Özgür KURÇ
(Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Ankara, Türkiye)
Mustafa Uğur POLAT
(Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Ankara, Türkiye)
Proje Grubu: TÜBİTAK MAG ProjeSayfa Sayısı: 182Proje No: 108M586Proje Bitiş Tarihi: 01.09.2012Türkçe

0 0
Yapı mühendisliği için genişletilebilir parelel sonlu elemanlar çözümleme platformu
  • ABAQUS, Simulia, www.simulia.com Allmann, D.J., ”A Compatible Triangular Element Including Vertex Rotations for Plane Elasticity Analysis”, Computers&Structures, Vol.19, , pp.1-8 (1984)
  • Amestoy P.R., Duff I. S., and L’Excellent J.-Y. “Multifrontal Parallel Distributed Symmetric and Unsymmetric Solvers”, Computer Methods in Applied Mechanics and Engineering, 184 501-520 (2000)
  • Amestoy P. R., Davis T. A., and Duff I. S., An approximate minimum degree ordering algorithm, SIAM Journal on Matrix Analysis and Applications 17(4), pp. 886_905, (1996)
  • Amestoy P. R., Duff I. S., and L'Excellent J.-Y., Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. Methods Appl. Mech. Eng. 184, pp. 501_520, (2000).
  • Amestoy P. R., I. S. Duff, L'excellent J.-Y., and Li X. S., Analysis and comparison of two general sparse solvers for distributed memory computers, ACM Trans. Math. Softw. 27(4), pp. 388_421, (2001)
  • Amestoy P. R., Duff I. S., and Koster J., Mumps: A general purpose distributed memory sparse solver,_ in In Proc. PARA2000, 5th International Workshop on Applied Parallel Computing, pp. 122_131, Springer-Verlag, (2000)
  • ANSYS, ANSYS Inc., www.ansys.com
  • Ashcraft C., Eisenstat S., and Liu J.,. “A Fan-in Algorithm for Distributed Sparse Numerical Factorization”, SIAM Journal on Scientific and Statistical Computing, 11 593-599 (1990)
  • Ashcraft C., Grimes R.G.,. "SPOOLES: An Object-Oriented Sparse Matrix Library", Proceedings of 1999 SIAM Conference on Parallel Processing for Scientific Computing, March 22-27. (available at http://www.netlib.org/linalg/spooles) (1999)
  • Ashcraft C., The Fan-both Family of Column-based Distributed Cholesky Factorization Algorithms, Graph Theory and Sparse Matrix Computation, The IMA Volumes in Mathematics and its Applications, Springer, Berlin, New York, 56, 159-190 (1993)
  • Bahcecioglu T., Ozmen S., Kurc O., A Comparative Study on Two Different Direct Parallel Solution Strategies for Large-Scale Problems, Proceedings of the First International Conference on Parallel, Distributed and Grid Computing for Engineering, Pecs, Hungary, (2009) Batoz, J.L, Bathe, K.L. and Ho, L.W., “A Study of Three Node Triangular Plate Bending Elements”, Int. Jour. Num. Meth. Engng., Vol.15, pp. 1771-1812 (1980)
  • Batoz, J.L., and Tahar, M.B., “Evaluation of a New Quadrilateral Thin Plate Bending Element”, Int. Jour. Num. Meth. Engng., Vol.18, pp. 1655-1677 (1982)
  • Beaumont O., Boudet V., Petitet A., Rastello F., “A proposal for a heterogeneous cluster ScaLAPACK (Dense Linear Solvers)”, IEEE Transactions on Computers, 50 (10), 1052-1070, (2001)
  • Belytschko T., Liu W. K., Moran B., Nonlinear Finite Elements for Continua and Structures, Wiley & Sons, (2004)
  • Berger M.J., Bokhari S.H., A Partitioning Strategy for Non-uniform Problems on Multiprocessors, IEEE Trans. Computers, C 36, 570-580 (1987)
  • Berglund G. Z. M. and Leeuw S. W. de, A study into the feasibility of using two parallel sparse direct solvers for the helmholtz equation on linux clusters: Research articles, Concurr. Comput. : Pract. Exper. 18(7), pp. 749_769, (2006)
  • Bitzarakis S., Papadrakakis M., Kotsopulos A., Parallel Solution Technique in Computational Structural Mechanics, Comput. Methods Appl. Mech. Engrg. 148 75-104 (1997)
  • Bitzarakis S., Papadrakakis M., and Kotsopulos A.,. “Parallel Solution Technique in Computational Structural Mechanics”, Computer Methods in Applied Mechanics and Engineering, 148 75-104 (1997)
  • Bolz, J., Farmer, I., Grinspun, E. and Schröder, P. Sparse matrix solvers on the GPU: conjugate gradients and multigrid. ACM Trans. Graph. 22(3) 917–924 (2003).
