0 0

Proje Grubu: MAG Sayfa Sayısı: 138 Proje No: 111M646 Proje Bitiş Tarihi: 01.11.2014 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Ultra yüksek moleküler ağırlıklı polietilenin çok ölçekli modellenmesi

Öz:
-
Anahtar Kelime:

Erişim Türü: Erişime Açık
  • Ahzi, S., Lee, B. J., Asaro, R. J. 1994. “Plasticity and anisotropy evolution in crystalline polymers”, Materials Science and Engineering: A, 189(1), 35-44.
  • Alvarado-Contreras, J. A., Polak, M. A., Penlidis, A. 2010. “Constitutive modeling of damage evolution in semicrystalline polyethylene”, Journal of Engineering Materials and Technology, 132(4), 041009.
  • Argon, A. S., Galeski, A., Kazmierczak, T. 2005. “Rate mechanisms of plasticity in semi-crystalline polyethylene”, Polymer, 46(25), 11798-11805.
  • Arruda, E. M., Boyce, M. C. 1993. ”A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials”, Journal of the Mechanics and Physics of Solids, 41(2), 389-412.
  • Arruda, E.M., Boyce, M.C., 1993. “A three- dimensional constitutive model for the large stretch behavior of rubber elastic materials.” J. Mech. Phys. Solids 41, 389–412.
  • Avanzini, A. 2008. “Mechanical characterization and finite element modelling of cyclic stress– strain behaviour of ultra high molecular weight polyethylene”, Materials Design, 29(2), 330-343.
  • Ayoub, G., Zaïri, F., Naït-Abdelaziz, M., Gloaguen, J. M. 2010. “Modelling large deformation behaviour under loading–unloading of semicrystalline polymers: application to a high density polyethylene”, International Journal of Plasticity, 26(3), 329-347.
  • Bartczak, Z., Argon, A. S., Cohen, R. E. 1992. “Deformation mechanisms and plastic resistance in single-crystal-textured high-density polyethylene”, Macromolecules, 25(19), 5036-5053.
  • Bartczak, Z., Argon, A. S., Cohen, R. E. 1992. “Deformation mechanisms and plastic resistance in single-crystal-textured high-density polyethylene”, Macromolecules, 25(19), 5036-5053.
  • Bartczak, Z., Galeski, A. 2010. “Plasticity of semicrystalline polymers”, In Macromolecular symposia, 294(1), 67-90.
  • Bazant, Z.P., B.H. Oh. 1986 “Efficient numerical integration on the surface of a sphere.” Z. Angew. Math. Mech. 66, 37-49
  • Berger, R. A., Rosenberg, A. G., Barden, R. M., Sheinkop, M. B., Jacobs, J. J., Galante, J. O. 2001. “Long-term followup of the Miller-Galante total knee replacement”, Clinical orthopaedics and related research, 388, 58-67.
  • Bergström, J. S., Kurtz, S. M., Rimnac, C. M., Edidin, A. A. 2002. “Constitutive modeling of ultra-high molecular weight polyethylene under large-deformation and cyclic loading conditions”, Biomaterials, 23(11), 2329-2343.
  • Bergström, J. S., Rimnac, C. M., Kurtz, S. M. 2003. “Prediction of multiaxial mechanical behavior for conventional and highly crosslinked UHMWPE using a hybrid constitutive model”, Biomaterials, 24(8), 1365-1380.
  • Bergström, J. S., Rimnac, C. M., Kurtz, S. M. 2004. “An augmented hybrid constitutive model for simulation of unloading and cyclic loading behavior of conventional and highly crosslinked UHMWPE”, Biomaterials, 25(11), 2171-2178.
  • Brooks, N. W. J., Mukhtar, M. 2000. “Temperature and stem length dependence of the yield stress of polyethylene”, Polymer, 41(4), 1475-1480.
  • Callister, W. D., Rethwisch, D. G. 2007. “Materials science and engineering: an introduction”, New York, Wiley.
