0 2

Proje Grubu: MAG Sayfa Sayısı: 124 Proje No: 106M471 Proje Bitiş Tarihi: 01.08.2009 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Kartezyen hesaplama ağları için üç boyutlu Euler çözücüsü geliştirilmesi

Öz:
-
Anahtar Kelime:

Konular: Mühendislik, Makine
Erişim Türü: Erişime Açık
  • AFTOSMIS, M. J., 3D Applications of a Cartesian Grid Euler Method, AIAA Paper 95-0853, (1995).
  • AFTOSMIS, M. J., Robust and Efficient Cartesian Mesh Generation for Component-Based Geometry, AIAA Paper 97-0196, (1997).
  • AFTOSMIS, M. J., MELTON, J. E. and BERGER, M. J., Adaptation and Surface Modeling for Cartesian Mesh Methods, AIAA Paper 95-1725-CP, (1995).
  • AGARD Subcommittee C., Test Cases for Inviscid Flow Field Methods. AGARD Advisory Report 211, (1986).
  • BARTH, T. J., Recent Developments in High Order K-Exact Reconstruction on Unstructured Meshes, AIAA Paper 93-0668, 31st Aerospace Sciences Meeting, Reno, Nevada, (1993).
  • BARTH, T. J., Simplified Numarical Methods for Gasdynamic Systems on Triangulated Domains (Ph. D. Thesis). Stanford University, Stanford, (1998).
  • BARTH, T. J. and JESPERSEN D: C., The design and Application of Upwind Schemes on Unstructured Meshes, AIAA Paper 89-0366, (1989).
  • BARTH T. J. and FREDERICSON, P. O., Higher Order Solution of the Euler Equations, AIAA Paper 90- 0013, (1990).
  • BERGER, M. J. and LeVEQUE, R., Cartesian Meshes and Adaptive Mesh Refinement for Hyperbolic partial Differential Equations, Proc. 3rd Intl. Conf. Hyp. Problems, Upsala, Sweeden, (1990)
  • BERGER, M. J. and MELTON, J. E., An Acccuracy Test of a Cartesian Grid Method for Steady Flow in Complex Geometries, Proc. 8th. Intl. Conf Hyp. Problems, Upsala, Sweeden, (1995).
  • BRANDT, A., Multi-Level Adaptive Solutions to Boundary Value Problems, Mathematics for Computation, 31, 333-390, (1977).
  • BLAZEK, J., Computational Fluid Dynamics: Principles and Applications, Elsevier, St. Augustin, (2001).
  • CLARKE, D. K., SALAS, D. and HASSAN, H. A., Euler Calculations for Multielement Airfoils Using Cartesian Grids, AIAA Journal, 24, 353-358, (1986).
  • COIRIER, W. J., An Adaptively Refined, Cartesian, Cell-Based Scheme for the Euler and Navier Stokes Equations (PhD Thesis), The University of Michigan, Michingan, (1994).
  • COIRIER, W. J. and POWELL, K. G., An Accuracy Assessment of Cartesian-Mesh Approaches for the Euler Equations, Journal of Computational Physics, 117, 121-131, (1993).
  • De ZEEUW, D. L. and POWELL, K. G., An adaptively Refined Cartesian Mesh Solver for the Euler Equations, AIAA Paper 91-1542, (1991).
  • De ZEEUW, D. L., A Quad-Tree Based Adaptively-Refined Cartesian-Grid Algorithm for the Solution of The Euler Equations (PhD Thesis), The University of Michigan, Michigan, (1993).
  • DADONE, A. And GROSSMAN, B., Ghost-Cell Method for Inviscid Two-Dimensional Flows on Cartesian Grids, AIAA Journal, 42, 2499-2507, (2004).
  • EPSTEIN, B., LUNTZ, A. and NACHSON, A., Cartesian Euler Method For Arbitrary Aircraft Configurations, AIAA Journal, 30, 679-687, (1992).
  • FEDORENKO, R. P., A Relaxation Method for Solving Elliptic Difference Equations, USSR Computational Math. and Math. Phys., Vol. 1, (1962).
  • FEDORENKO, R. P., The Rate of Convergence of an Iterative Process, USSR Computational Math. and Math. Phys., Vol. 4, (1964).