  • The Boost Graph Library (BGL) http://www.boost.org/doc/libs/1_51_0/libs/graph/doc/index.html
  • Buatois L., Caumon, G., Lévy B., Concurrent number cruncher - A GPU implementation of a general sparse linear solver International Journal of Parallel, Emergent and Distributed Systems, Vol 24(3):205-223 (2009)
  • Cao Z., Xu S., Xue W., Chen W., Improving Dense Linear Equation Solver on Hybrid CPU-GPU System, 10th Int. Sym. on Pervasive Systems, Algo., and Networks, 556-562 (2009)
  • Choi J., Dongarra J., Pozo R., Walker D. W., ScaLAPACK: A Scalable Linear Algebra Library for Distributed Memory Concurrent Computers, Technical Report: UT-CS-92-181, (1992)
  • Choi J., Dongarra J., Ostrouchov S., Petitet A., Walker D, Whaley R, The Design and Implementation of the ScaLAPACK LU,QR and Cholesky Factorization Routines
  • Cook R.D., Malkus D.S., Plesha M.E., Witt R.J., “Concepts and Applications of Finite Element Analysis 4th Edition sf. 410”, (2001)
  • Couturier, R., Domas, S. Sparse systems solving on GPUs with GMRES. Springer Science + Business Media, LLC (2011)
  • CUBLAS, The NVIDIA CUDA Basic Linear Algebra Subroutines, https://developer.nvidia.com/cublas, Ekim (2012)
  • CUDA Programming Guide, from CUDA Developer Zone, Mart, (2012)
  • CULA: GPU Accelerated Linear Algebra, http://www.culatools.com/ , Ekim (2012)
  • Damien T., Nvidia Fermi: the GPU Computing revolution, http://www.behardware.com/art/lire/772/
  • Dongarra J. J., Du L. S., Sorensen D. C., and Vorst H. A. V., Numerical Linear Algebra for High Performance Computers, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, (1998)
  • Dongarra, J. and Walker, D., LAPACK Working Note 58, The Design of Linear Algebra Libraries for High Performance Computers
  • Driessche R.V., Roose D., An Improved Spectral Bisection Algorithm and Its Application to Dynamic Load Balancing, Parallel Comput. 21, 29-48 (1995)
  • EduShake, EduPro Civil System Inc., www.proshake.com
  • Escaig Y., Touzot G., Vayssade M., Parallelization of a multilevel domain decomposition method, J. Comput. Systems Engrg. Vol.5 No.3 253-263 (1994)
  • Farhat C., Crivelli L., and Roux F. X.. “Extending Substructure Based Iterative Solvers to Multiple Load and Repeated Analyses”, Computer Methods in Applied Mechanics and Engineering, 117 195-209 (1994)
  • Farhat C., Pierson K., Lesoinne M., The second generation FETI methods and their application to the parallel solution of large-scale linear and geometrically non-linear structural analysis problems, Comput. Methods Appl. Mech. Engrg. 184, 333-374 (2000)
  • Farhat C., Chen P.S., Risler F., Rous F. X., A Unified Framework for Accelerating the Convergence of Iterative Substructuring Methods with Lagrange Multipliers, Int. J. Numer. Methods Engrg. 42 257- 288 (1998)
  • Farhat C., A Simple and Efficient Automatic FEM Domain Decomposer, Comput. Struct. Vol. 28 No.5 579- 602 (1988)
  • Fulton R. E., Su P. S., Parallel substructure approach for massively parallel computers, Comput. Engng. Vol. 2 75-82 (1992)
  • Garey M., Johnson D., Stockmeyer L., Some Simplified NP-complete Graph Problems, Theoretical Computer Science, 1, pp. 237-267 (1976)
  • Guermouche A., L'Excellent J.-Y., and Utard G., Impact of reordering on the memory of a multifrontal solver, Parallel Computing 29(9), pp. 1191_1218, (2003)
  • Heath M. and Raghavan P. “Performance of a Fully Parallel Sparse Solver”, Proceedings of Scalable High Performance Computing Conference, IEEE Computer Society Press, 334-341 (1994)