  • Cho, C. H., Murakami, T., Sawae, Y., Sakai, N., Miura, H., Kawano, T., Iwamoto, Y. 2003. “Elasto-plastic contact analysis of an ultra-high molecular weight polyethylene tibial component based on geometrical measurement from a retrieved knee prosthesis”, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 218(4), 251-259.
  • Crist, B., Fisher, C. J., & Howard, P. R. 1989. “Mechanical properties of model polyethylenes: tensile elastic modulus and yield stress”, Macromolecules, 22(4), 1709-1718.
  • Crist, B., Fisher, C. J., Howard, P. R. 1989. “Mechanical properties of model polyethylenes: tensile elastic modulus and yield stress”, Macromolecules, 22(4), 1709-1718.
  • Danielsson, M., Parks, D. M., Boyce, M. C. 2002. “Three-dimensional micromechanical modeling of voided polymeric materials”. Journal of the Mechanics and Physics of Solids, 50(2), 351-379.
  • Darras, O., Seguela, R. 1993. “Tensile yield of polyethylene in relation to crystal thickness”, Journal of Polymer Science Part B: Polymer Physics, 31(7), 759-766.
  • de Souza Neto, E. A., Peric, D., Owen, D. R. J. 2008. “Computational methods for plasticity: theory and applications”. Singapore, John Wiley & Sons.
  • Doi, M., Edwards, S.F., 1986. “The Theory of Polymer Dynamics”. Oxford, Clarendon Press.
  • Dreinhöfer, K. E., Dieppe, P., Stürmer, T., Gröber-Grätz, D., Flören, M., Günther, K. P., ... Brenner, H. 2006. “Indications for total hip replacement: comparison of assessments of orthopaedic surgeons and referring physicians”. Annals of the rheumatic diseases, 65(10), 1346-1350.
  • Drozdov, A. D. 2003. “A model for the elastoplastic behavior of isotactic poly (propylene) below the yield point,” Macromolecular Materials and Engineering, 288(2), 164-174.
  • Dusunceli, N., Colak, O. U. 2006. “High density polyethylene (HDPE): Experiments and modeling”, Mechanics of Time-Dependent Materials, 10(4), 331-345.
  • Farrar, D. F., Brain, A. A. 1997. “The microstructure of ultra-high molecular weight polyethylene used in total joint replacements”, Biomaterials, 18(24), 1677-1685.
  • Fisher, J., Jennings, L. M., Galvin, A. L., Jin, Z. M., Stone, M. H., Ingham, E. 2010. “2009 Knee Society presidential guest lecture: polyethylene wear in total knees”, Clinical Orthopaedics and Related Research®, 468(1), 12-18.
  • Fouad, H. 2011. “In vitro evaluation of stiffness graded artificial hip joint femur head in terms of joint stresses distributions and dimensions: finite element study”, Journal of Materials Science: Materials in Medicine, 22(6), 1589-1598.
  • Galeski, A. 2003. “Strength and toughness of crystalline polymer systems”, Progress in Polymer Science, 28(12), 1643-1699.
  • Gautam, S., Balijepalli, S., Rutledge, G. C. 2000. “Molecular simulations of the interlamellar phase in polymers: effect of chain tilt”, Macromolecules, 33(24), 9136-9145.
  • G'sell, C., & Dahoun, A. (1994) . Evolution of microstructure in semi -crystalline polymers under large plastic deformation. Materials Science and Engineering: A, 175(1), 183-199. Uchida, M., Tada, N. 2013. “Micro-, meso-to macroscopic modeling of deformation behavior of semi-crystalline polymer”, International Journal of Plasticity, 49, 164-184.
  • Guedes, R. M. 2011. “A viscoelastic model for a biomedical ultra-high molecular weight polyethylene using the time–temperature superposition principle”, Polymer testing, 30(3), 294-302.
  • Gueguen, O., Ahzi, S., Makradi, A., Belouettar, S. 2010, “A new three-phase model to estimate the effective elastic properties of semi-crystalline polymers: application to PET”, Mechanics of Materials, 42(1), 1-10.
