1 0

Proje Grubu: MAG Sayfa Sayısı: 99 Proje No: 111M810 Proje Bitiş Tarihi: 01.03.2013 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Deri doku mühendisliği: İki katmanlı nanoaltın yüklü deri yedeklerinin üretilmesi ve karakterizasyonu

Öz:
-
Anahtar Kelime:

Erişim Türü: Erişime Açık
  • AKTÜRK O., Tezcaner A., Bilgili H., Deveci M.S., Gecit M.R., Keskin D., Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial, J. Biosci. Bioeng, 112, 279-288, (2011)
  • ARAMWIT P., and Sangcakul A., The effects of sericin cream on wound healing in rats, Bioscience Biotechnology and Biochemistry, 71, 2473-2477, (2007).
  • AUCOIN L., Griffith C.M., Pleizier G., Deslandes Y., Sheardown H., Interactions of corneal epithelial cells and surfaces modified with cell adhesion peptide combinations. J Biomater Sci Polym Edn. 13, 447–462, (2002).
  • BALASUBRAMANI M., Kumar T.R., Babu M., Skin substitutes: a review, Burns, 27, 534-544, (2001).
  • Boyce S.T., Design principles for composition and performance of cultured skin substitutes, Burns, 27, 523-533, (2001).
  • BUTTAFOCO L., Kolkman N.G., Engbers-Buijtenhuijs P., Poot A.A., Dijkstra P.J., Vermes I., Feijen J., Electrospinning of collagen and elastin for tissue engineering applications, Biomaterials, 27, 724-734 (2006).
  • CHEN P.J., Chang G.Y., Chen, J.K., Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surface. A, 313-314, 183-188, (2008).
  • COURTMAN D.W., Errett B.F., Wilson G.J., The role of crosslinking in modification of the immune response elicited against xenogenic vascular acellular matrices, J Biomed Mater Res, 55, 576-586, (2001).
  • DING T., Luo Z.J., Zheng Y., Hu X.Y., Ye Z.X., Rapid repair and regeneration of damaged rabbit sciatic nerves by tissue-engineered scaffold made from nano-silver and collagen type I. Injury, Int. J. Care Injured, 41, 522-527, (2010).
  • DREZEK R., Lewinski N., Colvin V., Cytotoxicity of Nanoparticles Review, 4-1, 26-49, (2008).
  • GRIFFITH M., Hakim M., Shimmura S., Watsky M.A., Li F., Carlsson D., Doillon C.J., Nakamura M.,
  • SUURONEN E., Shinozaki N., Nakata K., Sheardown H., Artificial human corneas: scaffolds for transplantation and host regeneration, Cornea, 21, 541–561, (2002).
  • GÜMÜŞDERELİOĞLU M, Dalkıranoğlu S, Aydın RS, Cakmak S. A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix, J Biomed Mater Res A, 98, 461-472, (2011).
  • HAARER J.C, Dee K.C., Proteins and amino acid-derived polymers, An introduction to biomaterials. The Biomedical Engineering Series, ed: S.A. Guelcher and J.O. Hollinger, CRC Press, (2006). Pp. 122-128,
  • HAFEMANN B., Ghofrani K., Gattner H-G., Stieve H., Pallua N, Cross-linking by 1-ethyl-3-collagen/elastin membrane meant to be used as a dermal substitute: effects on physical, biochemical and biological features in vitro, J Mater Sci Mater Med, 12, 437–446, (2001).
  • HERNANDEZ-SIERRA J.F., Ruiz F., Pena D.C., Martinez-Gutierrez F., Martinez A.E., Guillon Ade J., TapiaPerez H., Castanon G.M., The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold, Nanomed, Nanotechnol. Biol. Med., 4, 237-240, (2008).
  • HUANG L., Nagapudi K., Apkarian R.P., Chaikof E.L., Engineered collagen-PEO nanofibers and fabrics. J. Biomater. Sci. Polym. Ed., 12, 979-993, (2001).
  • ISAAKS R., Borrelia burgdorferi bind to epithelial cell proteoglycans, J Clin Invest, 93, 809–819, (1994).
  • JANSSON K., Haegerstrand A., Kratz G., A biodegradable bovine collagen membrane as a dermal template for human in vivo wound healing, Scand J Plast Reconstr Hand Surg, 35, 369-375, (2001).
  • JONES I., Currie L., Martin R., A guide to biological skin substitutes. British Journal of Plastic Surgery, 55, 185-193, (2002).
