(Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Kimya Mühendisliği Bölümü, Ankara, Türkiye)
(Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Kimya Mühendisliği Bölümü, Ankara, Türkiye)
(Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Kimya Mühendisliği Bölümü, Ankara, Türkiye)
Proje Grubu: TÜBİTAK MAG ProjeSayfa Sayısı: 55Proje No: 112M123Proje Bitiş Tarihi: 15.09.2014Türkçe

0 0
Kirlenmeye karşı dirençli poli(Eter sülfon) (Pes) bazlı kovuklu elyaf tipi mikrofiltrasyon membranlarının hazırlanması ve kirlenme davranışlarının analizi
  • [1] H. Strathmann and K. Kock; The formation mechanism of phase inversion membranes; Desalination 21 (3) (1977) 241–255
  • [2] P. Machado, A. Habert and C. Borges; Membrane formation mechanism based on precipitation kinetics and membrane morphology: Flat and hollow fiber polysulfone membranes; Journal of Membrane Science 155 (2) (1999) 171–183
  • [3] K. Kimmerle and H. Strathmann; Analysis of the structure-determining process of phase inversion membranes; Desalination 79 (2-3) (1990) 283–302
  • [4] P. Le-Clech, V. Chen and T. Fane; Fouling in membrane bioreactors used in wastewater treatment; Journal of Membrane Science 284 (1-2) (2006) 17–53
  • [5] K. Howe and M. Clark; Fouling of microfiltration and ultrafiltration membranes by natural waters; Environmental Science and Technology 36 (16) (2002) 3571–3576
  • [6] S.-T. Kang, A. Subramani, E. Hoek, M. Deshusses and M. Matsumoto; Direct observation of biofouling in cross-flow microfiltration: Mechanisms of deposition and release; Journal of Membrane Science 244 (1-2) (2004) 151–165
  • [7] D. Airey, S. Yao, J. Wu, V. Chen, A. Fane and J. Pope; An investigation of concentration polarization phenomena in membrane filtration of colloidal silica suspensions by NMR micro-imaging; Journal of Membrane Science 145 (2) (1998) 145–158
  • [8] J. Howell; Sub-critical flux operation of microfiltration; Journal of Membrane Science 107 (1-2) (1995) 165–171
  • [9] P. Çulfaz, M. Haddad, M. Wessling and R. Lammertink; Fouling behavior of microstructured hollow fibers in cross-flow filtrations: Critical flux determination and direct visual observation of particle deposition; Journal of Membrane Science 372 (1-2) (2011) 210–218
  • [10] P. Çulfaz, S. Buetehorn, L. Utiu, M. Kueppers, B. Bluemich, T. Melin, M. Wessling and R. Lammer-tink; Fouling behavior of microstructured hollow fiber membranes in dead-end filtrations: Critical flux determination and NMR imaging of particle deposition; Langmuir 27 (5) (2011) 1643–1652
  • [11] Y.-Q. Wang, T. Wang, Y.-L. Su, F.-B. Peng, H. Wu and Z.-Y. Jiang; Remarkable reduction of irre-versible fouling and improvement of the permeation properties of poly(ether sulfone) ultrafiltration membranes by blending with pluronic F127 ; Langmuir 21 (25) (2005) 11856–11862
  • [12] H. Susanto and M. Ulbricht; Characteristics, performance and stability of polyethersulfone ultrafilt-ration membranes prepared by phase separation method using different macromolecular additives; Journal of Membrane Science 327 (1-2) (2009) 125–135
  • [13] D. Wu, J. Howell and R. Field; Critical flux measurement for model colloids; Journal of Membrane Science 152 (1) (1999) 89–98
  • [14] P. van der Marel, A. Zwijnenburg, A. Kemperman, M. Wessling, H. Temmink and W. van der Meer; An improved flux-step method to determine the critical flux and the critical flux for irreversibility in a membrane bioreactor ; Journal of Membrane Science 332 (1-2) (2009) 24–29
  • [15] P. Bacchin, P. Aimar and R. Field; Critical and sustainable fluxes: Theory, experiments and applications; Journal of Membrane Science 281 (1-2) (2006) 42–69
  • [16] D. Krstic, M. Tekic, M. Caric and S. Milanovic; The effect of turbulence promoter on cross-flow microfiltration of skim milk; Journal of Membrane Science 208 (1-2) (2002) 303–314