  • Halloran, J. P., Petrella, A. J., Rullkoetter, P. J. 2005. “Explicit finite element modeling of total knee replacement mechanics”, Journal of biomechanics, 38(2), 323-331.
  • Havner, K. S. 2005. “On lattice and material-frame rotations and crystal hardening in high-symmetry axial loading”, Philosophical Magazine, 85(25), 2861-2894.
  • Heinrich, G., Straube, E., Helmis, G., 1988. “Rubber elasticity of polymer networks: theories”. Adv. Polym. Sci. 85, 33–87.
  • Hood R.W., T.M. Wright, and A.H. Burstein. 1983. “Retrieval analysis of total knee pros-theses: A method and its application to 48 total condylar prostheses”, J Biomed Mater Res 17:829–842.
  • Hopkins, A. R., New, A. M., Rodriguez-y -Baena, F., Taylor, M. 2010. “Finite element analysis of unicompartmental knee arthroplasty”, Medical engineering physics, 32(1), 14-21.
  • Hsia, K. J., Xin, Y. B., Lin, L. 1994. “Numerical simulation of semi-crystalline nylon 6: elastic constants of crystalline and amorphous parts”, Journal of materials science, 29(6), 1601-1611.
  • Huan, Q., Zhu, S., Ma, Y., Zhang, J., Zhang, S., Feng, X., Han K., Yu, M. 2013. Markedly improving mechanical properties for isotactic polypropylene with large-size spherulites by pressure-induced flow processing. Polymer, 54(3), 1177-1183.
  • Ingham, E., Fisher, J. 2000. “Biological reactions to wear debris in total joint replacement”, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 214(1), 21-37.
  • Ingham, E., Fisher, J. 2000. “Biological reactions to wear debris in total joint replacement”, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 214(1), 21-37.
  • James, A.G., Green, A., Simpson, G.M., 1975. “Strain energy functions of rubber. I. Characterization of gum vulcanizates”. J. Appl. Polym. Sci. 19, 2033–2058.
  • Katti, K. S. 2004. “Biomaterials in total joint replacement. Colloids and Surfaces B: Biointerfaces”, 39(3), 133-142.
  • Kazmierczak, T., Galeski, A., Argon, A. S. 2005. “Plastic deformation of polyethylene crystals as a function of crystal thickness and compression rate”, Polymer, 46(21), 8926-8936.
  • Keller, A. 1957. “A note on single crystals in polymers: evidence for a folded chain configuration”, Philosophical Magazine, 2(21), 1171-1175.
  • Kovalchenko, A., Ajayi, O., Erdemir, A., Fenske, G., Etsion, I. 2005. “The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact.”, Tribology International, 38(3), 219-225.
  • Kovalchenko, A., Ajayi, O., Erdemir, A., Fenske, G., Etsion, I. 2005. “The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact.”, Tribology International, 38(3), 219-225.
  • Kuhn, W., 1934. “Uber die Gestalt fadenförmiger Moleküle in Lösungen”. Kolloid-Z. 68, 2–15
  • Kurtz S.M., D.L. Bartel, and C.M. Rimnac. 1998. “Post-irradiation aging affects the stresses and strains in UHMWPE components for total joint replacement”, Clin Orthop 350:209–220.
  • Kurtz, S. M. 2004. “The UHMWPE handbook: ultra-high molecular weight polyethylene in total joint replacement”. California, Academic Press.
  • Kurtz, S. M. 2009. “UHMWPE biomaterials handbook: ultra high molecular weight polyethylene in total joint replacement and medical devices”, Academic Press.
  • Kustandi, T. S., Choo, J. H., Low, H. Y., Sinha, S. K. 2010. “Texturing of UHMWPE surface via NIL for low friction and wear properties”, Journal of Physics D: Applied Physics, 43(1), 015301.
  • Lee, B. J., Ahzi, S., Asaro, R. J. 1995. “On the plasticity of low symmetry crystals lacking five independent slip systems”, Mechanics of materials, 20(1), 1-8.
