12 10

Proje Grubu: MAG Sayfa Sayısı: 203 Proje No: 106M211 Proje Bitiş Tarihi: 01.09.2009 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Metal zırh malzemelerin balistik performanslarının araştırılması

Öz:
-
Anahtar Kelime:

Konular: Malzeme Bilimleri, Özellik ve Test Malzeme Bilimleri, Kompozitler
Erişim Türü: Erişime Açık
  • [1] Robinson H.R., Oriental armour., Walker, New York, (1967).
  • [2] Übeyli M., Demir T., Hava araçları için seramik zırh uygulamaları., VI Havacılık sempozyumu (HASEM’06) bildirileri kitabı, 67-71, Kayseri, (2006).
  • [3] Thomas J.H., “Elements of Ordnance”, John Wiley & Sons, Inc., New York, (1938).
  • [4] Lowry E.D., “Interior Ballistics”, New York, Doubleday & Company, (1968).
  • [5] Zukas J.A., Nicholas T., Swift H.F., Greszczuk L.B., Curran D., “Impact Dynamics”, pp. 155-214, John Wiley & Sons, Inc., New York, (1982).
  • [6] Orgorkiewicz RM. Armor for combat vehicles. New Armor Materials, 36-42 Mach Des (1969).
  • [7] Woodward RL. A rational basis for the selection or armour materials. The J of Aust Inst of Metals; 22, 167-170, (1977).
  • [8] Manganello J, Abbott KH. Metallurgical factors affecting the ballistic behavior of steel targets. J of Mater JMLSA, 17, 231-239, (1972).
  • [9] Gupta NK, Madhu V. An experimental study of normal and oblique impact of hard-core projectile on single and layered plates. Int J of Impact Eng19, 395-414, (1997).
  • [10] Dikshit SN, Kutumbarao VV, Sundararajan G, The influence of plate hardness on the ballistic penetration of thick steel plates. Int J of Impact Eng,16(2), 293-320, (1995).
  • [11] Sorensen BR, Kimsey KD, Silsby GF, Scheffler DR, Sherrick TM, De Rosset WS. High veloctiy penetration of steel targets. Int J of Impact Eng,11(1), 107-119, (1991).
  • [12] Lach E., Koerber G, Scharf M, Bohmann A. Comparison of nitrogen alloyed austenitic steels and high strength armor steels impacted at high velocity. Int J of Impact Eng, 23, 509-517, (1999).
  • [13] Gupta NK, Madhu V. Normal and oblique impact of a kinetic energy projectile on mild steel plates. Int J of Impact Eng, 12 (3), 333-343, (1991).
  • [14] Reddy GM, Mohandas T, Papukutty KK. Effect of welding process on the ballistic performance of high-strength low-alloy steel weldments. J of Mater Process Technol, 74, 27-35, (1998).
  • [15] Anderson Jr CE, Hohler V, Walker JD, Stilp AJ. The influence of projectile hardness on ballistic performance. Int J of Impact Eng, 22, 619-632, (1999).
  • [16] Edwards MR, Mathewson A. The ballistic properties of tool steel as a potential improvised armour plate. Int J of Impact Eng, 19(3), 297-309, (1997).
  • [17] Übeyli M, Yıldırım RO, Ögel B. On the comparison of the ballistic performance of steel and laminated composite armors. Materials & Design, Volume 28(4), 1257-1262, (2007).
  • [18] Übeyli M, Yıldırım O, Ögel B., Investigation on the ballistic behavior of Al2O3/Al2024 laminated composites. Journal of Materials Processing Technology, Volume 196(1- 3), 356-364, (2008).
  • [19] S. Dey, T. Borvik, O.S. Hopperstad, J.R. Leinum, M. Langseth, Int. J. of Impact Eng. 30, 1005-1038, (2004).
  • [20] S. Dey, T. Borvik, X. Teng, T. Wierzbicki, O.S. Hopperstad, Int. J. of Solids Struct. 44, 6701-6723, (2007).
  • [21] T. Borvik, M. Langseth, O.S. Hopperstad, K.A. Malo, Int. J. of Impact Eng. 22, 855- 886, (1999).
  • [22] K. Maweja, W. Stumpf, Fracture and Ballistic induced phase transformation in tempered martensitic low-carbon armour steels, Materials Science and engineering A, 432, 158-169, (2006).
  • [23] K. Maweja, W. Stumpf, The design of advanced performance high strength low-carbon martensitic armour steels Part1. Mechanical property considerations, Materials Science and Engineering A, (2007) (in press).
