1 0

Proje Grubu: TBAG Sayfa Sayısı: 76 Proje No: 112T749 Proje Bitiş Tarihi: 15.01.2014 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Kemik doku mühendisliğine yönelik elektroeğirilmiş bakteriyel selüloz temelli hücre taşıyıcılar

Öz:
-
Anahtar Kelime:

Erişim Türü: Erişime Açık
  • Abed, A., Assoul, N., Ba, M., Derkaoui, S. M., Portes, P., Louedec, L., Flaud, P. 2011. “Influence of polysaccharide composition on the biocompatibility of pullulan/dextran-based hydrogels”. Journal of Biomedical Materials Research Part A, 96, 535–42.
  • Akturk, O., Tezcaner, A., Bilgili, H., Deveci, M. S., Gecit, M. R., Keskin, D. 2011. “Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial”, Journal of Bioscience and Bioengineering, 112, 279-88.
  • Aubin, J. E., Triffitt, J. T. 2002. “Mesenchymal stem cells and osteoblast differentiation”. Principles of Bone Biology. Editörler: Bilezikian, J. P., Raisz, L. G., Rodan G. A. San Diego: Academic Press.
  • Balakrishnan, B., Jayakrishnan A. 2005. “Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds”, Biomaterials, 26, 3941-51.
  • Balmayor, E. R., Baran, E. T., Azevedo, H. S., Reis, R. L. 2012. “Injectable biodegradable starch/chitosan delivery system for the sustained release of gentamicin to treat bone infections”, Carbohydrate Polymers, 87, 32-9.
  • Barnes, C. P., Pemble, C. W., Brand, D. D., Simpson, D. G., Bowlin, G. L. 2007. “Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol”, Tissue Engineering, 13, 1593-605.
  • Bhardwaj, N., Kundu, S. C. 2011. “Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications”, Carbohydrate Polymers, 85, 325– 33.
  • Blackwood, K., McKean, R., Canton, I., Freeman, C., Franklin, K., Cole, A., Brook, I., Farthing, P., Rimmer, S., Haycock, J., Ryan, A., MacNeil, S. 2008. “Development of biodegradable electrospun scaffolds for dermal replacement”, Biomaterials, 29, 3091-104.
  • Burg, K. J., Porter, S., Kellam, J. F. 2000. “Biomaterial developments for bone tissue engineering”, Biomaterials, 21, 2347-59.
  • Callegari, G., Tyomkin, I., Kornev, K. G., Neimark, A. V., Hsieh, Y. 2011. “Absorption and transport properties of ultra-fine cellulose webs”, Journal of Colloid And Interface Science, 353, 290-3.
  • Canton, I., McKean, R., Charnley, M., Blackwood, K., Fiorica, C., Ryan, A., MacNeil, S. 2010. “Development of an Ibuprofen-releasing biodegradable PLA/PGA electrospun scaffold for tissue regeneration”, Biotechnology and Bioengineering, 105, 396-408.
  • Chan, G., Mooney, D. J. 2008. “New materials for tissue engineering: towards greater control over the biological response”, Trends in Biotechnology, 26, 382-92.
  • Chen, T., Embree H. D., Brown E. M., Taylor M. M., Payne G. F. 2003. “Enzyme catalyzed gel formation of gelatin and chitosan: potential for in situ applications”, Biomaterials, 24, 2831-41.
  • Chen, L., Bromberg, L., Hatton, T. A., Rutledge, G. C. 2008. “Electrospun cellulose acetate fibers containing chlorhexidine as a bactericide”, Polymer, 49, 1266-75.
  • Chen, Y. M. 2009. “In vitro cytotoxicity of bacterial cellulose scaffolds used for tissue-engineered bone”, Journal of Bioactive and Compatible Polymers, 24, 137-45.
  • Cooper, A., Bhattarai, N., Zhang, M. 2011. “Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration”, Carbohydrate Polymers, 85, 149-56.
  • Coxon, J. P., Oades, G. M., Colston, K. W., Kirby, R. S. 2004. “Advances in the use of bisphosphonates in the prostate cancer setting”, Prostate Cancer and Prostatic Diseases, 7, 99-104.