  • [17] H. Susanto, M. Balakrishnan and M. Ulbricht; Via surface functionalization by photograft copoly-merization to low-fouling polyethersulfone-based ultrafiltration membranes; Journal of Membrane Science 288 (1-2) (2007) 157–167
  • [18] D. Rana and T. Matsuura; Surface modifications for antifouling membranes; Chemical Reviews 110 (4) (2010) 2448–2471
  • [19] R. Baker; Membrane Technology and Applications (2004); John Wiley and Sons; 72
  • [20] F. Liu, N. Hashim, Y. Liu, M. Abed and K. Li; Progress in the production and modification of PVDF membranes; Journal of Membrane Science 375 (1-2) (2011) 1–27
  • [21] C. Loh, R. Wang, L. Shi and A. Fane; Fabrication of high performance polyethersulfone UF hollow fiber membranes using amphiphilic Pluronic block copolymers as pore-forming additives; Journal of Membrane Science 380 (1-2) (2011) 114–123
  • [22] W. Gombotz, W. Guanghui, T. Horbett and A. Hoffman; Protein adsorption to poly(ethylene oxide) surfaces; Journal of Biomedical Materials Research 25 (12) (1991) 1547–1562
  • [23] S. Jeon, J. Lee, J. Andrade and P. De Gennes; Protein-surface interactions in the presence of polyethylene oxide. I. Simplified theory; Journal of Colloid And Interface Science 142 (1) (1991) 149–158
  • [24] S. Jeon and J. Andrade; Protein-surface interactions in the presence of polyethylene oxide. II. Effect of protein size; Journal of Colloid And Interface Science 142 (1) (1991) 159–166
  • [25] M. Zhou, H. Liu, J. Kilduff, R. Langer, D. Anderson and G. Belfort; High-throughput membrane surface modification to control NOM fouling; Environmental Science and Technology 43 (10) (2009) 3865–3871
  • [26] H. Susanto and M. Ulbricht; Photografted thin polymer hydrogel layers on PES ultrafiltration membranes: characterization, stability, and influence on separation performance; Langmuir 23 (14) (2007) 7818–7830
  • [27] A. Adout, S. Kang, A. Asatekin, A. Mayes and M. Elimelech; Ultrafiltration membranes incorporating amphiphilic comb copolymer additives prevent irreversible adhesion of bacteria; Environmental Science and Technology 44 (7) (2010) 2406–2411
  • [28] A. Asatekin, S. Kang, M. Elimelech and A. Mayes; Anti-fouling ultrafiltration membranes conta-ining polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives; Journal of Membrane Science 298 (1-2) (2007) 136–146
  • [29] S. Kang, A. Asatekin, A. Mayes and M. Elimelech; Protein antifouling mechanisms of PAN UF membranes incorporating PAN-g-PEO additive; Journal of Membrane Science 296 (1-2) (2007) 42–50
  • [30] A. Asatekin and A. Mayes; Oil industry wastewater treatment with fouling resistant membranes containing amphiphilic comb copolymers; Environmental Science and Technology 43 (12) (2009) 4487–4492
  • [31] P. Çulfaz, E. Rolevink, C. van Rijn, R. Lammertink and M. Wessling; Microstructured hollow fibers for ultrafiltration; Journal of Membrane Science 347 (1-2) (2010) 32–41
  • [32] Y. Liu, G. Koops and H. Strathmann; Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore liquid solution; Journal of Membrane Science 223 (1-2) (2003) 187–199
  • [33] S. Platt, M. Mauramo, S. Butylina and M. Nyström; Retention of pegs in cross-flow ultrafiltration through membranes; Desalination 149 (1-3) (2002) 417–422
  • [34] M. Mulder; Basic Principles of Membrane Technology (1996); Kluwer Publications; 416-463
  • [35] R. Perry and D. Green; Perry’s Chemical Engineers’ Handbook; McGraw-Hill; 5-62 - 5-64
  • [36] D. Miller, D. Paul and B. Freeman; A crossflow filtration system for constant permeate flux membrane fouling characterization; Review of Scientific Instruments 84 (3)
