Analiz-temelli Sentez Yöntemleriyle Uzamsal Ses Üretimi

9 1

Proje Grubu: EEEAG Sayfa Sayısı: 74 Proje No: 113E513 Proje Bitiş Tarihi: 01.03.2018 Metin Dili: Türkçe İndeks Tarihi: 17-04-2019

Analiz-temelli Sentez Yöntemleriyle Uzamsal Ses Üretimi

Öz:
Bu projenin amacı terminalden bağımsız, sondan-sona bir nesne-temelli ses üretimi yöntemi geliştirilmesidir. Bu amaca yönelik olarak 1) açık küresel mikrofon dizisi tasarımı ve gerçekleştirilmesi, 2) ses nesnelerinin kaydedilmesine olanak sağlayacak mikrofon dizisi sinyal işleme yöntemleri geliştirilmesi, 3) ses sahnelerinin betimlenmesine olanak sağlayan bir metadata biçemi geliştirilmesi, 4) ses sahnesinin düzenlenebilmesine olanak sağlayacak bir editör geliştirilmesi ve 5) ses sahnelerinin etkileşimli olarak geri çatılabilmesini sağlayacak esnek yöntemler geliştirilmesi planlanmıştır. Projenin ilk çıktılarından biri 13 mikrofondan oluşan ve akustik yeğinlik ölçümüne olanak sağlayan bir açık küresel mikrofon dizisinin tasarımı ve uygulanması olmuştur. Bu mikrofon dizisinin kalibrasyonu ve testleri yapılmış ve bir sonraki adımda geliştirilen bazı algoritmalarda kullanılacak olan dürtü cevabı ölçümlerinin yapılmasında kullanılmıştır. Mikrofon dizisi sinyal işleme alanında yapılan çalışmalarda ses varış yönü kestirimi ve ses kaynak ayırma işlemlerinde kullanılacak açık ve kapalı mikrofon dizileri için ayrı ayrı olmak üzere yeni ve özgün yöntemler geliştirilmiştir. Açık küresel mikrofon dizileri için geliştirilen yöntemler, akustik yeğinlik temelli varış yönü kestirimi algoritmaları ve dördey sinyal işleme temelli ses kaynak ayırma yöntemleri olmuştur. Kapalı küresel mikrofon dizileri için ise küresel harmonik alanda uzamsal entropi kavramını kullanan yeni bir varış yönü kestirimi yöntemi ve karmaşık dikgen eşleştirmeli izleme yöntemini kullanan bir ses kaynak ayırma yöntemi geliştirilmiştir. Ses sahnelerinin betimlenmesine olanak sağlayacak, SpatDIF biçemini genişleten yeni bir metaveri biçemi tasarlanmış ve bu biçemi düzenlemeye olanak sağlayan görsel bir editör tasarlanmıştır. Son olarak, ses sahnelerinin geri çatılmasında kullanılmak üzere gerçek zamanda çalışabilen bir oda akustiği simülatörü / yapay yankışımcı geliştirilmiştir. Bu simülatörün gerçekçiliğini arttırmak için birbirine bağlı hacimler ve kırılım modellerinin sistemle tümleştirilmesi çalışmaları yapılmış ve başarılı sonuçlar alınmıştır. Proje sonucunda iki dergi ve iki konferans yayını yapılmıştır. Bu yayınlara ek olarak Mart 2018?de bir dergi makalesi, Nisan 2018?de ise bir yeni konferans bildirisi değerlendirilmek üzere gönderilmiştir. Ayrıca biri yurtdışında davetli konuşma olmak üzere iki eğitim semineri verilmiştir.
