
  • 21. Gomathi N., Sureshkumar A., Neogi S. RF plasma-treated polymers for biomedical applications, Current Science, 94, 1478-1486, (2008).
  • 22. Guo, H., Su, J., Wei, J., Kong, H., Liu, C., Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering, Acta Biomaterialia, 5, 268-278, (2009).
  • 23. Habraken, W.J.E.M., De Jonge, L.T., Wolke, J.G.C., Yubao, L., Mikos, A.G., Jansen, J.A., Introduction of gelatin microspheres into an injectable calcium phosphate cement, Journal of Biomedical Materials Research - Part A, 87, 643-655, (2008).
  • 24. Hendriks G. E., van Horn J. R., van der Mei H. C., Busscher H. J., Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection, Biomaterials, 25, 545- 556, (2004).
  • 25. Hernández, L., Parra, J., Vázquez, B., Bravo, A.L., Collía, F., Goñi, I., Gurruchaga, M., San Román, J.S., Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Bioactivity and biocompatibility, Journal of Biomedical Materials Research - Part B Applied Biomaterials, 88, 103-114, (2009).
  • 26. Hoey, D., Taylor, D., Quantitative analysis of the effect of porosity on the fatigue strength of bone cement, Acta Biomaterialia, 5, 719-726, (2009).
  • 27. Huh M.W., Kang I.K., Lee D.H., Kim W.S., Lee D.H., Park L.S., Surface characterization and antibacterial activity of chitosan-grafted poly(ethylene terephthalate) prepared by plasma glow discharge, Journal of Applied Polymer Science, 81, 2769–2778 (2001).
  • 28. Kuehn KD, Ege W., Gopp U., Acrylic bone cements: composition and properties, Orthopedic Clinics of North America, 36, 17-28, (2005).
  • 29. Lewis G., Properties of acrylic bone cement: State of the art review, Journal of Biomedical Materials Research (Applied Biomaterials), 38,155-182, (1997).
  • 30. Li C., Mason L., “Thermal characterization of PMMA-based cement curing”, Journal of Materials Science: Materials in Medicine, 15: 85-89, 2004.
  • 31. Lian, Q., Li, D., Li, A., Wang, J., Jin, Z., He, J., Mechanical performance of chitosan fiber/calcium phosphate cement composite for artificial bone, Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 44, 49-53, (2008).
  • 32. McGee D. T., Roemhildt L. M., Biologically compatible bone cements and orthopedic methods, USP 6,723,334, (2004).
  • 33. Meyer P. R., Jr., Lautenschlager E. P., Moore B. K., On the setting properties of acrylic bone cement, Journal of Bone and Joint Surgery 55A,149-156, (1973).
  • 34. Milner R., The development of theoretical relationships between some handling parameters (setting time and setting temperature), composition (relative amounts of initiator and activator) and ambient temperature for acrylic bone cement, Journal of Biomedical Materials Research Applied Biomaterials, 68B, 180–185, (2004).
  • 35. Moursi A. M., Winnard A. V., Winnard P. L., Lannutti J. J., Seghi R. R., Enhanced osteoblast response to a polymethylmethacrylate-hydroxyapatite composite, Biomaterials, 23, 133-144, (2002).
  • 36. Muzzarelli R.A.A., Biagini G., Bellardini M., Simonelli L., Castaldini C., Fratto G., Osteoconduction exerted by methylpyrrolidinone chitosan used in dental surgery, Biomaterials, 14, 39-43, (1993).
  • 37. Nature of Polymer Composites, in Composite polymeric materials, ed: Sheldon R.P., Applied Science Publishers, London, pp: 12–22, (1982).
  • 38. No H.K., Park N.Y., Lee S.H., Meyers S.P., Antibacterial activity of chitosans and chitosan oligomers with different molecular weights, International Journal of Food Microbiology, 74, 65–72 (2002).
  • 39. Onishi H., Machida Y., Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 20, 175–182 (1999).
  • 40. Ozcan, C., Hasirci, N., Plasma modification of PMMA films: Surface free energy and cell-attachment studies, Journal of Biomaterials Science, Polymer Edition, 18, 759- 773, (2007).
  • 41. Ozcan, C., Zorlutuna, P., Hasirci, V., Hasirci, N., Influence of oxygen plasma modification on surface free energy of PMMA films and cell attachment, Macromolecular Symposia, 269, 128-137, (2008).
  • 42. Ozeki K, Kobayashi S., Hirakuri K., Aoki H., Fukui Y., Oxygen plasma pre-treatment improves the wear properties of a diamond-like carbon film coated on UHMWPE and PMMA for biomaterials, Biomedical Materials and Engineering, 17, 175-82, (2007).