  • [37] R. Boom, H. Reinders, H. Rolevink, T. Van Den Boomgaard and C. Smolders; Equilibrium thermodynamics of a quaternary membrane-forming system with two polymers. 2. Experiments; Macromolecules 27 (8) (1994) 2041–2044
  • [38] J. Barzin and B. Sadatnia; Correlation between macrovoid formation and the ternary phase diagram for polyethersulfone membranes prepared from two nearly similar solvents; Journal of Membrane Science 325 (1) (2008) 92–97
  • [39] D. Xing, N. Peng and T.-S. Chung; Formation of cellulose acetate membranes via phase inversion using ionic liquid, [BMIM]SCN, As the solvent; Industrial and Engineering Chemistry Research 49 (18) (2010) 8761–8769
  • [40] R. Bird, W. Stewart and E. Lightfoot; Transport Phenomena (2002); John Wiley and Sons
  • [41] C. Smolders, A. Reuvers, R. Boom and I. Wienk; Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids; Journal of Membrane Science 73 (2-3) (1992) 259–275
  • [42] H. Tsai, C. Kuo, J. Lin, D. Wang, A. Deratani, C. Pochat-Bohatier, K. Lee and J. Lai; Morphology control of polysulfone hollow fiber membranes via water vapor induced phase separation; Journal of Membrane Science 278 (1-2) (2006) 390–400
  • [43] H. Ohya, S. Shiki and H. Kawakami; Fabrication study of polysulfone hollow-fiber microfiltration membranes: Optimal dope viscosity for nucleation and growth; Journal of Membrane Science 326 (2) (2009) 293–302
  • [44] W. Albrecht, K. Kneifel, T. Weigel, R. Hilke, R. Just, M. Schossig, K. Ebert and A. Lendlein; Preparation of highly asymmetric hollow fiber membranes from poly(ether imide) by a modified dry-wet phase inversion technique using a triple spinneret; Journal of Membrane Science 262 (1-2) (2005) 69–80
  • [45] H. Susanto, N. Stahra and M. Ulbricht; High performance polyethersulfone microfiltration memb-ranes having high flux and stable hydrophilic property; Journal of Membrane Science 342 (1-2) (2009) 153–164
  • [46] J.-F. Li, Z.-L. Xu, H. Yang, L.-Y. Yu and M. Liu; Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane; Applied Surface Science 255 (9) (2009) 4725–4732
  • [47] A. Alhadidi, A. Kemperman, J. Schippers, M. Wessling and W. van der Meer; The influence of membrane properties on the Silt Density Index; Journal of Membrane Science 384 (1-2) (2011) 205–218
  • [48] J.-J. Qin, F.-S. Wong, Y. Li and Y.-T. Liu; A high flux ultrafiltration membrane spun from PSU/PVP (K90)/DMF/1,2-propanediol; Journal of Membrane Science 211 (1) (2003) 139–147
  • [49] B. Torrestiana-Sanchez, R. Ortiz-Basurto and E. Brito-De La Fuente; Effect of nonsolvents on properties of spinning solutions and polyethersulfone hollow fiber ultrafiltration membranes; Journal of Membrane Science 152 (1) (1999) 19–28
  • [50] L. Zeman and A. Zydney; Microfiltration and Ultrafiltration - Principles and Applications (1996); Marcel Dekker
  • [51] S.-J. Shin, J.-P. Kim, H.-J. Kim, J.-H. Jeon and B.-R. Min; Preparation and characterization of polyethersulfone microfiltration membranes by a 2-methoxyethanol additive; Desalination 186 (1-3) (2005) 1–10
  • [52] Y. Ye, P. Le Clech, V. Chen, A. Fane and B. Jefferson; Fouling mechanisms of alginate solutions as model extracellular polymeric substances; Desalination 175 (1 SPEC. ISS.) (2005) 7–20
  • [53] C.-C. Ho and A. Zydney; A combined pore blockage and cake filtration model for protein fouling during microfiltration; Journal of Colloid and Interface Science 232 (2) (2000) 389–399
  • [54] E. Arkhangelsky, D. Kuzmenko and V. Gitis; Impact of chemical cleaning on properties and functioning of polyethersulfone membranes; Journal of Membrane Science 305 (1-2) (2007) 176– 184
  • [55] N. Scharnagl and H. Buschatz; Polyacrylonitrile (PAN) membranes for ultra- and microfiltration; Desalination 139 (1-3) (2001) 191–198

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.