  • [24] K. Maweja, W. Stumpf, The design of advanced performance high strength low-carbon martensitic armour steels Microstructural considerations, Materials Science and Engineering A,(2007) (in press)
  • [25] Tan V.B.C., Khoo K.J.L., Perforation of flexible laminates by projectiles of different geometry. Int. J. Impact Eng. 31, 793-810, (2005).
  • [26] Findik F., Tarim N., Ballistic impact efficiency of polymer composites. Composite Structures 61, 187-192, (2003).
  • [27] Findik F., Tarim N., Ballistic impact performance of composite structures. Composite Structures 56, 13-20, (2002).
  • [28] DeLuca E., Prifiti J., Betheney W., Chou S.C. Ballistic impact damage of S-2 glassreinforced palstic structural armor. Composites science and tech. 58, 1453-2461, (1998).
  • [29] Tan V.B.C. et al., Sterngthening fabric armour with silica colloidal suspensions. Int. J. Solids and Structures. 42, 1561-1576, (2005).
  • [30] Cork C.R., Foster P.W., The ballistic performance of narrow fabrics. Int. J. Impact Eng. (in press)
  • [31] Cheesman B.A., Bogetti T.A., Ballistic impact into fabric and complaint composite laminates. Composite Structures 61, 161-173, (2003).
  • [32] Bourne N.K., On the impact and penetration of soda-lime glass. Int. J. Impact Eng. 32, 65-79, (2005).
  • [33] Horsfall I., Austin S.J., Bishop W., Structural ballistic armour for transport aircraft. Materials and Design 21, 19-25, (2000).
  • [34] Wang B., Chou S.M., The behaviour of laminated composite plates as armour. J. Materials processing Tech. 68, 279-287, (1997).
  • [35] Hetherington J.G., Rajagopalan B.P., An investigation into the energy absorbed during ballistic perforation of composite armours. Int. J. Impact Eng. 11, 33-40, (1991).
  • [36] Karamis M.B., Nair F., Tasdemirci A., Failure and tribological behaviour of the AA5083 and AA6063 composites reinforced by SiC particles under ballsitic impact. Composites: Part A 34, 217-226, (2003).
  • [37] Navarro C., et al., The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study. Int. J. Impact Eng. 32, 321-336, (1999).
  • [38] Rosenberg Z., et al., Ricochet of 0.3” AP projectile from inclined polymeric plates. Int. J. Impact Eng. 31, 221-233, (2005).
  • [39] Hohler V., et al., Comparative analysis of oblique impact on ceramic composite systems. Int. J. Impact Eng. 26, 333-344, (2001).
  • [40] Sadanandan S., Heterington J.G.,Characterisation of ceramic/steel and ceramic/aluminum armours subjected to oblique impact. Int. J. Impact Eng. 19, 811- 819, (1997).
  • [41] Alves A.L.S., et al., Influence of weathering and gamma irradiation on the mechanical and ballistic behaviour of UHMWPE composite armor. Polymer Testing 24, 104-113, (2005).
  • [42] Forquin P., et al., Effect of aluminum reinforcement on the dynemic fragmentation of SiC ceramics. Int. J. Impact Eng. 28, 1061-1076, (2003).
  • [43] Übeyli M., Yıldırım R.O., Ögel B., On the optimization of the ballistic performance of steel and laminated composite armors. Materials & Design, Volume 28 (4), 1257-1262, (2007).
  • [44] Wilkins M. L., Mechanics of penetration and perforation. Int. J. Eng. Sciences 16, 793- 807, (1978).
  • [45] Woodward R.L., A simple one-dimensional approach to medelling ceramic composite armour defeat. Int. J. Impact Eng. 9, 455-473, (1990).
  • [46] Al-Qureshi H.A., et al., Analysis and investigation of ballistic impact on the ceramic/metal composite armour. Int. J. Machine tools and Manufacture 44, 307-316, (2004).
  • [47] Petterson A., et al., Titanium-titanium diboride composites as part of a gradient armoour material. Int. J. Impact Eng. 32, 389-399, (2005).
  • [48] Reaugh J.E., et al., Impact studies of five ceramic materials and pyrex. Int. J. Impact Eng. 23, 771-782, (1999).
  • [49] Madhu V., et al., An experimental study of penetration resistancce of ceramic armour subjected to projectile impact. Int. J. Impact Eng. 32, 337-350, (2005).