Anahtar Kelime: uzamsal ses kodlama 3b ses sistemleri uzamsal ses sistemleri ses kayıt teknolojileri

Konular: Mühendislik, Elektrik ve Elektronik Bilgisayar Bilimleri, Yazılım Mühendisliği Mühendislik, Makine
Erişim Türü: Erişime Açık
  • Efficient Synthesis of Room Acoustics via Scattering Delay Networks (Makale - Diğer Hakemli Makale),
  • Abhayapala T. D. 2008. “Generalized framework for spherical microphone arrays: Spatial and frequency decomposition”, . IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP), 5268-5271
  • On the Performance of Acoustic Intensity-based Source Localization with an Open Spherical Microphone Array (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
  • Allen, J. B., Berkley, D.A., 1979. “Image method for efficiently simulating small-room acoustics”., The Journal of the Acoustical Society of America, 65(4), 943-950. Alpaydin, E. 2014. Introduction to machine learning. 2. Baskı, Cambridge:MIT Press Armelloni, E., Giottoli, C. Farina, A. 2003. “Implementation of real-time partitioned convolution on a DSP board.”, 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 71-74 Atkinson, K. 1982. “Numerical integration on the sphere,” Journal of the Australian Mathematical Society (Series B), vol. 23, 332–347. Batty, M. 1974. “Spatial entropy”, Geographical analysis, 6(1), 1-31. Bezdek, J. C., Coray, C., Gunderson, R., Watson, J. 1981a. “Detection and characterization of cluster substructure I. Linear structure: Fuzzy c-lines”, SIAM Journal on Applied Mathematics, 40(2), 339-357. Bezdek, J. C., Coray, C., Gunderson, R., Watson, J. 1981b. “Detection and characterization of cluster substructure II. Fuzzy c-varieties and convex combinations thereof”, SIAM Journal on Applied Mathematics, 40(2), 358-372. Biot, M. A., Tolstoy, I. 1957. “Formulation of wave propagation in infinite media by normal coordinates with an application to diffraction”, Journal of the Acoustical Society of America, 29(3), 381-391. Boyko, A., Kunze, J., Littman, J., Madden, L., Vargas, B., 2011. “The BagIt file packaging format v0. 97". http://tools.ietf.org/html/draft-kunze-bagit-08 Son erişim tarihi: 1 Mayıs 2018
  • Acoustic Source Separation using the Short-time Quaternion Fourier Transforms of Particle Velocity Signals (Bildiri - Uluslararası Bildiri - Poster Sunum),
  • Bradley, D.T., Wang, L.M. 2005. “The effects of simple coupled volume geometry on the objective and subjective results from nonexponential decay”, The Journal of the Acoustical Society of America, 118(3), 1480-1490 Bradley, P. S., Mangasarian, O. L. 2000. “K-Plane clustering”, Journal of Global Optimization, 16(1), 23-32. Campos, G.R., Howard, D.M., 2005. “On the computational efficiency of different waveguide mesh topologies for room acoustic simulation”, IEEE Transactions on Speech and Audio Processing, 13(5),1063-1072. Cao, J. 2014. “Survey on acoustic vector sensor and its applications in signal processing”, 2014 33rd Chinese Control Conference (CCC), pp. 7456-7461 Daniel J., Sebastien M., and Rozenn N. 2003. "Further investigations of high-order ambisonics and wavefield synthesis for holophonic sound imaging", 114th Audio Engineering Society Convention, Audio Engineering Society Dave, R. N. 1996. “Validating fuzzy partitions obtained through c-shells clustering”, Pattern Recognition Letters, 17(6), 613-623. de Bree, H. E. 2003. “An overview of Microflown technologies” Acta acustica united with Acustica, 89(1), 163-172 de Bree, H.-E., Druyvesteyn, W., Berenschot, E., Elwenspoek, M. 1999. “Three-dimensional sound intensity measurements using Microflown particle velocity sensors,” in Twelfth IEEE International Conference on Micro Electro Mechanical Systems (MEMS ’99),124 –129. De Sena, E., Hacıhabiboğlu, H., Cvetkovic, Z., 2011. “Scattering delay network: An interactive reverberator for computer games”, 41st International AES Conference: Audio for Games De Sena E., Hacıhabiboğlu, H., Cvetkovic, Z. 2013. “Analysis and design of multichannel systems for perceptual sound field reconstruction” IEEE Transactions on Audio, Speech, and Language Processing, 21(8), 1653-1665
