Seçkin KÜRKÇÜOĞLI
(Orta Doğu Teknik Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, Ankara, Türkiye)
Proje Grubu: TÜBİTAK TBAG ProjeSayfa Sayısı: 25Proje No: 110T738Proje Bitiş Tarihi: 01.10.2013Türkçe

0 0
Fuzzy ekstra boyutlu uzaylarda kuantum alan teorileri
  • Aschieri, P., Grammatikopoulos, T., Steinacker, H., ve Zoupanos, G. (2006). “Dynamical gen-eration of fuzzy extra dimensions, dimensional reduction and symmetry breaking”. JHEP 0609 (2006), p. 026. DOI: 10 . 1088 / 1126 - 6708 / 2006 / 09 / 026. arXiv: hep - th / 0606021 [hep-th].
  • Balachandran, A.P., Bimonte, G., Ercolessi, E., Landi, G., Lizzi, F., Sparano, G., ve Teotonio-Sobrinho, P. (1995). “Finite quantum physics and noncommutative geometry”. Nucl.Phys. Proc.Suppl. 37C (1995), pp. 20–45. arXiv: hep-th/9403067 [hep-th].
  • Balachandran, A.P., Kurkcuoglu, S., ve Queiroz, A. R. de (2013). “Spontaneous Breaking of Lorentz Symmetry and Vertex Operators for Vortices”. Mod.Phys.Lett. A28 (2013), p. 1350028. DOI: 10.1142/S0217732313500284. arXiv: 1208.3175 [hep-th].
  • Balachandran, A.P., Kurkcuoglu, S., ve Vaidya, S. (2007). Lectures on Fuzzy and Fuzzy SUSY Physics. Singapore: World Scientific, 2007.
  • Banks, T., Fischler, W., Shenker, S.H., ve Susskind, L. (1997). “M theory as a matrix model: A Conjecture”. Phys.Rev. D55 (1997), pp. 5112–5128. DOI: 10.1103/PhysRevD.55.5112. arXiv: hep-th/9610043 [hep-th].
  • Behr, W., Meyer, F., ve Steinacker, H. (2005). “Gauge theory on fuzzy S**2 x S**2 and reg-ularization on noncommutative R**4”. JHEP 0507 (2005), p. 040. DOI: 10 . 1088 / 1126 - 6708/2005/07/040. arXiv: hep-th/0503041 [hep-th].
  • Chatzistavrakidis, A., Steinacker, H., ve Zoupanos, G. (2010a). “On the fermion spectrum of spontaneously generated fuzzy extra dimensions with fluxes”. Fortsch.Phys. 58 (2010), pp. 537–552. DOI: 10.1002/prop.201000018. arXiv: 0909.5559 [hep-th].
  • Chatzistavrakidis, A., Steinacker, H., ve Zoupanos, G. (2010b). “Orbifolds, fuzzy spheres and chiral fermions”. JHEP 1005 (2010), p. 100. DOI: 10.1007/JHEP05(2010)100. arXiv: 1002. 2606 [hep-th].
  • Connes, A. (1994). Non-Commutative Geometry. San Diego: Academic Press, 1994.
  • Dolan, B. P. ve Szabo, R. J. (2009). “Dimensional Reduction, Monopoles and Dynamical Sym-metry Breaking”. JHEP 0903 (2009), p. 059. DOI: 10 . 1088 / 1126 - 6708 / 2009 / 03 / 059. arXiv: 0901.2491 [hep-th].
  • Douglas, M. R. ve Nekrasov, N. A. (2001). “Noncommutative field theory”. Rev.Mod.Phys. 73 (2001), pp. 977–1029. DOI: 10 . 1103 / RevModPhys . 73 . 977. arXiv: hep - th / 0106048 [hep-th].
  • Fell, J.M.G. ve Doran, R.S. (1988). Representations of *-Algebras, Locally Compact Groups and Banach *-Algebraic Bundles, Academic Press. Academic Press, 1988.
  • Forgacs, P. ve Manton, N.S. (1980). “Space-Time Symmetries in Gauge Theories”. Com-mun.Math.Phys. 72 (1980), p. 15. DOI: 10.1007/BF01200108.