  • FORRER, H., Boundary Treatment for a Cartesian Grid Method, Seminar für Angewante Mathmatic, ETH Zürich, ETH Research Report No. 96-04, (1996).
  • FORRER, H. and JELTSCH, R., A Higher-Order Boundary Treatment for Cartesian-Grid Methods, Journal of Computational Physics, 140, 259-277, (1998).
  • FRENCH, R. D., Solution of the Euler Equations on Cartesian Grids”, Applied Numerical Mathematics, 49, 367-379, (2004).
  • GAFFNEY, R. HASSAN, H. And SALAS M., Euler Calculations for Wings Using Cartesian Grids, AIAA Paper 87-0356, (1987).
  • GÖNÇ O. L., Computation of External Flow Around Rotating Bodies (Ph. D. Thesis), Middle East Technical University, Ankara, Turkey, (2005).
  • GROSMAN, B. And WHITAKER, D., Supersonic Flow Computations using a Rectangular Coordinate Finite Volume Method, AIAA Paper 86-0442, (1986).
  • HUNT, J., An Adaptive 3D Cartesian Approach for the Parallel Computation of Inviscid Flow about Static and Dynamic Configurations (Ph. D. Thesis), University of Michigan, Michigan, (2004).
  • LI, K. and WU, Z. N., Nonet-Cartesian Grid Method for Shock Flow Computations, Journal of Scientific Computing, 20, 303-329, (2004).
  • KARMAN, S. L., Jr., Splitflow: A 3D Unstructured Cartesian/Prismatic Grid CFD Code for Complex Geometries, AIAA Paper 95-0343, (1995).
  • Karman ve Splitflow (1995)
  • KEATS, W. A. and LİEN, F. S., Two-Dimensional Anisotropic Cartesian Mesh Adaptation for the Compressible Euler Equations, International Journal for Numerical Methods in Fluids, 46, 1099-1125, (2004).
  • KHOKLOV, A. M., Fully-Threaded Tree Algorithms for Adaptive Refinement Fluid Dynamics Simulations, (1998).
  • LAMBERT, J. D., Computational Methods in Ordinary Differential Methods, Wiley, London, (1973).
  • LEDNICER, D., TIDD, D. and BIRCH, N., Analysis of a Closed Coupled Nacelle Installation using a Panel Method (VSAERO) and a Multigrid Euler Method (MGAERO), ICAS-94-2.2.1, (1994).
  • LEVY, D., WARINER, D. and NELSON, E., Validation of Computational Euler Solutions for a High Speed Business Jet, AIAA Paper 94-1843, (1994).
  • MELTON, J. E., BERGER, M. J., AFTOSMIS, M. J. and WONG, M. D., 3D Applications of a Cartesian Grid Euler Method, AIAA Paper 95-0853, (1995).
  • MELTON, J. E., Automated Three-Dimensional Cartesian Grid Generation and Euler Flow Equations for Arbitrary Geometries (Ph. D. Thesis), University of California, Davis, California, (1996)
  • MELTON, J. E., ENOOTO, E. Y. and BERGER, M. J., 3D Automatic Cartesian Grid Generation for Euler Flows, AIAA Paper 93-3386-CP, (1993).
  • MITCHEL, R. A., SALAS, M. D. and HASSAN, H. A., Grid Embedding Technique Using Cartesian Grids for Euler Solutions, AIAA Journal, 26, 754-756, (1988).
  • MORINISHI, K., A Finite-Difference Solution of the Euler Equations on Non-Body-Fitted Cartesian Grids, Computers & Fluids, 21, 331-344, (1992).
  • PEMBER, R. B., BELL, J. B., COLELLA, P. CRUTCHFİELD, W. Y. and WELCOME, M. L., An Adaptive Cartesian Grid Method for Unsteady Compressible Flow in Irregular Regions, Journal of Computational Physics, 120, 278-304, (1995).
  • POPINET, S., GERRIS: A Tree-Based Adaptive Solver for teh INcompressible Euler Equations in Complex Geometries, Journal of Computational Physics, 190, 572-600, (2003).
  • PURVIS, J. and BURKHALTER, J., Prediction of Critical Mach Number for Store Configurations, AIAA Jol. 17,11, (1979).