  • Hendrickson B. “Load Balancing Fictions, Falsehoods and Fallacies”, Applied Mathematical Modelling, 25 99-108 (2000)
  • Hendrickson B., and Kolda T.G.. “Graph Partitioning Models for Parallel Computing”, Parallel Computing, 26 1519-1534 (2000)
  • Hsieh S. H., Modak S., Sotelino E. D., Object-oriented parallel programming tools for structural engineering applications, Comput. Systems Engng., Vol. 6 No. 6 533-548 (1995)
  • Hughes T.J.R ve Liu W.-K., “Implicit-Explicit Finite Elements in Transient Analysis: Implementation and Numerical Examples”, ASME Journal of Applied Mechanics and Engineering, (1979)
  • Hsieh S.H., Paulino G.H., Abel J. F., Recursive Spectral Algorithms for Automatic Domain Partitioning in Parallel Finite Element Analysis, Comput. Methods Appl. Mech. Engrg. 121, 137-162 (1995)
  • Jung J.H., Cholesky decomposition and linear programming on a GPU, Technical Report, (2006)
  • Ibrahimbegovic, A., ”Quadrilateral Finite Elements for Analysis of Thick and Thin Plates”, Comp. Meth. App. Mech. Engng., Vol.110, pp.195-209 (1993)
  • Ibrahimbegovic, A., Taylor, R.L. and Wilson, E.L. “A Robust Quadrilateral Membrane Finite Element with Drilling Degrees of Freedom”, Int. Jour. Num. Meth. Engng., Vol.30, pp.445-457 (1990)
  • Irony D., Shklarski G., and Toledo S., Parallel and fully recursive multifrontal supernodal sparse cholesky,_ Future Generation Computer Systems 20, pp. 425_440, (2004)
  • Karypis G., Kumar V., METIS: a Software Package for Partitioning Unstructured Graphs, Partitioning
  • Meshes, and Computing Fill-reducing Orderings of Sparse Matrices, version 4.0, (1998)
  • Krüger, J. and Westermann, R. Linear algebra operators for gpu implementation of numerical algorithms. ACM Transactions on Graphics. (TOG) 22(3) 908–916 (2003).
  • Krysl P. and Belytschko T., Object-oriented Parallelization of Explicit Structural Dynamics with PVM, Computer&Structures, 66, 259-273 (1998)
  • Kurc O., Will K.M., A substructure based parallel solution framework for structural systems having multiple loading cases, Proceedings of the International Conference on Computing in Civil Engineering, ASCE (Cancun, 2005)
  • Kurc O., Will K.M., An Iterative Parallel Workload Balancing Framework for Direct Condensation of Substructures, Computer Methods in Applied Mechanics and Engineering, 196, 2084-2096 (2007)
  • Kurc O., A Workload Distribution Framework for the Parallel Solution of Large Structural Models on Heterogeneous PC Clusters, ASCE Journal of Computing in Civil Engineering, March/April, Vol:24, No: 2, (2010) 151-160
  • LAPACK: Linear Algebra PACKage, http://www.netlib.org/lapack/, November, 2012 Li X. S., An overview of superlu: Algorithms, implementation, and user interface, ACM Trans. Math. Softw. 31(3), pp. 302_325, (2005)
  • Ltaief H., Tomov S., Nath R., Du P. and Dongarra J., A Scalable High Performant Cholesky Fatorization for Multicore with GPU Accelerators, LAPACK Working Note #223
  • Lucas, R. F., Wagenbreth, G., Davis, D. M. and Grimes, R. Multifrontal computations on GPUs and their multi-core hosts, VECPAR, (2010)
  • Lulec A., Solution of sparse systems on GPU architecture (Yüksek Lisans Tezi), ODTÜ İnşaat Mühendisliği Bölümü, (2011)
  • MacNeal, R.H., Harder, R. L.; “A Proposed Standard set of Problems to Test Finite Element Accuracy”, Finite Elements in Analysis and Design, 1 3-20, North-Holand (1985)
  • MAGMA: Matrix Algebra on GPU and Multicore Architectures, http://icl.cs.utk.edu/magma/, January, (2012)