  • [50] Horsfall I., Glass ceramic armour systmes fot light armour applications. 19th Int. Semp. of Ballistics, Interlaken, Switzerland, 7-11 Mayıs (2001).
  • [51] Nair F., et al. Surface characteristics of projectiles after frictional interaction with metal matrix composites under ballistic condition. Wear 261, 738-745, (2006).
  • [52] Karamis M.B., Nair F., Tasdemirci A., Analyses of metallurgical behaviour of Al-SiCp composites after ballistic impacts. Composites Structures 64, 219-226, (2004).
  • [53] Gama B.A., et al., Aluminum foam integral armor: a new dimension in armor design. Composite Structures 52, 381-395, (2001).
  • [54] Sun T.C., Roeder B.A., Dynamic penetration of alumina/aluminum laminates: experiments and modeling. Int. J. Impact Eng. 25, 169-185, (2001).
  • [55] Florance L., Interaction of projectiles and composite armour. Part II Stanford research ins. Menlo park. California, USA., (1969).
  • [56] Hetherington J.G., The optimization of two component composite armours. Int. J. Impact Eng. 12, 409-414, (1992).
  • [57] Wang B., Lu G., On the optimisation of two-component paltes against ballistic impact. J. Materials Processing Tech. 57, 141-145, (1996).
  • [58] Lee M., Yoo Y.H., Analysis of ceramic/metal armour systems. Int. J. Impact Eng. 25, 819-829, (2001).
  • [59] Fawaz Z., Behdinan K., Xu Y., Optimum design of two-component composite armours against high-speed impact. Composite Structures 73, 253-262, (2006).
  • [60] Elperin T., Ben-Dor G., Dubinsky A., Optimization of two-component composite armor against ballistic impact. Composite Structures 69, 89-94, (2005).
  • [61] Boccaccini A.R., et al., Fracture behaviour of mullite fibre reinforced-mullite matrix composites under quasi-static and ballistic mpact loading. Composites Science and Tech. 65, 325-333, (2005).
  • [62] Roberts J.C. et al., Computational and experimental models of the human torso for nonpenetrating ballistic impact. J. Biomechanics, (2007) (in press).
  • [63] ASTM Standards, Designation E 8M-93, Standard test methods for tension testing of metallic materials; (1993).
  • [64] ASTM Standards, Designation E 10-84, Standard test method for brinell hardness of metallic materials; (1984).
  • [65] ASTM Standards, Designation E 18-93, Standard test methods for rockwell hardness and rockwell superficial hardness of metallic materials; (1993).
  • [66] MIL-C-60617A, Military Specification, Cartridge, 7.62 mm: NATO, Armor Piercing, M61, (1991).
  • [67] Übeyli M., (Doktora Tezi), A comparison of ballistic behavior of steel and laminated composite armors, O.D.T.Ü. Fen Bilimleri Enstitüsü, Ankara (2005).
  • [68] C. Zener C, J.H. Hollomon, Journal of Applied Physics, 15, 22, (1944).
  • [69] R. Dormeval, The adiabatic shear phenomenon in Materials at High Strain Rates, (Ed. T.Z. Blazynski), Elsevier Applied Science, (1987).
  • [70] K.E. Aeberli, P.L. Pratt, J. Mater. Sci. 20, 316, (1985).
  • [71] H.C. Rogers, Ann Rev Mater Sci 9, 283, (1979).
  • [72] S.J. Manganello, K.H. Abbott, J. Mater 7, 231, (1972).
  • [73] Corbett, G. G., Impact loading of plates and shells by free-flying projectiles: a review, International journal of impact engineering, 18 (2), 141-230, (1996).
  • [74] Woodward, R. L., A rational basis for the selection or armour materials, The Journal of Australian Institute of Metals, 22, 167-170, (1977).
  • [75] Gupta, N. K. ve Mahdu, V., An experimental study of normal and oblique impact of hard-core projectile on single and layered plates, International journal of impact engineering, 19 (5-6), 395-414, (1997).
  • [76] Gupta, N. K. ve Mahdu, V., Normal and oblique impact of a kinetic energy projectile on mild steel plates., International journal of impact engineering, 12 (3),333-343,(1992).
  • [77] Thompson, W. T., An aproximate theory of armour penetration, International Journal of Applied Physics, 26 (1), 80-82, (1995).
  • [78] Borvik, T., Ballistic penetration of steel plates, International Journal of Impact Engineering, 22, p.855-866, (1999).
  • [79] Borvik, T., On the ballistic resistance of double-layered steel plates-an experimental and numerical investigation, International Journal of Solids and Structures, 44, p.6701- 6723, (2007).
