ui-button
+90 (312) 298 92 00
trdizin@tubitak.gov.tr
Giriş
Giriş
Kayıt Ol
Kayıt Ol
Hakkında
Giriş Yap
Kayıt Ol
home
Ana Sayfa
search
Arama
Ana Sayfa
menu
Arama
menu
Fuzzy ekstra boyutlu uzaylarda kuantum alan teorileri
PDF
Proje Yürütücüsü:
Seçkin KÜRKÇÜOĞLI
(Orta Doğu Teknik Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, Ankara, Türkiye)
Proje Grubu:
TÜBİTAK TBAG Proje
Sayfa Sayısı:
25
Proje No:
110T738
Proje Bitiş Tarihi:
01.10.2013
Metin Dili:
Türkçe
0
0
Türkçe
Fuzzy ekstra boyutlu uzaylarda kuantum alan teorileri
Öz:
Kaynakça
Projeden Çıkan Yayınlar
Projenin Atıfları
Aschieri, P., Grammatikopoulos, T., Steinacker, H., ve Zoupanos, G. (2006). “Dynamical gen-eration of fuzzy extra dimensions, dimensional reduction and symmetry breaking”. JHEP 0609 (2006), p. 026. DOI: 10 . 1088 / 1126 - 6708 / 2006 / 09 / 026. arXiv: hep - th / 0606021 [hep-th].
Balachandran, A.P., Bimonte, G., Ercolessi, E., Landi, G., Lizzi, F., Sparano, G., ve Teotonio-Sobrinho, P. (1995). “Finite quantum physics and noncommutative geometry”. Nucl.Phys. Proc.Suppl. 37C (1995), pp. 20–45. arXiv: hep-th/9403067 [hep-th].
Balachandran, A.P., Kurkcuoglu, S., ve Queiroz, A. R. de (2013). “Spontaneous Breaking of Lorentz Symmetry and Vertex Operators for Vortices”. Mod.Phys.Lett. A28 (2013), p. 1350028. DOI: 10.1142/S0217732313500284. arXiv: 1208.3175 [hep-th].
Balachandran, A.P., Kurkcuoglu, S., ve Vaidya, S. (2007). Lectures on Fuzzy and Fuzzy SUSY Physics. Singapore: World Scientific, 2007.
Banks, T., Fischler, W., Shenker, S.H., ve Susskind, L. (1997). “M theory as a matrix model: A Conjecture”. Phys.Rev. D55 (1997), pp. 5112–5128. DOI: 10.1103/PhysRevD.55.5112. arXiv: hep-th/9610043 [hep-th].
Behr, W., Meyer, F., ve Steinacker, H. (2005). “Gauge theory on fuzzy S**2 x S**2 and reg-ularization on noncommutative R**4”. JHEP 0507 (2005), p. 040. DOI: 10 . 1088 / 1126 - 6708/2005/07/040. arXiv: hep-th/0503041 [hep-th].
Chatzistavrakidis, A., Steinacker, H., ve Zoupanos, G. (2010a). “On the fermion spectrum of spontaneously generated fuzzy extra dimensions with fluxes”. Fortsch.Phys. 58 (2010), pp. 537–552. DOI: 10.1002/prop.201000018. arXiv: 0909.5559 [hep-th].
Chatzistavrakidis, A., Steinacker, H., ve Zoupanos, G. (2010b). “Orbifolds, fuzzy spheres and chiral fermions”. JHEP 1005 (2010), p. 100. DOI: 10.1007/JHEP05(2010)100. arXiv: 1002. 2606 [hep-th].
Connes, A. (1994). Non-Commutative Geometry. San Diego: Academic Press, 1994.
Dolan, B. P. ve Szabo, R. J. (2009). “Dimensional Reduction, Monopoles and Dynamical Sym-metry Breaking”. JHEP 0903 (2009), p. 059. DOI: 10 . 1088 / 1126 - 6708 / 2009 / 03 / 059. arXiv: 0901.2491 [hep-th].
Douglas, M. R. ve Nekrasov, N. A. (2001). “Noncommutative field theory”. Rev.Mod.Phys. 73 (2001), pp. 977–1029. DOI: 10 . 1103 / RevModPhys . 73 . 977. arXiv: hep - th / 0106048 [hep-th].