  • JORGE-HERRERO E., Fernandez P., Turnay J., Influence of different chemical cross-linking treatments on the properties of bovine pericardium and collagen, Biomaterials 20, 539-545, (1999).
  • KEARNEY J.N., Clinical evaluation of skin substitutes, Burns, 27, 545-551, (2001).
  • KHOR E., Methods for the treatment of collagenous tissues for bioprostheses, Biomaterials, 18, 95-105, (1997).
  • KOBAYASHI H., Ikada Y., Corneal cell adhesion and proliferation on hydrogel sheets bound with celladhesive proteins, Curr Eye Res, 10, 899–908, (1991).
  • KUNDU S.C., Dash B.C., Dash R., Kaplan D.L., Natural protective glue protein, sericin bioengineered by silkworms: potential for biomedical and biotechnological applications. Progress in Polymer Science, 33, 998-1012, (2008).
  • LANONE S., Rogerieux F., Geys J., Dupont A., Malliot-Marechal E., Boczkowski J., Lacroix G., Hoet P., Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines, Particle and Fibre Toxicology, 6, 14, (2009).
  • Lee C.H., Singla A., Lee Y. ,Biomedical applications of collagen, International Journal of Pharmaceutics 221,1-22, (2001).
  • LEE J.E., Park J.C., Hwang Y.S., Kin J.K., Kim J.G., Suh H., Characterization of UV-irradiated dense/porous collagen membranes: morphology, enzymatic degradation and mechanical properties, Yonsei Med J, 42, 172-179 (2001).
  • LU S., Xia D., Huang G., Jing H., Wang Y., Gu H., Concentration effect of gold nanoparticles on proliferation of keratinocytes, Colloids and Surfaces B Biointerfaces, 81, 406-411, (2010).
  • LV Q., Feng Q., Hu K., Cu F., Three-dimensional fibroin/collagen scaffolds derived from aqueous solution and the use for HepG2 culture, Polymer,46, 12662–12669, (2005).
  • MA L., Gao C., Mao Z., Zhou J., Shen J., Hu X., Han C., Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering, Biomaterials, 24, 4833–4841, (2003).
  • MATTHEWS J.A., Wnek G.E., Simpson D.G., Bowlin G.L., Electrospinning of collagen nanofibers, Biomacromolecules, 3, 232-238, (2002).
  • MCKEON-FISHER K.D., Freeman J.W., Characterization of electrospun poly(L-lactide) and gold nanoparticle composite scaffolds for skeletal muscle tissue engineering, J Tissue Eng Regen Med., 5, 560- 568, (2011).
  • MI F.L., Wu Y.B., Shyu S.S., Chao A.C., Lai J.Y., Su C.C., Asymmetric chitosan membranes prepared by dry/wet phase separation: a new type of wound dressing for controlled antibacterial release, Journal of Membrane Science, 212, 237-254, (2003).
  • NATH S., Kaittanis C., Tinkham A., Perez J.M., Dextran-coated gold nanoparticles for the assessment of antimicrobial susceptibility, Anal. Chem., 80, 1033-1038, (2008).
  • O’BRIEN F.J., Harley B.A., Yannas I.V., Gibson L., Influence of freezing rate on pore structure in freezedried collagen-GAG scaffolds, Biomaterials, 25, 1077–1086, (2004).
  • OSBORNE C.S., Reid W.H., Grant M.H., Investigation into the biological stability of collagen/chondroitin6-sulphate gels and their contraction by fibroblasts and keratinocytes: the effect of crosslinking agents and diamines, Biomaterials, 20, 283-90, (1999).
  • PAN Y., Neuss S., Leifert A., Fischler M., Wen F., Simon U., Schmid G., Brandau W., Jahnen-Dechent W., Size-dependent cytotoxicity of gold nanoparticles, Nanoparticle Toxicity, 3-11, 1941-1949, (2007).
  • PARK S-N., Kim H.O., Suh H., Evaluation of antibiotic-loaded collagen-hyaluronic acid matrix as a skin substitute, Biomaterials, 25, 3689-3698, (2004).
  • PARK S.N., Park J.C., Kim H.O., Song M.J., Suh H., Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3- (3-dimethylaminopropyl)carbodiimide cross-linking, Biomaterials, 23, 1205–1212, (2002).
  • PLOTHOWSKI M.C., Chevillard M., Pierrot D., Altemayer D., Zahn K.M., Colliot G., Puchelle E., Differential adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells in primary culture, J Clin Invest, 87, 2018–2028, (1991).