  • 43. Panzavolta, S., Torricelli, P., Bracci, B., Fini, M., Bigi, A., Alendronate and Pamidronate calcium phosphate bone cements: Setting properties and in vitro response of osteoblast and osteoclast cells, Journal of Inorganic Biochemistry, 103, 101-106, (2009).
  • 44. Park B. J., Bronzino D. J., Biomaterials Principles and Applications, CRC Press, Florida, (2003).
  • 45. Park B. J., Lakes S. R., Introduction to biomaterials, in Biomaterials: An introduction, Plenum Press, 2nd Edition, (1992).pp. 1-5,
  • 46. Pascual B., Gurruchaga M., Ginebra M.P., Gil F.J., Planell J.A., Goni I., Influence of the modification of P/L ratio on a new formulation of acrylic bone cement, Biomaterials, 20(5), 465-474, (1999).
  • 47. Pascual B., Vázquez B., Gurruchaga M., Goñi I., Ginebra M. P., Gil F. J., Planell J. A., Levenfeld B., San Román J., New aspects of the effect of size and size distribution on the setting parameters and mechanical properties of acrylic bone cements, Biomaterials, 17, 509-516, (1996).
  • 48. Passuti N., Gouin F., Antibiotic-loaded bone cement in orthopedic surgery, Joint Bone Spine, 70, 169-174, (2003).
  • 49. Qiaoling H., Baoqiang L., Mang W., Jiacong S., Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture, Biomaterials, 25, 779-785, (2004)
  • 50. Rabea E.I., Badawy E.T., Stevens C.V., Smagghe G., Steurbaut W., Chitosan as antimicrobial agent: application and mode of action, Biomacromolecules 4, 1457– 1465, (2003).
  • 51. Roemhildt L. M., Calcium phosphate compatible bone cement: Characterization, bonding properties and tissue response, (Ph. D. Thesis), Iowa State University, (2002).
  • 52. Sabokbar A., Fujikawa Y., Murray D. W., Athanasou N. A., Radioopaque agents in bone cement increase bone resorption, Journal of Bone and Joint Surgery [Br], 79B, 129–34, (1997).
  • 53. Santos Jr Jorge GF., Peixoto LS., , Nele M., Melo PA., Pinto JC., Theoretical and experimental investigation of the production of PMMA-based bone cement, Macromolecular Symposia, 243, 1–12, (2006).
  • 54. Schmalenberg KE., Buettner HM., Uhrich KE., Microcontact printing of proteins on oxygen plasma-activated poly(methyl methacrylate), Biomaterials, 25, 1851-1857, (2004).
  • 55. Seok BK., Young JK., Taek LY., Su A.K, In HC., Eun JK, In AK, J.-W.Jung-Woog S., The characteristics of a hydroxyapatite–chitosan–PMMA bone cement, Biomaterials, 25, 5715-5723, (2004).
  • 56. Serbetci K., Korkusuz F., Hasirci N., Thermal and mechanical properties of hydroxyapatite impregnated acrylic bone cements, Polymer Testing, 23, 145–155, (2004).
  • 57. Shulin H., Scott C., Higham P., Mixing of acrylic bone cement: Effect of oxygen on setting properties, Biomaterials, 24, 5045-5048, (2003).
  • 58. Sih G. C., Connelly G. M., The effect of thickness and pressure on the curing of PMMA bone cement for the total hip joint replacement, Journal of Biomechanics, 13(4), 347-352, (1980).
  • 59. Spence ML., McCord MG., A novel composite for bone replacement. In: Biloxi MS, editor, 16th Southern Biomedical Engineering Conference, Mississippi, USA, (1997). pp. 257–259.
  • 60. Tajima S., Nishimoto N., Kishi Y., Matsuya S., Ishikawa K., Effects of added sodium alginate on mechanical strength of apatite cement, Dental Materials Journal, 23, 329– 334 (2004).
  • 61. Tan, H., Ye, J., Dong, H., Gelatin/calcium phosphate cement composite scaffold with drug release ability for bone tissue engineering, Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 25, 77-81, (2008).
  • 62. Vallo C. I., Montemartini P. E., Fanovich M. A., Porto López J. M., Cuadrado T. R., Polymethylmethacrylate based bone cement modified with hydroxyapatite, Biomedical Materials Research (Applied Biomaterial), 48, 150-158, (1999).
  • 63. Vázquez B., Ginebra M. P., Gil F. J., Planell J. A., Lòpez B. A., Román S. J., Radiopaque acrylic cements prepared with a new acrylic derivative of iodo-quinoline, Biomaterials; 20, 2047–53, (1999).
  • 64. Wang J. S., Franzen H., Toksvig-Larsen S., Lidgern L., Does vacuum mixing of bone cement affect heat generation? Analyses of four cement brands, Journal of Applied Biomaterials, 6, 105-108, (1995).