  • Dawson, E., Mapili, G., Erickson, K., Taqvi, S., Roy, K. 2008. “Biomaterials for stem cell differentiation”, Advanced Drug Delivery Reviews, 60, 215-28.
  • Dulong, V., Forbice, R., Condamine, E., Le Cerf, D., Picton, L. 2011. “Pullulan–STMP hydrogels: a way to correlate crosslinking mechanism, structure and physicochemical properties”, Polymer Bulletin, 67, 455-66.
  • Ekholm, E., Tommila, M., Forsback, A.-P., Märtson, M., Holmbom, J., Aäritalo, V., Finnberg, C., Kuusilehto., A., Salonen., J., Yli-Urpo., A., Penttinen., R. 2005. “Hydroxyapatite coating of cellulose sponge does not improve its osteogenic potency in rat bone”, Acta Biomaterialia, 1, 535-44.
  • Fang, B., Wan, Y., Tang, T., Gao, C., Dai, K. 2009. “Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite / bacterial cellulose nanocomposite scaffolds”, Tissue Engineering Part A, 15, 1091-8.
  • Fatimi, A., Axelos, M. A. V., Tassin, J. F., Weiss, P. 2008. “Rheological characterization of self‐hardening hydrogel for tissue engineering applications: gel point determination and viscoelastic properties”, Macromolecular Symposia, 266, 12-16.
  • Freger, V., Ben-David, A. 2005. “Use of attenuated total reflection infrared spectroscopy for analysis of partitioning of solutes between thin films and solution”, Analytical Chemistry, 77, 6019-25.
  • Frey, M. W. 2008. Electrospinning cellulose and cellulose derivatives. Polymer Reviews, 48, 378-91.
  • Fricain, J. C., Schlaubitz, S., Le Visage, C., Arnault, I., Derkaoui, S. M., Siadous, R., Catros, S. 2013. “A nano-hydroxyapatite--pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering”, Biomaterials, 34, 2947-59.
  • Gouma, P., Xue, R., Goldbeck, C. P., Perrotta, P., Balázsi, C. 2012. “Nano-hydroxyapatite-cellulose acetate composites for growing of bone cells”, Materials Science and Engineering: C, 32, 607-12.
  • Gunter, G. C., Craciun, R., Tam, M. S., Jackson, J. E., Miller, D. J. 1996. “FTIR and 31 P-NMR spectroscopic analyses of surface species in phosphate-catalyzed lactic acid conversion”, Journal of Catalysis,164, 207-19.
  • Guthrie, R. D. 1962. “Periodate oxidation”, Methods in Carbohydrate Chemistry, 1, 435-41.
  • Holzwarth, J. M., Ma, P. X. 2011. “Biomimetic nanofibrous scaffolds for bone tissue engineering”, Biomaterials, 32, 9622-9.
  • Horner, E. A., Kirkham, J., Wood, D., Curran, S., Smith, M., Thomson, B., Yang, X. B. 2010. “Long bone defect models for tissue engineering applications: criteria for choice”, Tissue Engineering Part B Reviews, 16, 263-71.
  • Hu, W., Chen, S., Xu, Q., Wang, H. 2011. “Solvent-free acetylation of bacterial cellulose under moderate conditions”, Carbohydrate Polymers, 83, 1575-81.
  • Hutmacher, D. W. 2000. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21, 2529-43.
  • Ikada, Y., Tsuji, H. 2000. “Biodegradable polyesters for medical and ecological applications”, Macromolecular Rapid Communications, 21, 117-32.
  • Jhon, M. J., Thomas, S. 2008. “Biofibres and biocomposites”, Carbohydrate Polymers, 71, 343-64.
  • Jones, A. C., Milthorpe, B., Averdunk, H., Limaye, A., Senden, T. J., Sakellariou, A., Sheppard, A. P., Sok, R. M., Knackstedt, M. A., Brandwood, A., Rohner, D., Hutmacher, D. W. 2004. “Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging”, Biomaterials, 25, 4947-54.
  • Jones, J. R., Hench, L. L. 2003. “Regeneration of trabecular bone using porous ceramics”, Current Opinion in Solid State and Materials Science, 7, 301-7.
  • Jonoobi, M., Harun, J., Mathew, A. P., Hussein, M. Z. B., Oksman, K. 2009. Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose, 17, 299-307.