  • QIAN, L., CAUSON, D. M., INGRAM, D. M. and MINGHAM, C. G., Cartesian Cut Cell Two-Fluid Solver for Hydraulic Flow Problems, Journal of Hydraulic Engineering, 129, 688-696, (2003).
  • QUIRK, J. J., An Alternative to Unstructured Grids for Computing Gas-Dynamic Flows Around Arbitrarily Complex 2-Dimensional Bodies”, Computers & Fluids, 23, 125-142, (1992).
  • TIDD, D. M., STRASH, D. J., EPSTEİN, B., LUNTZ, A., NACHSHON, A. and RUBIN, T., Multigrid Euler Calculations over Complete Aircraft, Journal of Aircraft, 29, 1080-1085, (1992).
  • WERTERLEN, T. J. and KARMAN, S. L., Rapid Assessment of F-16 Store Trajectories Using Unstructured CFD, AIAA Paper 95-0354, (1995).
  • WU, Z. N. and LI, K., Anisotropic Cartesian Grid Method for Steady Inviscid Shocked Flow Computation, International Journal for Numerical Methods in Fluids, 41, 1053-1084, (2003).
APA Aksel M, SERT C, ÇAKMAK M, SİYAHHAN B (2009). Kartezyen hesaplama ağları için üç boyutlu Euler çözücüsü geliştirilmesi. , 1 - 124.
Chicago Aksel M. Haluk,SERT Cüneyt,ÇAKMAK Mehtap,SİYAHHAN Bercan Kartezyen hesaplama ağları için üç boyutlu Euler çözücüsü geliştirilmesi. (2009): 1 - 124.
MLA Aksel M. Haluk,SERT Cüneyt,ÇAKMAK Mehtap,SİYAHHAN Bercan Kartezyen hesaplama ağları için üç boyutlu Euler çözücüsü geliştirilmesi. , 2009, ss.1 - 124.
AMA Aksel M,SERT C,ÇAKMAK M,SİYAHHAN B Kartezyen hesaplama ağları için üç boyutlu Euler çözücüsü geliştirilmesi. . 2009; 1 - 124.
Vancouver Aksel M,SERT C,ÇAKMAK M,SİYAHHAN B Kartezyen hesaplama ağları için üç boyutlu Euler çözücüsü geliştirilmesi. . 2009; 1 - 124.
IEEE Aksel M,SERT C,ÇAKMAK M,SİYAHHAN B "Kartezyen hesaplama ağları için üç boyutlu Euler çözücüsü geliştirilmesi." , ss.1 - 124, 2009.
ISNAD Aksel, M. Haluk vd. "Kartezyen hesaplama ağları için üç boyutlu Euler çözücüsü geliştirilmesi". (2009), 1-124.
APA Aksel M, SERT C, ÇAKMAK M, SİYAHHAN B (2009). Kartezyen hesaplama ağları için üç boyutlu Euler çözücüsü geliştirilmesi. , 1 - 124.
Chicago Aksel M. Haluk,SERT Cüneyt,ÇAKMAK Mehtap,SİYAHHAN Bercan Kartezyen hesaplama ağları için üç boyutlu Euler çözücüsü geliştirilmesi. (2009): 1 - 124.
MLA Aksel M. Haluk,SERT Cüneyt,ÇAKMAK Mehtap,SİYAHHAN Bercan Kartezyen hesaplama ağları için üç boyutlu Euler çözücüsü geliştirilmesi. , 2009, ss.1 - 124.
AMA Aksel M,SERT C,ÇAKMAK M,SİYAHHAN B Kartezyen hesaplama ağları için üç boyutlu Euler çözücüsü geliştirilmesi. . 2009; 1 - 124.
Vancouver Aksel M,SERT C,ÇAKMAK M,SİYAHHAN B Kartezyen hesaplama ağları için üç boyutlu Euler çözücüsü geliştirilmesi. . 2009; 1 - 124.
IEEE Aksel M,SERT C,ÇAKMAK M,SİYAHHAN B "Kartezyen hesaplama ağları için üç boyutlu Euler çözücüsü geliştirilmesi." , ss.1 - 124, 2009.
ISNAD Aksel, M. Haluk vd. "Kartezyen hesaplama ağları için üç boyutlu Euler çözücüsü geliştirilmesi". (2009), 1-124.