  • Lee, B. J., Argon, A. S., Parks, D. M., Ahzi, S., Bartczak, Z. 1993. “Simulation of large strain plastic deformation and texture evolution in high density polyethylene”, Polymer, 34(17), 3555-3575.
  • Lee, B. J., Parks, D. M., Ahzi, S. 1993. “Micromechanical modeling of large plastic deformation and texture evolution in semi-crystalline polymers”, Journal of the Mechanics and Physics of Solids, 41(10), 1651-1687.
  • Lee, B. J., Parks, D. M., Ahzi, S. 1993. “Micromechanical modeling of large plastic deformation and texture evolution in semi-crystalline polymers”. Journal of the Mechanics and Physics of Solids, 41(10), 1651-1687.
  • Lee, E.H., 1969. “Elastic-plastic deformation at finite strains”. Journal of Applied Mechanics: Transactions of the ASME 36, 1–6.
  • Li, D. S., Garmestani, H., Ahzi, S., Khaleel, M., Ruch, D. 2009. “Microstructure design to improve wear resistance in bioimplant UHMWPE materials”, Journal of Engineering Materials and Technology, 131(4), 041211.
  • Lin, L., Argon, A. S. 1994. “Rate mechanism of plasticity in the crystalline component of semicrystalline nylon 6”, Macromolecules, 27(23), 6903-6914.
  • Lin, L., Argon, A. S. 1994. “Structure and plastic deformation of polyethylene”, Journal of Materials Science, 29(2), 294-323.
  • López-Cervantes, A., Domínguez-López, I., Barceinas-Sánchez, J. D. O., García-García, A. L. 2013. “Effects of surface texturing on the performance of biocompatible UHMWPE as a bearing material duringin vitro lubricated sliding/rolling motion”, Journal of the mechanical behavior of biomedical materials, 20, 45-53.
  • Meine, K., Schneider, T., Spaltmann, D., Santner, E. 2002. “The influence of roughness on friction: Part I: The influence of a single step”, Wear, 253(7), 725-732.
  • Meine, K., Schneider, T., Spaltmann, D., Santner, E. 2002a. “The influence of roughness on friction: Part II. The influence of multiple steps”, Wear, 253(7), 733-738.
  • Miehe, C., Göktepe, S., Lulei, F. 2004. “A micro-macro approach to rubber- like materials— part I: the non-affine micro-sphere model of rubber elasticity”. Journal of the Mechanics and Physics of Solids, 52(11), 2617-2660.
  • Mura, T. 1987. “Micromechanics of Defects in Solids.”, Martinus Nijhoff Publishers
  • Museum of Healthcare at Kingston, “Hinged Knee Replacement”, http://www.museumofhealthcare.ca/images/exhibits/kneedesign_03.gif, Son erişim tarihi: 28 Aralık 2014
  • Nemat-Nasser S., Hori. M. 1999. “Micromechanics: Overall Properties of Heterogeneous Materials”, North Holland, Elsevier
  • Nikolov, S., Doghri, I., Pierard, O., Zealouk, L., Goldberg, A. 2002. “Multi -scale constitutive modeling of the small deformations of semi-crystalline polymers”, Journal of the Mechanics and Physics of Solids, 50(11), 2275-2302.
  • Nikolov, S., Lebensohn, R. A., Raabe, D. 2006. “Self-consistent modeling of large plastic deformation, texture and morphology evolution in semi-crystalline polymers”, Journal of the Mechanics and Physics of Solids, 54(7), 1350-1375.
  • Oleinik, E. F. 2003. “Plasticity of semicrystalline flexible-chain polymers at the microscopic and mesoscopic levels”, Polymer science. Series C, 45, 17-117.
  • Parks, D. M., Ahzi, S. 1990. “Polycrystalline plastic deformation and texture evolution for crystals lacking five independent slip systems”, Journal of the Mechanics and Physics of Solids, 38(5), 701-724.
  • Peacock, A. 2000. “Handbook of polyethylene: structures: properties, and applications”, CRC Press.