  • Kaplan, F. S., Hayes, W. C., Keaveny, T. M., Boskey, A. L., Einhorn, T. A., Iannotti, J. P. 1994. “Form and function of bone”. Orthopaedic Basic Science. Editör: Simon, S.R. Rosemont, Columbus, OH: American Academy of Orhopaedic Surgeons.
  • Kerschnitzki, M., Wagermaier, W., Roschger, P., Seto, J., Shahar, R., Duda, G. N., Fratzl, P. 2011. “The organization of the osteocyte network mirrors the extracellular matrix orientation in bone”, Journal of Structural Biology, 173, 303-11.
  • Kim, D., Nishiyama, Y., Kuga, S. 2002. “Surface acetylation of bacterial cellulose”, Cellulose, 9, 361-7.
  • Kim, S. H., Won, C. Y., Chu C. C. 1999. “Synthesis and characterization of dextran-maleic acid based hydrogel”, Journal of Biomedical Materials Research Part A, 46, 160-70.
  • Kong, L., Ziegler, G. R. 2013. “Rheological aspects in fabricating pullulan fibers by electro-wet-spinning”, Food Hydrocolloids, 38, 220-6.
  • Lalande, C., Miraux, S., Derkaoui, S. M., Mornet, S., Bareille, R., Fricain, J. C., Franconi, J. M. 2011. “Magnetic resonance imaging tracking of human adipose derived stromal cells within three-dimensional scaffolds for bone tissue engineering”, European Cells & Materials, 21, 341-54.
  • Leathers, T. D. 2003. “Biotechnological production and applications of pullulan”, Applied Microbiology and Biotechnology, 62, 468-73.
  • Lee, S. J., Atala, A. 2013. “Scaffold technologies for controlling cell behavior in tissue engineering”, Biomedical Materials, 8, 1-2.
  • Lee, K. Y., Mooney, D. J. 2001. “Hydrogels for tissue engineering”, Chemical Reviews, 101, 1869-80.
  • Li, M. G., Tian, X. Y., Chen, X. B. 2009. “A brief review of dispensing-based rapid prototyping techniques in tissue scaffold fabrication: role of modeling on scaffold properties prediction”, Biofabrication, 1, 1-10.
  • Li, Z., Ramay, H. R., Hauch, K. D., Xiao, D., Zhang, M. 2005. “Chitosan-alginate hybrid scaffolds for bone tissue engineering”, Biomaterials, 26, 3919-28.
  • Liu, L., He, D., Wang, G., Yu, S. 2011. “Bioinspired crystallization of CaCO3 coatings on electrospun cellulose acetate fiber scaffolds and corresponding CaCO3 microtube networks”, Langmuir, 27, 199-206.
  • Ma, J., He, X., Jabbari, E. 2011. “Osteogenic differentiation of marrow stromal cells on random and aligned electrospun poly(L-lactide) nanofibers”, Annals of Biomedical Engineering, 39, 14-25.
  • Mano, J. F., Silva, G. A., Azevedo, H. S., Malafaya, P. B., Sousa, R. A., Silva, S. S., Boesel, L. F. 2007. “Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends”, Journal of the Royal Society, Interface / the Royal Society, 4, 999-1030.
  • Martínez-Sanz, M., Olsson, R. T., Lopez-Rubio, A., Lagaron, J. M. 2010. “Development of electrospun EVOH fibres reinforced with bacterial cellulose nanowhiskers. Part I: Characterization and method optimization”, Cellulose, 18, 335-47.
  • Märtson, M., Viljanto, J., Hurme, T., Laippala, P., Saukko, P. 1999. “Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat”, Biomaterials, 20, 1989-95.
  • Mathew, J. A., Kache, V., Liu, C., Tang, L., Yang, J. 2007. “Nano-featured highly interconnective macroporous elastic scaffolds for cardiovascular tissue engineering”, Engineering in Medicine and Biology Workshop, 43-6.
  • Megelski, S., Stephens, J. S., Chase, D. B., Rabolt, J. F. 2002. “Micro- and nanostructured surface morphology on electrospun polymer fibers”, Macromolecules, 35, 8456-66.