  • POWELL H.M., Supp D.M., Boyce S.T., Influence of electrospun collagen on wound contraction of engineered skin substitutes, Biomaterials, 29, 834-843, (2008).
  • PURNA S.K. Babu M., Collagen based dressings- a review, Burns, 26, 54-62, (2000).
  • RAMOS M., Castro M.C.R. ,Clinics in Dermatology, 20, 715-723, (2002).
  • RAY S., Mohan R., Singh J.K., Samantaray M.K., Shaikh M.M., Panda D., Ghosh P., Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes, J. Am. Chem. Soc., 48, 15042-15053, (2007).
  • RAYMOND Z., Pieter J.D., van Wachem Pauline B., Successive epoxy and carbodiimide cross-linking of dermal sheep collagen, Biomaterials 20, 921-931, (1999).
  • RHO K.S., Jeong L., Lee G., Seo B.M., Park Y.J., Hong S.D., Roh S., Cho J.J., Park W.H., Min B.M., Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and earlystage wound healing, Biomaterials, 27, 1452-1461, (2006).
  • SHAKESPEARE P.G., The role of skin substitutes in the treatment of burn injuries, Clinics in Dermatology, 23, 413-418, (2005).
  • SHARMA A., Tandon A., Tovey J.C.K., Gupta R., Robertson J.D., Fortune J.A., Klibanov A.M., Cowden J.W., Rieger F.G., Mohan R.R., Polyethylenimine-conjugated gold nanoparticles: Gene transfer potential and low toxicity in the cornea, Nanomedicine Nanotechnology Biology and Medicine, 11, 1-9, (2001).
  • SHUKLA R., Bansal V., Chaudhary M., Basu A., Ramesh R., Bhonde R.R., Sastry M., Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview, American Chemical Society, 21-23, 10644-10654, (2005).
  • SILVER F.H., Wound dressings and skin replacement. Biomaterials, medical devices and tissue engineering: an integrated approach, Chapman and Hall, London, (1994). Pp: 46-91,
  • STASHAK T.S., Farstvedt E., Othic A., Update on Wound Dressings: Indications and Best Use, Clin. Tech. Equine Pract., 3, 148-163, (2004).
  • SUNG W.W., Hsu H.L., Shih C.C., Lin D.S., Cross-linking characteristics of biological tissues fixed with monofunctional or mutifunctional epoxy compounds, Biomaterials, 17, 1405-1410, (1996).
  • Supp D.M., Boyce S.T., Engineered skin substitutes: practices and potentials, Clinics in Dermatology, 23, 403-412, (2005).
  • SWEENEY D.F., Xie R.Z., Evans M.D.M., Vannas A., Tout S.D., Griesser H.J., Johnson G., Steele J.G., A comparison of biological coatings for the promotion of corneal epithelialization of synthetic surface in vivo., Invest Ophthalmol Vis Sci., 44, 3301–3309, (2003)
  • TIĞLI R.S., Kazaroğlu N.M., Mav İ.Ş.B., Gümüşderelioğlu M., Cellular Behavior on Epidermal Growth Factor (EGF)-Immobilized PCL/Gelatin Nanofibrous Scaffolds, J Biomater Sci Polym Ed., 22, 207-223, (2011).
  • TILLMANN B.W., Yazdani S.K., Lee S.J., Geary R.L., Atala A., Yoo J.J., The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction, Biomaterials, 30, 583-588, (2009).
  • TRAFNY E.A., Stepinska M., Antos M., Grzybowski J., Effects of free and liposome-encapsulated antibiotics on adherence of Pseudomonas aeruginosa to collagen type I, Antimicrob Agents Chemother, 39, 2645–2649, (1995).
  • TSUBOUCHI K., Igarashi Y., Takasu Y., Yamada H., Sericin enhances attachment of cultured human skin fibroblasts, Bioscience, Biotechnology, and Biochemistry, 69, 403-405, (2005).
  • UMEMOTO T., Namikawa I., Binding of host-associated treponeme proteins to collagens and laminin: a possible mechanism of spirochetal adherence to host tissues, Microbiol Immunol., 38, 655–663, (1994)
  • WESTERLUND B., Korbonen T.K., Bacterial proteins binding to the mammalian extracellular matrix, Mol Microbiol, 9, 687–694, (1993).
  • WITAYA-AREEKUL S., Prahsarn C., Development and in vitro evaluation of chitosan–polysaccharides composite wound dressings, International Journal of Pharmaceutics, 313, 123–128, (2006).