  • Peterson, J. M. 1966. “Thermal initiation of screw dislocations in polymer crystal platelets”, Journal of Applied Physics, 37(11), 4047-4050.
  • Regis, M., Bracco, P., Giorgini, L., Fusi, S., Dalla Pria, P., Costa, L., Schmid, C. 2014. “Correlation between in vivo stresses and oxidation of UHMWPE in total hip arthroplasty”, Journal of Materials Science: Materials in Medicine, 25(9), 2185-2192.
  • Rice, J. R. 1971. “Inelastic constitutive relations for solids: an internal- variable theory and its application to metal plasticity”, Journal of the Mechanics and Physics of Solids, 19(6), 433-455.
  • Ripoll, M. R., Podgornik, B., Vižintin, J. 2011. “Finite element analysis of textured surfaces under reciprocating sliding”, Wear, 271(5), 952-959.
  • Sai, K., Laiarinandrasana, L., Naceur, I. B., Besson, J., Jeridi, M., Cailletaud, G. 2011. “Multi-mechanism damage-plasticity model for semi-crystalline polymer: Creep damage of notched specimen of PA6”, Materials Science and Engineering: A, 528(3), 1087-1093.
  • Sakurai, K., Nakajo, A., Takahashi, T., Takahashi, S., Kawazura, T., Mizoguchi, T. (1996). “Structure and mechanical properties of UHMWPE/EPT blends and their vulcanizates”, Polymer, 37(17), 3953-3957.
  • Sawano, H., Warisawa, S. I., Ishihara, S. 2009. “Study on long life of artificial joints by investigating optimal sliding surface geometry for improvement in wear resistance. Precision engineering”, 33(4), 492-498.
  • Shadrake, L. G., Guiu, F. 1976. “Dislocations in polyethylene crystals: line energies and deformation modes”, Philosophical Magazine, 34(4), 565-581.
  • Sobieraj, M. C., Rimnac, C. M. 2009. “Ultra high molecular weight polyethylene: mechanics, morphology, and clinical behavior”, Journal of the mechanical behavior of biomedical materials, 2(5), 433-443.
  • Taylor, G. I. 1938. “Plastic strain in metals” J. Inst. Metals, 62, 307–324.
  • Thadani, P. J., Vince, K. G., Ortaaslan, S. G., Blackburn, D. C., Cudiamat, C. V. 2000. “Ten-to 12-year followup of the Insall-Burstein I total knee prosthesis”, Clinical orthopaedics and related research, 380, 17-29.
  • Treloar, L.R.G., 1944. “Stress–strain data for vulcanised rubber under various types of deformation”. Trans.Faraday Soc. 40, 59–70.
  • Treloar, L.R.G., 1975. “The Physics of Rubber Elasticity, 3rd Edition”. Oxford, Clarendon Press.
  • Uchida, M., Tokuda, T., Tada, N. 2010. “Finite element simulation of deformation behavior of semi-crystalline polymers with multi -spherulitic mesostructure”, International Journal of Mechanical Sciences, 52(2), 158-167.
  • Van Dommelen, J. V., Parks, D. M., Boyce, M. C., Brekelmans, W. A. M., Baaijens, F. P. T. 2003. “Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers”, Journal of the Mechanics and Physics of Solids, 51(3), 519-541.
  • Van Dommelen, J. V., Parks, D. M., Boyce, M. C., Brekelmans, W. A. M., Baaijens, F. P. T. 2003. “Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers”. Journal of the Mechanics and Physics of Solids, 51(3), 519-541.
  • Wang, C., Zhao, Y., Song, J., Han, B., Wang, D. 2009. “Integrated polymer spherulites growing from one homogeneous nucleation site in supercritical fluid”, New Journal of Chemistry, 33(9), 1841-1844.
  • Wright, S. J., Nocedal, J. 1999. “Numerical optimization (Vol. 2)”. New York: Springer.