  • Melchels, F. P. W., Bertoldi, K., Gabbrielli, R., Velders, A. H., Feijen, J., Grijpma, D. W. 2010. “Mathematically defined tissue engineering scaffold architectures prepared by stereolithography”, Biomaterials, 31, 6909-16.
  • Miaoa, J., Pangulea, R. C., Paskalevaa, E. E., Hwangh, E. E., Kanea, R. S., Linhardta, R. J., Dordicka, J. S. 2011. “Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications”, Biomaterials, 32, 9557-67.
  • Mishra, B., Vuppu, S., Rath, K. 2011. “The role of microbial pullulan, a biopolymer in pharmaceutical approaches: A review”, Journal of Applied Pharmaceutical Science, 1, 45-50.
  • Murakami, M., Kaneko, Y., Kadokawa, J. 2007. “Preparation of cellulose-polymerized ionic liquid composite by in-situ polymerization of polymerizable ionic liquid in cellulose-dissolving solution”, Carbohydrate Polymers, 69, 378-81.
  • Mullender, M. G., van deer Meer, D. D., Huiskes, R., Lips, P., 1996. “Osteocyte density changes in aging and osteoporosis”, Bone, 18, 109-13.
  • Müller, F. A., Müller, L., Hofmann, I., Greil, P., Wenzel, M. M., Staudenmaier, R. 2006. “Cellulose-based scaffold materials for cartilage tissue engineering”, Biomaterials, 27, 3955-63.
  • Nge, T. T., Nogi, M., Yano, H., Sugiyama, J. 2010. “Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold”, Cellulose, 17, 349-63.
  • Ohkawa, K., Hayashi, S., Nishida, A., Yamamoto, H., Ducreux, J. 2009. “Preparation of pure cellulose nanofiber via electrospinning”, Textile Research Journal, 79, 1396-401.
  • Oshima, T., Taguchi, S., Ohe, K., Baba, Y. 2011. “Phosphorylated bacterial cellulose for adsorption of proteins”, Carbohydrate Polymers, 83, 953-8.
  • Park, W.-I., Kang, M., Kim, H.-S., Jin, H.-J. 2007. “Electrospinning of poly(ethylene oxide) with bacterial cellulose whiskers”, Macromolecular Symposia, 249-50, 289-94.
  • Rekha, M. R., Sharma, C. P. 2007. “Pullulan as a promising biomaterial for biomedical applications: A Perspective”, Trends in Biomaterials and Artificial Organs, 20, 116-21.
  • Reneker, D. H., Yarin, A. L. 2008. “Electrospinning jets and polymer nanofibers”, Polymer, 49, 2387-425.
  • Rockwood, D. N., Preda, R. C., Yücel T., Wang X., Lovett, M. L., Kaplan, D. L., 2011. “Materials fabrication from bombyx mori silk fibroin”, Nature Protocols, 6, 1612-31.
  • Rosen, C. J., Compston, J. E., Lian, J. B. 2009. Primer on the metabolic bone diseases and disorders of mineral metabolism. (7. basım). Washington: The Sheridan Press.
  • Sachlos, E., Czernuszka, J. T. 2003. “Making tissue engineering scaffolds work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds”, European Cells & Materials, 5, 29-40.
  • Sakai, R., John, B., Okamoto, M., Seppälä, J. V., Vaithilingam, J., Hussein, H., Goodridge, R. 2013. “Fabrication of polylactide-based biodegradable thermoset scaffolds for tissue engineering applications”, Macromolecular Materials and Engineering, 298, 45-52.
  • Salgado, A. J., Coutinho, O. P., Reis, R. L., Davies, J. E. 2006. In vivo response to starch-based scaffolds designed for bone tissue engineering applications. Journal of Biomedical Materials Research Part A, 80, 983-9.
  • Samios, E., Dart, R. K., Dawkins, J. V. 1997. “Preparation, characterization and biodegradation studies on cellulose acetates with varying degrees of substitution”, Polymer, 38, 3045-54.
  • Sell, S. A., Wolfe, P. S., Garg, K., McCool, J. M., Rodriguez, I. A., Bowlin, G. L. 2010. “The use of natural polymers in tissue engineering: A focus on electrospun extracellular matrix analogues”, Polymers, 2, 522-53.