  • De Sena E., Hacıhabiboğlu, H., Cvetkovic, Z. 2015. ABD Patenti, US 8,976,977, “Electronic device with digital reverberator and method” EBU 2009. “EBU-TECH 3306: MBWF/RF64: An extended File Format for Audio” https://tech.ebu.ch/docs/tech/tech3306-2009.pdf, Son erişim tarihi: 1 Ekim 2017 Ell, T. A., 1992. Hypercomplex spectral transformations, Doktora Tezi, University of Minnesota Ell, T. A., Le Bihan, N., Sangwine, S. J. 2014. “Quaternion Fourier transforms for signal and image processing”, London:John Wiley & Sons. Ell, T., Sangwine, S. J. 2007. “Hypercomplex Fourier transforms of color images”, IEEE Transactions on Image Processing, 16(1), 22-35. Epain, N., Jin, C., van Schaik, A., 2010. “Blind source separation using independent component analysis in the spherical harmonic domain” Proceedings of the 2nd International Symposium on Ambisonics and Spherical Acoustics. Fahy F. 1995. Sound intensity, London: E & FN Spon Press Fahim, A., Samarasinghe, P.N., Abhayapala, T. D., 2017. “PSD estimation of multiple sound sources in a reverberant room using a spherical microphone array". 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA-17), 76-80. Farina, A., 2000. “Simultaneous measurement of impulse response and distortion with a swept-sine technique.”, Audio Engineering Society Convention 108. Füg, S., Marston, D., Norcross, S., 2016. “The audio definition model—A flexible standardized representation for next generation audio content in broadcasting and beyond”, Audio Engineering Society Convention 141 Gade, S. 1982. Sound intensity, Part I: Theory, Brüel & Kjaer Tech. Rev., vol. 3, 3–39 Genescà M., Svensson U. P., Taraldsen, G. 2015. “Estimation of Aircraft Sound Direction of Arrival Using Directional-Microphone Arrays”, Acta Acustica united with Acustica, 101(1), 113123.
  • Gerzon M. A. 1975. “The design of precisely coincident microphone arrays for stereo and surround sound” 50th Audio Engineering Society Convention, Audio Engineering Society Gorski, K.M., Hivon, E., Banday, A.J., Wandelt, B.D., Hansen, F.K., Reinecke, M., Bartelmann, M., 2005. “HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere”, The Astrophysical Journal, 622(2), 759-771. GRAS 2006. Vector intensity probe Type 50VI-1, Rev. 19, G.R.A.S. Sound & Vibration. Günel, B., Hacıhabiboğlu, H., Kondoz, A.M., 2008. “Acoustic source separation of convolutive mixtures based on intensity vector statistics”, IEEE Transactions on Audio, Speech, and Language Processing, 16(4), 748-756. Günel, B., Hacıhabiboğlu, H., Kondoz A. M. 2006. “Wavelet-packet based passive analysis of sound fields using a coincident microphone array”, Appl. Acoust., 68(7), 778-796. H2020 ORPHEUS, “ORPHEUS — Object-based Audio Experience”, https://orpheus-audio.eu, Son erişim tarihi: 1 Mayıs 2018 Hacıhabiboğlu H., Cvetkovic Z., 2010. “Panoramic recording and reproduction of multichannel audio using a circular microphone array”, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 117-120. Hacıhabiboğlu H., 2013. “On the accuracy of open spherical microphone arrays for measuring acoustic intensity”, Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA’13), New Paltz, NY, USA Hacıhabiboğlu H. 2014. "Theoretical Analysis of Open Spherical Microphone Arrays for Acoustic Intensity Measurements", IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(2),465-476 Hacıhabiboğlu, H., Günel, B., Kondoz, A.M., 2008. “Time-domain simulation of directive sources in 3-D digital waveguide mesh-based acoustical models”, IEEE Transactions on Audio, Speech, and Language Processing, 16(5), 934-946.