  • NVIDIA GeForce GTX 200 GPU Architectural Overview, Technical Document, (2008) Oster B. , Advanced Cuda Training, Nvidia 2008 Conference, (2008)
  • Ozmen S., Bahcecioglu T., Kurc O., A Substructure Based Parallel Dynamic Solution of Large Systems on Homogeneous PC Clusters, Proceedings of Advances in Civil Engineering, Trabzon, Turkey, (2010)
  • Ozmen S., Linear analysis of large structural models on PC clusters (Yüksek Lisans Tezi), ODTÜ İnşaat Mühendisliği Bölümü, (2009)
  • Özmen S., Kurç Ö., Yoğun Matrislerin Grafik İşlem Birimleri Yardımıyla İndirgenmesi, Başarım 2012, Ankara, Turkey, (2012)
  • Paraview http://www.paraview.org/
  • ParMetis. Parallel Graph Partitioning and Sparse Matrix Ordering Library. http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
  • Pinar A., Hendrickson B., Partitioning for Complex Objectives, Proc. Intl. Parallel & Distrib. Proc. Symp. (2001)
  • Pellegrini F. and Roman J., Scotch: A software package for static mapping by dual recursive bipartitioning of process and architecture graphs, in HPCN Europe (1996)
  • RapidXML, Marcin Kalicinski, http://rapidxml.sourceforge.net/
  • Reddy, J. N. , Gartling, D.K. : The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition (Computational Mechanics and Applied Analysis) (2010)
  • SAP 2000, Computers and Structures Inc., www.csiberkeley.com
  • Schenk O. , Christen M., Burkhart H. , Algorithmic performance studies on graphics processing units, Journal of Parallel and Distributed Computing 68, pp. 1360-1369, (2008)
  • Schenk O. and Gärtner K., Two-level dynamic scheduling in pardiso: improved scalability on shared memory multiprocessing systems, Parallel Comput. 28(2), pp. 187_197,(2002)
  • Shimpi A. L. , Wilson D., "GT200 Arrives as the GeForce GTX 280 & 260", web link: "http://www.anandtech.com/video/showdoc.aspx?i=3334&p=2", (2008)
  • Schulze J.,Towards a tighter coupling of bottom-up and top-down sparse matrix ordering methods, BIT 41, p. 2001, (2001).
  • Synn S. Y. and Fulton R. E., The Concurrent Element Level Processing for Nonlinear Dynamic Analysis on a Massively Parallel Computer, Computing Systems in Engineering, 6 (3), 285-293 (1995)
  • Tomov S., Nath R., Ltaief H., Dongarra J., Dense Linear Algebra Solvers for Multicore with GPU Accelerators, Sym. on Parallel & Distributed Processing, Workshops and Phd Forum, 1-8, (2010)
  • Topping B.H.V., Ivanyi P., Partitioning of Tall Buildings using Bubble Graph Representation, J. Comput. Civil Engrg. Vol. 15 No.3, 178-183 (2001)
  • Volkov V., and Demmel J.W., LU, QR and Cholesky factorizations using vector capabilities of GPUs. TR:UCB/EECS-2008-49, EECS Department. University of California, Berkeley, (2008)
  • Vucetic M., Dobry R., “Effect of Soil Plasticity on Cyclic Response”. Journal of Geotechnical Engineering, Vol. 117, No. 1, pp. 89-107 (1991)
  • Yang,Y. S., Hsieh S. H., Iterative mesh partitioning optimization for parallel nonlinear dynamic finite element analysis with direct substructuring, Comput. Mech. 28 456-468 (2002)
  • Yang, Y., Hsieh, S., and Hsieh, T. ”Improving Parallel Substructuring Efficiency by Using a Multilevel Approach.” J. Comput. Civ. Eng., 26(4), 457–464 (2012)
  • Yaw, L. L., 2D Co-rotational Truss Formulation,Walla Walla University,April 23, (2009)
  • Zhang F., The Schur Complement and Its Applications, Springer Science, New York, 2005.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.