  • Shekaran, A., García, A. J. 2011. “Extracellular matrix-mimetic adhesive biomaterials for bone repair”, Journal of Biomedical Materials Research Part A, 96, 261-72.
  • Shi, L., Le Visage, C., Chew, S. Y. 2011. “Long-term stabilization of polysaccharide electrospun fibres by in situ cross-linking”, Journal of Biomaterials Science Polymer edition, 22, 1459-72.
  • Sill, T. J., von Recum, H. A. 2008. “Electrospinning: Applications in drug delivery and tissue engineering”, Biomaterials, 29, 1989-2006.
  • Singh, R. S., Saini, G. K., Kennedy, J. F. 2008. “Pullulan: Microbial sources, production and applications”, Carbohydrate Polymers, 73, 515-31.
  • Sirvio, J., Hyvakko, U., Liimatainen, H., Niinimaki, J., Hormi, O. 2011. “Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators”, Carbohydrate Polymers, 83, 1293-7.
  • Stevens, M. M. 2008. “Biomaterials for bone tissue enginnering”, Materials Today, 11, 18-25.
  • Sombatmankhong, K., Sanchavanakit, N., Pavasant, P., Supaphol, P. 2007. “Bone scaffolds from electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend”, Polymer, 48, 1419-27.
  • Stijnman, A. C., Bodnar, I., Hans Tromp, R. 2011. “Electrospinning of food-grade polysaccharides”, Food Hydrocolloids, 25, 1393-8.
  • Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., Ramkumar, S. S. 2005. “Electrospinning of nanofibers”, Journal of Applied Polymer Science, 96, 557-69.
  • Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D. L., Brittberg, M., Gatenholm, P. 2005. “Bacterial cellulose as a potential scaffold for tissue engineering of cartilage”, Biomaterials, 26, 419-31.
  • Swetha, M., Sahithi, K., Moorthi, A., Srinivasan, N., Ramasamy, K., Selvamurugan, N. 2010. “Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering”, International Journal of Biological Macromolecules, 47, 1-4.
  • Tang, L., Huang, B., Lu, Q., Wang, S., Ou, W., Lin, W., Chen, X. 2013. “Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid”, Bioresource Technology, 127, 100-5.
  • Toker, S. M., Tezcaner, A., Evis, Z., 2011. “Microstructure, microhardness, and biocompatibility characteristics of yttrium hydroxyapatite doped with flüoride”, Journal of Biomedical Materials Research B: Applied Biomaterials. 9, 207-17.
  • Tomé, L. C., Pinto, R. J. B., Trovatti, E., Freire, C. S. R., Silvestre, A. J. D., Neto, C. P., Gandini, A. 2011. “Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach”, Green Chemistry, 13, 419-27.
  • Tuzlakoglu, K., Bolgen, N., Salgado, A. J., Gomes, M. E., Piskin, E., Reis, R. L. (2005). “Nano-and micro-fiber combined scaffolds: A new architecture for bone tissue engineering”, Journal of materials science. Materials in Medicine, 16, 1099-104.
  • Wan, Y. Z., Huang, Y., Yuan, C. D., Raman, S., Zhu, Y., Jiang, H. J., He, F., Gao, C. 2007. “Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications”, Materials Science and Engineering, 27, 855-64.
  • Wittaya-areekul, S., Prahsarn, C. 2006. “Development and in vitro evaluation of chitosan-polysaccharides composite wound dressings”, International Journal of Pharmaceutics, 313, 123-8.
  • Yang, W., Yang, F., Wang, Y., Both, S. K., Jansen, J. A. 2013. “In vivo bone generation via the endochondral pathway on three-dimensional electrospun fibers”, Acta Biomaterialia, 9, 4505-12.
  • You, Y., Min, B.-M., Lee, S. J., Lee, T. S., Park, W. H. 2005. “In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide)”, Journal of Applied Polymer Science, 95, 193-200.
  • Zhou, H., Lee, J. 2011. “Nanoscale hydroxyapatite particles for bone tissue engineering”, Acta Biomaterialia, 7, 2769-81.