Fell, J.M.G. ve Doran, R.S. (1988). Representations of *-Algebras, Locally Compact Groups and Banach *-Algebraic Bundles, Academic Press. Academic Press, 1988.
Forgacs, P. ve Manton, N.S. (1980). “Space-Time Symmetries in Gauge Theories”. Com-mun.Math.Phys. 72 (1980), p. 15. DOI: 10.1007/BF01200108.
Frohlich, J., Morchio, G., ve Strocchi, F. (1979a). “Charged Sectors and Scattering States in Quantum Electrodynamics”. Annals Phys. 119 (1979), p. 241. DOI: 10 . 1016 / 0003 - 4916(79)90187-8.
Frohlich, J., Morchio, G., ve Strocchi, F. (1979b). “Infrared Problem And Spontaneous Breaking Of The Lorentz Group In QED”. Phys.Lett. B89 (1979), pp. 61–64. DOI: 10.1016/0370-2693(79)90076-5.
Gracia-Bondia, J.M., Varilly, J.C., ve Figueroa, H. (2000). Elements of Non-commutative Ge-ometry. Birkhauser, 2000.
Groenewold, H.J. (1946). “On the Principles of elementary quantum mechanics”. Physica 12 (1946), pp. 405–460. DOI: 10.1016/S0031-8914(46)80059-4.
Grosse, H., Lizzi, F., ve Steinacker, H. (2010). “Noncommutative gauge theory and symmetry breaking in matrix models”. Phys.Rev. D81 (2010), p. 085034. DOI: 10.1103/PhysRevD. 81.085034. arXiv: 1001.2703 [hep-th].
Harland, D. ve Kurkcuoglu, S. (2009). “Equivariant reduction of Yang-Mills theory over the fuzzy sphere and the emergent vortices”. Nucl.Phys. B821 (2009), pp. 380–398. DOI: 10. 1016/j.nuclphysb.2009.06.031. arXiv: 0905.2338 [hep-th].
Harvey, J. A. (2001). “Komaba lectures on noncommutative solitons and D-branes” (2001). arXiv: hep-th/0102076 [hep-th].
Hoppe, J. ve Lee, K.M. (2008). “New BPS configurations of BMN matrix theory”. JHEP 0806 (2008), p. 041. DOI: 10.1088/1126-6708/2008/06/041. arXiv: 0712.3616 [hep-th].
Ishibashi, N., Kawai, H., Kitazawa, Y., ve Tsuchiya, A. (1997). “A Large N reduced model as superstring”. Nucl.Phys. B498 (1997), pp. 467–491. DOI: 10.1016/S0550-3213(97)00290-3. arXiv: hep-th/9612115 [hep-th].
Kapetanakis, D. ve Zoupanos, G. (1992). “Coset space dimensional reduction of gauge theo-ries”. Phys.Rept. 219 (1992), pp. 4–76. DOI: 10.1016/0370-1573(92)90101-5.
Karabali, D. ve Nair, V.P. (2002). “Quantum Hall effect in higher dimensions”. Nucl.Phys. B641 (2002), pp. 533–546. DOI: 10 . 1016 / S0550 - 3213(02 ) 00634 - X. arXiv: hep - th / 0203264 [hep-th].
Karabali, D. ve Nair, V.P. (2006). “Quantum Hall effect in higher dimensions, matrix models and fuzzy geometry”. J.Phys. A39 (2006), pp. 12735–12764. DOI: 10.1088/0305- 4470/ 39/41/S05. arXiv: hep-th/0606161 [hep-th].
Kurkcuoglu, S. (2010). “Noncommutative Vortices and Flux-Tubes from Yang-Mills Theories with Spontaneously Generated Fuzzy Extra Dimensions”. Phys.Rev. D82 (2010), p. 105010. DOI: 10.1103/PhysRevD.82.105010. arXiv: 1009.1880 [hep-th].
Kurkcuoglu, S. (2012a). “Equivariant reduction of gauge theories over fuzzy extra dimensions”. J.Phys.Conf.Ser. 343 (2012), p. 012062. DOI: 10.1088/1742-6596/343/1/012062.
Kurkcuoglu, S. (2012b). “Equivariant Reduction of U(4) Gauge Theory over SF2 xSF2 and the Emergent Vortices”. Phys.Rev. D85 (2012), p. 105004. DOI: 10 . 1103 / PhysRevD . 85 . 105004. arXiv: 1201.0728 [hep-th].