  • Frohlich, J., Morchio, G., ve Strocchi, F. (1979a). “Charged Sectors and Scattering States in Quantum Electrodynamics”. Annals Phys. 119 (1979), p. 241. DOI: 10 . 1016 / 0003 - 4916(79)90187-8.
  • Frohlich, J., Morchio, G., ve Strocchi, F. (1979b). “Infrared Problem And Spontaneous Breaking Of The Lorentz Group In QED”. Phys.Lett. B89 (1979), pp. 61–64. DOI: 10.1016/0370-2693(79)90076-5.
  • Gracia-Bondia, J.M., Varilly, J.C., ve Figueroa, H. (2000). Elements of Non-commutative Ge-ometry. Birkhauser, 2000.
  • Groenewold, H.J. (1946). “On the Principles of elementary quantum mechanics”. Physica 12 (1946), pp. 405–460. DOI: 10.1016/S0031-8914(46)80059-4.
  • Grosse, H., Lizzi, F., ve Steinacker, H. (2010). “Noncommutative gauge theory and symmetry breaking in matrix models”. Phys.Rev. D81 (2010), p. 085034. DOI: 10.1103/PhysRevD. 81.085034. arXiv: 1001.2703 [hep-th].
  • Harland, D. ve Kurkcuoglu, S. (2009). “Equivariant reduction of Yang-Mills theory over the fuzzy sphere and the emergent vortices”. Nucl.Phys. B821 (2009), pp. 380–398. DOI: 10. 1016/j.nuclphysb.2009.06.031. arXiv: 0905.2338 [hep-th].
  • Harvey, J. A. (2001). “Komaba lectures on noncommutative solitons and D-branes” (2001). arXiv: hep-th/0102076 [hep-th].
  • Hoppe, J. ve Lee, K.M. (2008). “New BPS configurations of BMN matrix theory”. JHEP 0806 (2008), p. 041. DOI: 10.1088/1126-6708/2008/06/041. arXiv: 0712.3616 [hep-th].
  • Ishibashi, N., Kawai, H., Kitazawa, Y., ve Tsuchiya, A. (1997). “A Large N reduced model as superstring”. Nucl.Phys. B498 (1997), pp. 467–491. DOI: 10.1016/S0550-3213(97)00290-3. arXiv: hep-th/9612115 [hep-th].
  • Kapetanakis, D. ve Zoupanos, G. (1992). “Coset space dimensional reduction of gauge theo-ries”. Phys.Rept. 219 (1992), pp. 4–76. DOI: 10.1016/0370-1573(92)90101-5.
  • Karabali, D. ve Nair, V.P. (2002). “Quantum Hall effect in higher dimensions”. Nucl.Phys. B641 (2002), pp. 533–546. DOI: 10 . 1016 / S0550 - 3213(02 ) 00634 - X. arXiv: hep - th / 0203264 [hep-th].
  • Karabali, D. ve Nair, V.P. (2006). “Quantum Hall effect in higher dimensions, matrix models and fuzzy geometry”. J.Phys. A39 (2006), pp. 12735–12764. DOI: 10.1088/0305- 4470/ 39/41/S05. arXiv: hep-th/0606161 [hep-th].
  • Kurkcuoglu, S. (2010). “Noncommutative Vortices and Flux-Tubes from Yang-Mills Theories with Spontaneously Generated Fuzzy Extra Dimensions”. Phys.Rev. D82 (2010), p. 105010. DOI: 10.1103/PhysRevD.82.105010. arXiv: 1009.1880 [hep-th].
  • Kurkcuoglu, S. (2012a). “Equivariant reduction of gauge theories over fuzzy extra dimensions”. J.Phys.Conf.Ser. 343 (2012), p. 012062. DOI: 10.1088/1742-6596/343/1/012062.
  • Kurkcuoglu, S. (2012b). “Equivariant Reduction of U(4) Gauge Theory over SF2 xSF2 and the Emergent Vortices”. Phys.Rev. D85 (2012), p. 105004. DOI: 10 . 1103 / PhysRevD . 85 . 105004. arXiv: 1201.0728 [hep-th].
  • Landi, G. (1997). An Introduction to Non-commutative Spaces and their Geometries. Springer-Verlag, 1997.