  • KU Leuven Department of Mechanical Engineering. “Multi-scale modeling in bone tissue engineering: from biomaterials to intracellular signaling cascades via the cell”. http://www.mech.kuleuven.be/en/bme/research/mechbio/ Son erişim tarihi: 06 Nisan 2014.
  • ChemWiki: The Dynamic Chemistry E-textbook. “Compare Cellulose and Starch Structures”. http://chemwiki.ucdavis.edu/@api/deki/files/522/260pxCellulose_strand.jpg?size=bestfit&width =352&height=310&revision=1 Son erişim tarihi: 06 Nisan 2014.
  • The Mining Company About.com. “Chemical structure of cellulose acetate”. http://chemistry.about.com/od/factsstructures/ig/Chemical-Structures---C/Cellulose-Acetate.htm Son erişim tarihi: 06 Nisan 2014.
APA Tezcaner A, Keskin D, ATİLA D, ATAOL S (2014). Kemik doku mühendisliğine yönelik elektroeğirilmiş bakteriyel selüloz temelli hücre taşıyıcılar. , 1 - 76.
Chicago Tezcaner Ayşen,Keskin Dilek,ATİLA Deniz,ATAOL Sibel Kemik doku mühendisliğine yönelik elektroeğirilmiş bakteriyel selüloz temelli hücre taşıyıcılar. (2014): 1 - 76.
MLA Tezcaner Ayşen,Keskin Dilek,ATİLA Deniz,ATAOL Sibel Kemik doku mühendisliğine yönelik elektroeğirilmiş bakteriyel selüloz temelli hücre taşıyıcılar. , 2014, ss.1 - 76.
AMA Tezcaner A,Keskin D,ATİLA D,ATAOL S Kemik doku mühendisliğine yönelik elektroeğirilmiş bakteriyel selüloz temelli hücre taşıyıcılar. . 2014; 1 - 76.
Vancouver Tezcaner A,Keskin D,ATİLA D,ATAOL S Kemik doku mühendisliğine yönelik elektroeğirilmiş bakteriyel selüloz temelli hücre taşıyıcılar. . 2014; 1 - 76.
IEEE Tezcaner A,Keskin D,ATİLA D,ATAOL S "Kemik doku mühendisliğine yönelik elektroeğirilmiş bakteriyel selüloz temelli hücre taşıyıcılar." , ss.1 - 76, 2014.
ISNAD Tezcaner, Ayşen vd. "Kemik doku mühendisliğine yönelik elektroeğirilmiş bakteriyel selüloz temelli hücre taşıyıcılar". (2014), 1-76.
APA Tezcaner A, Keskin D, ATİLA D, ATAOL S (2014). Kemik doku mühendisliğine yönelik elektroeğirilmiş bakteriyel selüloz temelli hücre taşıyıcılar. , 1 - 76.
Chicago Tezcaner Ayşen,Keskin Dilek,ATİLA Deniz,ATAOL Sibel Kemik doku mühendisliğine yönelik elektroeğirilmiş bakteriyel selüloz temelli hücre taşıyıcılar. (2014): 1 - 76.
MLA Tezcaner Ayşen,Keskin Dilek,ATİLA Deniz,ATAOL Sibel Kemik doku mühendisliğine yönelik elektroeğirilmiş bakteriyel selüloz temelli hücre taşıyıcılar. , 2014, ss.1 - 76.
AMA Tezcaner A,Keskin D,ATİLA D,ATAOL S Kemik doku mühendisliğine yönelik elektroeğirilmiş bakteriyel selüloz temelli hücre taşıyıcılar. . 2014; 1 - 76.
Vancouver Tezcaner A,Keskin D,ATİLA D,ATAOL S Kemik doku mühendisliğine yönelik elektroeğirilmiş bakteriyel selüloz temelli hücre taşıyıcılar. . 2014; 1 - 76.
IEEE Tezcaner A,Keskin D,ATİLA D,ATAOL S "Kemik doku mühendisliğine yönelik elektroeğirilmiş bakteriyel selüloz temelli hücre taşıyıcılar." , ss.1 - 76, 2014.
ISNAD Tezcaner, Ayşen vd. "Kemik doku mühendisliğine yönelik elektroeğirilmiş bakteriyel selüloz temelli hücre taşıyıcılar". (2014), 1-76.