  • YEO I.S., Oh J.E., Jeong L., Lee T.S., Lee S.J., Park W.H., Min B.M., Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures, Biomacromolecules, 9, 1106-1116, (2008).
  • ZHANG Y., Peng H., Huang W., Zhou Y., Yan D., Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles, J. Colloid Interface Sci., 325, 371-376, (2008).
  • ZHANG Y.Q., Applications of natural silk protein sericin in biomaterials, Biotechnology Advances, 20, 91- 100, (2002).
  • ZHAORIGETU S., Yanaka N., Sasaki M., Watanabe H., Kato N., Inhibitory effects of silk protein, sericin on UVB-induced acute damage and tumor promotion by reducing oxidative stress in the skin of hairless mouse, Journal of Photochemistry and Photobiology B, 71, 11-17, (2003).
  • ZHAROV V.P., Mercer K.E., Galitovskaya E.N., Smeltzer M.S., Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles, Biophys. J., 90, 619-627, (2006).
  • ZHONG S., Teo W.E., Zhu X., Beuerman R.W., Ramakrishna S., Yung L.Y.L., An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture, J Biomed Mater Res A., 79, 456-463, (2006).
  • ZHONG S., Teo W.E., Zhu X., Beuerman R., Ramakrishna S., Yung L.Y., Formation of collagenglycosaminoglycan blended nanofibrous scaffolds and their biological properties, Biomacromolecules, 6, 2998-3004, (2005).
APA Keskin D, TAHERİ N (2013). Deri doku mühendisliği: İki katmanlı nanoaltın yüklü deri yedeklerinin üretilmesi ve karakterizasyonu. , 1 - 99.
Chicago Keskin Dilek,TAHERİ Nusret Deri doku mühendisliği: İki katmanlı nanoaltın yüklü deri yedeklerinin üretilmesi ve karakterizasyonu. (2013): 1 - 99.
MLA Keskin Dilek,TAHERİ Nusret Deri doku mühendisliği: İki katmanlı nanoaltın yüklü deri yedeklerinin üretilmesi ve karakterizasyonu. , 2013, ss.1 - 99.
AMA Keskin D,TAHERİ N Deri doku mühendisliği: İki katmanlı nanoaltın yüklü deri yedeklerinin üretilmesi ve karakterizasyonu. . 2013; 1 - 99.
Vancouver Keskin D,TAHERİ N Deri doku mühendisliği: İki katmanlı nanoaltın yüklü deri yedeklerinin üretilmesi ve karakterizasyonu. . 2013; 1 - 99.
IEEE Keskin D,TAHERİ N "Deri doku mühendisliği: İki katmanlı nanoaltın yüklü deri yedeklerinin üretilmesi ve karakterizasyonu." , ss.1 - 99, 2013.
ISNAD Keskin, Dilek - TAHERİ, Nusret. "Deri doku mühendisliği: İki katmanlı nanoaltın yüklü deri yedeklerinin üretilmesi ve karakterizasyonu". (2013), 1-99.
APA Keskin D, TAHERİ N (2013). Deri doku mühendisliği: İki katmanlı nanoaltın yüklü deri yedeklerinin üretilmesi ve karakterizasyonu. , 1 - 99.
Chicago Keskin Dilek,TAHERİ Nusret Deri doku mühendisliği: İki katmanlı nanoaltın yüklü deri yedeklerinin üretilmesi ve karakterizasyonu. (2013): 1 - 99.
MLA Keskin Dilek,TAHERİ Nusret Deri doku mühendisliği: İki katmanlı nanoaltın yüklü deri yedeklerinin üretilmesi ve karakterizasyonu. , 2013, ss.1 - 99.
AMA Keskin D,TAHERİ N Deri doku mühendisliği: İki katmanlı nanoaltın yüklü deri yedeklerinin üretilmesi ve karakterizasyonu. . 2013; 1 - 99.
Vancouver Keskin D,TAHERİ N Deri doku mühendisliği: İki katmanlı nanoaltın yüklü deri yedeklerinin üretilmesi ve karakterizasyonu. . 2013; 1 - 99.
IEEE Keskin D,TAHERİ N "Deri doku mühendisliği: İki katmanlı nanoaltın yüklü deri yedeklerinin üretilmesi ve karakterizasyonu." , ss.1 - 99, 2013.
ISNAD Keskin, Dilek - TAHERİ, Nusret. "Deri doku mühendisliği: İki katmanlı nanoaltın yüklü deri yedeklerinin üretilmesi ve karakterizasyonu". (2013), 1-99.