  • Landi, G. ve Szabo, R. J. (2011). “Dimensional Reduction Over the Quantum Sphere and Non-Abelian Q-vortices”. Commun.Math.Phys. 308 (2011), pp. 365–413. DOI: 10.1007/s00220-011-1357-z. arXiv: 1003.2100 [hep-th].
  • Lechtenfeld, O., Popov, A. D., ve Szabo, R. J. (2003). “Noncommutative instantons in higher dimensions, vortices and topological K cycles”. JHEP 0312 (2003), p. 022. arXiv: hep - th/0310267 [hep-th].
  • Lechtenfeld, O., Popov, A. D., ve Szabo, R. J. (2006). “Rank two quiver gauge theory, graded connections and noncommutative vortices”. JHEP 0609 (2006), p. 054. DOI: 10 . 1088 / 1126-6708/2006/09/054. arXiv: hep-th/0603232 [hep-th].
  • Lechtenfeld, O., Popov, A. D., ve Szabo, R. J. (2007). “Quiver Gauge Theory and Noncom-mutative Vortices”. Prog.Theor.Phys.Suppl. 171 (2007), pp. 258–268. DOI: 10.1143/PTPS. 171.258. arXiv: 0706.0979 [hep-th].
  • Lechtenfeld, O., Popov, A. D., ve Szabo, R. J. (2008). “SU(3)-Equivariant Quiver Gauge Theo-ries and Nonabelian Vortices”. JHEP 0808 (2008), p. 093. DOI: 10.1088/1126-6708/2008/ 08/093. arXiv: 0806.2791 [hep-th].
  • Madore, J. (1995). An Introduction to Non-commutative Differential Geometry and its Physical Applications. Cambridge: Cambridge University Press, 1995.
  • Minwalla, S., Van Raamsdonk, M., ve Seiberg, N. (2000). “Noncommutative perturbative dy-namics”. JHEP 0002 (2000), p. 020. DOI: 10 . 1088 / 1126 - 6708 / 2000 / 02 / 020. arXiv: hep-th/9912072 [hep-th].
  • Moyal, J.E. (1949). “Quantum mechanics as a statistical theory”. Proc.Cambridge Phil.Soc. 45 (1949), pp. 99–124. DOI: 10.1017/S0305004100000487.
  • Popov, A. D. (2008). “Explicit non-Abelian monopoles and instantons in SU(N) pure Yang-Mills theory”. Phys.Rev. D77 (2008), p. 125026. DOI: 10 . 1103 / PhysRevD . 77 . 125026. arXiv: 0803.3320 [hep-th].
  • Popov, A. D. (2009). “Integrability of Vortex Equations on Riemann Surfaces”. Nucl.Phys. B821 (2009), pp. 452–466. DOI: 10.1016/j.nuclphysb.2009.05.003. arXiv: 0712.1756 [hep-th].
  • Steinacker, H. (2004). “Quantized gauge theory on the fuzzy sphere as random matrix model”. Nucl.Phys. B679 (2004), pp. 66–98. DOI: 10.1016/j.nuclphysb.2003.12.005. arXiv: hep-th/0307075 [hep-th].
  • Steinacker, H. ve Zoupanos, G. (2007). “Fermions on spontaneously generated spherical extra dimensions”. JHEP 0709 (2007), p. 017. DOI: 10.1088/1126- 6708/2007/09/017. arXiv: 0706.0398 [hep-th].
  • Szabo, R. J. (2003). “Quantum field theory on noncommutative spaces”. Phys.Rept. 378 (2003), pp. 207–299. DOI: 10 . 1016 / S0370 - 1573(03 ) 00059 - 0. arXiv: hep - th / 0109162 [hep-th].
  • Witten, E. (1977). “Some Exact Multi - Instanton Solutions of Classical Yang-Mills Theory”. Phys.Rev.Lett. 38 (1977), p. 121. DOI: 10.1103/PhysRevLett.38.121.
  • Zhang, S.C. ve Hu, J. (2001). “A Four-dimensional generalization of the quantum Hall effect”. Science 294 (2001), p. 823. DOI: 10 . 1126 / science . 294 . 5543 . 823. arXiv: cond - mat / 0110572 [cond-mat].

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.