  • Yang, W., Chen, M. X. 2001. “Modeling of large plastic deformation in crystalline polymers”, Journal of the Mechanics and Physics of Solids, 49(11), 2719-2736.
  • Young, R. J. 1974. “A dislocation model for yield in polyethylene”, Philosophical magazine, 30(1), 85-94.
  • Zeng, F., Le Grognec, P., Lacrampe, M. F., Krawczak, P. 2010. “A constitutive model for semi-crystalline polymers at high temperature and finite plastic strain: Application to PA6 and PE biaxial stretching”, Mechanics of Materials, 42(7), 686-697.
  • Zhang, B., Huang, W., Wang, J., Wang, X. 2013. “Comparison of the effects of surface texture on the surfaces of steel and UHMWPE”, Tribology International, 65, 138-145.
  • Zohdi, T. I., Wriggers. P. 1999. “Introduction to Computational Micromechanics.” Holland-Elsevier, Springer
APA GÜRSES E, OKTAY H, SAEIDI F, GÖLCÜK A (2014). Ultra yüksek moleküler ağırlıklı polietilenin çok ölçekli modellenmesi. , 1 - 138.
Chicago GÜRSES Ercan,OKTAY H. Emre,SAEIDI Farid,GÖLCÜK Ali İhsan Ultra yüksek moleküler ağırlıklı polietilenin çok ölçekli modellenmesi. (2014): 1 - 138.
MLA GÜRSES Ercan,OKTAY H. Emre,SAEIDI Farid,GÖLCÜK Ali İhsan Ultra yüksek moleküler ağırlıklı polietilenin çok ölçekli modellenmesi. , 2014, ss.1 - 138.
AMA GÜRSES E,OKTAY H,SAEIDI F,GÖLCÜK A Ultra yüksek moleküler ağırlıklı polietilenin çok ölçekli modellenmesi. . 2014; 1 - 138.
Vancouver GÜRSES E,OKTAY H,SAEIDI F,GÖLCÜK A Ultra yüksek moleküler ağırlıklı polietilenin çok ölçekli modellenmesi. . 2014; 1 - 138.
IEEE GÜRSES E,OKTAY H,SAEIDI F,GÖLCÜK A "Ultra yüksek moleküler ağırlıklı polietilenin çok ölçekli modellenmesi." , ss.1 - 138, 2014.
ISNAD GÜRSES, Ercan vd. "Ultra yüksek moleküler ağırlıklı polietilenin çok ölçekli modellenmesi". (2014), 1-138.
APA GÜRSES E, OKTAY H, SAEIDI F, GÖLCÜK A (2014). Ultra yüksek moleküler ağırlıklı polietilenin çok ölçekli modellenmesi. , 1 - 138.
Chicago GÜRSES Ercan,OKTAY H. Emre,SAEIDI Farid,GÖLCÜK Ali İhsan Ultra yüksek moleküler ağırlıklı polietilenin çok ölçekli modellenmesi. (2014): 1 - 138.
MLA GÜRSES Ercan,OKTAY H. Emre,SAEIDI Farid,GÖLCÜK Ali İhsan Ultra yüksek moleküler ağırlıklı polietilenin çok ölçekli modellenmesi. , 2014, ss.1 - 138.
AMA GÜRSES E,OKTAY H,SAEIDI F,GÖLCÜK A Ultra yüksek moleküler ağırlıklı polietilenin çok ölçekli modellenmesi. . 2014; 1 - 138.
Vancouver GÜRSES E,OKTAY H,SAEIDI F,GÖLCÜK A Ultra yüksek moleküler ağırlıklı polietilenin çok ölçekli modellenmesi. . 2014; 1 - 138.
IEEE GÜRSES E,OKTAY H,SAEIDI F,GÖLCÜK A "Ultra yüksek moleküler ağırlıklı polietilenin çok ölçekli modellenmesi." , ss.1 - 138, 2014.
ISNAD GÜRSES, Ercan vd. "Ultra yüksek moleküler ağırlıklı polietilenin çok ölçekli modellenmesi". (2014), 1-138.