  • 65. Wang X.H., Ma J.B., Wang Y.N., He B.L., Bone repair in radii and tibias of rabbits with phosphorylated chitosan reinforced calcium phosphate cements, Biomaterials, 23, 4167–4176, (2002).
  • 66. Wixson R. L., Lautenschlager, Methyl Methacrylate, in The Adult Hip, ed. Callaghan J. J., Rosenberg A. G., Rubash H. E., Philadelphia, 135-157, (1998).
  • 67. Xu, L.-X., Shi, X.-T., Wang, Y.-P., Shi, Z.-L., Performance of calcium phosphate bone cement using chitosan and gelatin as well as citric acid as hardening liquid, Journal of Clinical Rehabilitative Tissue Engineering Research, 12, 6381-6384, (2008).
  • 68. Yokoyama A., Yamamoto S., Kawasaki T., Kohgo T., Nakasu M., Development of calcium phosphate cement using chitosan and citric acid for bone substitute materials, Biomaterials, 23, 1091–1101, (2002).
  • 69. Zhang Y., Xu H.H.K., Effects of synergistic reinforcement and absorbable fiber strength on hydroxyapatite bone cement, Journal of Biomedical Materials Research, 75A, 832–840 (2005).
  • 70. Zhilong S., Neoh K.G., Kang E.T., Wang W., Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles, Biomaterials, 27, 2440-2449 (2006).
  • 71. Zou, Q., Zhang, L., Zuo, Y., Wang, H.-N., Li, Y.-B., Li, X.-Y., Characterization and cytocompatibility of nano-hydroxyapatite/chitosan bone cement consisting of astragalus polysaccharides, Gongneng Cailiao/Journal of Functional Materials, 39, 1515-1521, (2008).
APA HASIRCI N, Hasirci V, ŞERBETÇİ K, AKÇINAR O (2008). Biyouyumlu kemik çimentosu formülasyonlarının geliştirilmesi. , 1 - 117.
Chicago HASIRCI Nesrin,Hasirci Vasif,ŞERBETÇİ Kemal,AKÇINAR Orçun Biyouyumlu kemik çimentosu formülasyonlarının geliştirilmesi. (2008): 1 - 117.
MLA HASIRCI Nesrin,Hasirci Vasif,ŞERBETÇİ Kemal,AKÇINAR Orçun Biyouyumlu kemik çimentosu formülasyonlarının geliştirilmesi. , 2008, ss.1 - 117.
AMA HASIRCI N,Hasirci V,ŞERBETÇİ K,AKÇINAR O Biyouyumlu kemik çimentosu formülasyonlarının geliştirilmesi. . 2008; 1 - 117.
Vancouver HASIRCI N,Hasirci V,ŞERBETÇİ K,AKÇINAR O Biyouyumlu kemik çimentosu formülasyonlarının geliştirilmesi. . 2008; 1 - 117.
IEEE HASIRCI N,Hasirci V,ŞERBETÇİ K,AKÇINAR O "Biyouyumlu kemik çimentosu formülasyonlarının geliştirilmesi." , ss.1 - 117, 2008.
ISNAD HASIRCI, Nesrin vd. "Biyouyumlu kemik çimentosu formülasyonlarının geliştirilmesi". (2008), 1-117.
APA HASIRCI N, Hasirci V, ŞERBETÇİ K, AKÇINAR O (2008). Biyouyumlu kemik çimentosu formülasyonlarının geliştirilmesi. , 1 - 117.
Chicago HASIRCI Nesrin,Hasirci Vasif,ŞERBETÇİ Kemal,AKÇINAR Orçun Biyouyumlu kemik çimentosu formülasyonlarının geliştirilmesi. (2008): 1 - 117.
MLA HASIRCI Nesrin,Hasirci Vasif,ŞERBETÇİ Kemal,AKÇINAR Orçun Biyouyumlu kemik çimentosu formülasyonlarının geliştirilmesi. , 2008, ss.1 - 117.
AMA HASIRCI N,Hasirci V,ŞERBETÇİ K,AKÇINAR O Biyouyumlu kemik çimentosu formülasyonlarının geliştirilmesi. . 2008; 1 - 117.
Vancouver HASIRCI N,Hasirci V,ŞERBETÇİ K,AKÇINAR O Biyouyumlu kemik çimentosu formülasyonlarının geliştirilmesi. . 2008; 1 - 117.
IEEE HASIRCI N,Hasirci V,ŞERBETÇİ K,AKÇINAR O "Biyouyumlu kemik çimentosu formülasyonlarının geliştirilmesi." , ss.1 - 117, 2008.
ISNAD HASIRCI, Nesrin vd. "Biyouyumlu kemik çimentosu formülasyonlarının geliştirilmesi". (2008), 1-117.