Landi, G. (1997). An Introduction to Non-commutative Spaces and their Geometries. Springer-Verlag, 1997.
Landi, G. ve Szabo, R. J. (2011). “Dimensional Reduction Over the Quantum Sphere and Non-Abelian Q-vortices”. Commun.Math.Phys. 308 (2011), pp. 365–413. DOI: 10.1007/s00220-011-1357-z. arXiv: 1003.2100 [hep-th].
Lechtenfeld, O., Popov, A. D., ve Szabo, R. J. (2003). “Noncommutative instantons in higher dimensions, vortices and topological K cycles”. JHEP 0312 (2003), p. 022. arXiv: hep - th/0310267 [hep-th].
Lechtenfeld, O., Popov, A. D., ve Szabo, R. J. (2006). “Rank two quiver gauge theory, graded connections and noncommutative vortices”. JHEP 0609 (2006), p. 054. DOI: 10 . 1088 / 1126-6708/2006/09/054. arXiv: hep-th/0603232 [hep-th].
Lechtenfeld, O., Popov, A. D., ve Szabo, R. J. (2007). “Quiver Gauge Theory and Noncom-mutative Vortices”. Prog.Theor.Phys.Suppl. 171 (2007), pp. 258–268. DOI: 10.1143/PTPS. 171.258. arXiv: 0706.0979 [hep-th].
Lechtenfeld, O., Popov, A. D., ve Szabo, R. J. (2008). “SU(3)-Equivariant Quiver Gauge Theo-ries and Nonabelian Vortices”. JHEP 0808 (2008), p. 093. DOI: 10.1088/1126-6708/2008/ 08/093. arXiv: 0806.2791 [hep-th].
Madore, J. (1995). An Introduction to Non-commutative Differential Geometry and its Physical Applications. Cambridge: Cambridge University Press, 1995.
Minwalla, S., Van Raamsdonk, M., ve Seiberg, N. (2000). “Noncommutative perturbative dy-namics”. JHEP 0002 (2000), p. 020. DOI: 10 . 1088 / 1126 - 6708 / 2000 / 02 / 020. arXiv: hep-th/9912072 [hep-th].
Moyal, J.E. (1949). “Quantum mechanics as a statistical theory”. Proc.Cambridge Phil.Soc. 45 (1949), pp. 99–124. DOI: 10.1017/S0305004100000487.
Popov, A. D. (2008). “Explicit non-Abelian monopoles and instantons in SU(N) pure Yang-Mills theory”. Phys.Rev. D77 (2008), p. 125026. DOI: 10 . 1103 / PhysRevD . 77 . 125026. arXiv: 0803.3320 [hep-th].
Popov, A. D. (2009). “Integrability of Vortex Equations on Riemann Surfaces”. Nucl.Phys. B821 (2009), pp. 452–466. DOI: 10.1016/j.nuclphysb.2009.05.003. arXiv: 0712.1756 [hep-th].
Steinacker, H. (2004). “Quantized gauge theory on the fuzzy sphere as random matrix model”. Nucl.Phys. B679 (2004), pp. 66–98. DOI: 10.1016/j.nuclphysb.2003.12.005. arXiv: hep-th/0307075 [hep-th].
Steinacker, H. ve Zoupanos, G. (2007). “Fermions on spontaneously generated spherical extra dimensions”. JHEP 0709 (2007), p. 017. DOI: 10.1088/1126- 6708/2007/09/017. arXiv: 0706.0398 [hep-th].
Szabo, R. J. (2003). “Quantum field theory on noncommutative spaces”. Phys.Rept. 378 (2003), pp. 207–299. DOI: 10 . 1016 / S0370 - 1573(03 ) 00059 - 0. arXiv: hep - th / 0109162 [hep-th].
Witten, E. (1977). “Some Exact Multi - Instanton Solutions of Classical Yang-Mills Theory”. Phys.Rev.Lett. 38 (1977), p. 121. DOI: 10.1103/PhysRevLett.38.121.
Zhang, S.C. ve Hu, J. (2001). “A Four-dimensional generalization of the quantum Hall effect”. Science 294 (2001), p. 823. DOI: 10 . 1126 / science . 294 . 5543 . 823. arXiv: cond - mat / 0110572 [cond-mat].
x
İşlem Onayı
Uyarı