  • [80] Bilici, M. A., (Doktora Tezi) An Investigation On The Ballistic Behaviour of Alumina/Aluminium Armor Structures, , ODTÜ, Makine Mühendisliği Bölümü, (2007).
  • [81] J. E. Shigley, C. R. Mischke, R. G. Budynas, ”Mechanical Engineering Design”, 7th edition, McGraw-Hill
  • [82] http://www.engineersedge.com/properties_of_metals.htm, son ziyaret tarihi 15.07.08
  • [83] ASM Handbook Vol.2, Properties and Selection : Nonferrous Alloys and Special- Purpose Materials, American Society for Metals, 2nd printing (1992)
  • [84] T. H. Lee, (Doktora Tezi) “An Experimental and Theoretical Investigation for the Machining of Hardened Alloy Steels”, , New South Wales Üniversitesi, Avustralya, (2007)
  • [85] A.J. Haglund, H.A. Kishawy, R.J. Rogers, “An Exploration of Friction Models for the Chip–tool Interface Using an Arbitrary Lagrangian–Eulerian Finite Element Model”, Wear 265, pp. 452-460, (2008)
  • [86] J-L. Bacaria, O. Dalverny, S. Caperaa, “A Three-Dimensional Transient Numerical Model Of Milling”, Proc Instn Mech Engrs Vol 215 Part B, (2001)
  • [87] [4] B. Banerjee, “The Mechanical Threshold Stress model for various tempers of AISI 4340 steel”, International Journal of Solids and Structures 44, pp. 834–859, (2007).
  • [88] M. N. Raftenberg, “AShear Banding Model for Penetration Calculations”, International Journal of Impact Engineering 25, pp. 123-146, (2001).
  • [89] Y. Yang, Y. Zeng, Z. W. Gao, “Numerical and Experimental Studies of Self- Organization of Shear Bands in 7075 Aluminium Alloy”, Material Science and Engineering 496, pp. 291-302, (2008).
APA Yıldırım R, Öğel B, ÜBEYLİ M (2009). Metal zırh malzemelerin balistik performanslarının araştırılması. , 1 - 203.
Chicago Yıldırım R. Orhan,Öğel Bilgehan,ÜBEYLİ Mustafa Metal zırh malzemelerin balistik performanslarının araştırılması. (2009): 1 - 203.
MLA Yıldırım R. Orhan,Öğel Bilgehan,ÜBEYLİ Mustafa Metal zırh malzemelerin balistik performanslarının araştırılması. , 2009, ss.1 - 203.
AMA Yıldırım R,Öğel B,ÜBEYLİ M Metal zırh malzemelerin balistik performanslarının araştırılması. . 2009; 1 - 203.
Vancouver Yıldırım R,Öğel B,ÜBEYLİ M Metal zırh malzemelerin balistik performanslarının araştırılması. . 2009; 1 - 203.
IEEE Yıldırım R,Öğel B,ÜBEYLİ M "Metal zırh malzemelerin balistik performanslarının araştırılması." , ss.1 - 203, 2009.
ISNAD Yıldırım, R. Orhan vd. "Metal zırh malzemelerin balistik performanslarının araştırılması". (2009), 1-203.
APA Yıldırım R, Öğel B, ÜBEYLİ M (2009). Metal zırh malzemelerin balistik performanslarının araştırılması. , 1 - 203.
Chicago Yıldırım R. Orhan,Öğel Bilgehan,ÜBEYLİ Mustafa Metal zırh malzemelerin balistik performanslarının araştırılması. (2009): 1 - 203.
MLA Yıldırım R. Orhan,Öğel Bilgehan,ÜBEYLİ Mustafa Metal zırh malzemelerin balistik performanslarının araştırılması. , 2009, ss.1 - 203.
AMA Yıldırım R,Öğel B,ÜBEYLİ M Metal zırh malzemelerin balistik performanslarının araştırılması. . 2009; 1 - 203.
Vancouver Yıldırım R,Öğel B,ÜBEYLİ M Metal zırh malzemelerin balistik performanslarının araştırılması. . 2009; 1 - 203.
IEEE Yıldırım R,Öğel B,ÜBEYLİ M "Metal zırh malzemelerin balistik performanslarının araştırılması." , ss.1 - 203, 2009.
ISNAD Yıldırım, R. Orhan vd. "Metal zırh malzemelerin balistik performanslarının araştırılması". (2009), 1-203.