  • Hansen, V., Munch, G. 1991. “Making recordings for simulation tests in the Archimedes project”, Journal of the Audio Engineering Society, 39(10), 768-774. Herre, J., Hilpert, J., Kuntz, A. Plogsties, J., 2015. "MPEG-H audio—the new standard for universal spatial/3D audio coding”. Journal of the Audio Engineering Society, 62(12), 821-830 Höppner, F. 1999. Fuzzy cluster analysis: methods for classification, data analysis and image recognition London:John Wiley & Sons. ISO/IEC MPEG, 2013 “MPEG-H 3D Audio”, https://mpeg.chiariglione.org/standards/mpegh/3d-audio, Son erişim tarihi: 1 Mayıs 2018 ISO/IEC MPEG, 2005 “MPEG-4 Scene Description and Application Engine”, https://mpeg.chiariglione.org/standards/mpeg-4/scene-description-and-application-engine ITU. 2017. “ITU-R BS.2076-1, Audio Definition Model”, https://www.itu.int/dms_pubrec/itur/rec/bs/R-REC-BS.2076-1-201706-I!!PDF-E.pdf, Son erişim tarihi: 1 Mayıs 2018 iXML 2018., “iXML Specification Revision 2.02”, http://www.ixml.info, Son erişim tarihi: 1 Mayıs 2018 Jacobsen, F. 2007. “Sound intensity,” in Springer Handbook of Acoustics, Springer Verlag, 1053–1075. Jacobsen, F. 1997. “An overview of the sources of error in sound power determination using the intensity technique,” Applied Acoustics, 50(2), 155 – 166. Jarrett, D. P., Habets, E. A. P. , Naylor, P. A. 2016. Theory and Applications of Spherical Microphone Array Processing, vol. 9 of Springer Topics in Signal Processing, Cambridge:Springer. Jarrett, D. P., Habets, E. A. P. , Naylor, P. A. 2010. “3D source localization in the spherical harmonic domain using a pseudointensity vector,” Proc. 18th European Signal Process. Conf. (EUSIPCO 2010), 442–446, 2010. Johnston J., Lam Y. H. 2000. “Perceptual soundfield reconstruction”. 109th Convention of the Audio Engineering Society, #5202 Jot, J.M., Chaigne, A. 1991. “Digital delay networks for designing artificial reverberators”, Audio Engineering Society Convention 90 Jot, J.M., Warusfel, O., 1995. “Spat: A spatial processor for musicians and sound engineers”, CIARM: International Conference on Acoustics and Musical Research. Jourjine, A., Rickard, S., Yilmaz, O. 2000. “Blind separation of disjoint orthogonal signals: Demixing N sources from 2 mixtures”, Proc. 2000 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP-00), 2985-2988. Kalkur, S.N., Reddy C, S. Hegde, R.M., 2015. “Joint source localization and separation in spherical harmonic domain using a sparsity based method". 16th Annual Conference of the International Speech Communication Association (INTERSPEECH-15). Khaykin, D., Rafaely, B. 2009. “Coherent signals direction-of-arrival estimation using a spherical microphone array: Frequency smoothing approach,” Proc. IEEE Workshop on Appl. of Signal Process. to Audio and Acoust. (WASPAA’09), pp. 221–224 Khaykin, D., Rafaely, B. 2012. “Acoustic analysis by spherical microphone array processing of room impulse responses,” J. Acoust. Soc. Am., 132(1), 261– 270 Krishnapuram, R., Kim, J. 2000. “Clustering algorithms based on volume criteria” IEEE Trans. Fuzzy Systems, 8(2), 228-236. Krishnapuram, R., Frigui, H., Nasraoui, O. 1995. “Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation”, IEEE Transactions on Fuzzy Systems, 3(1), 29-43. Kleijn, W. B., Lim, F., 2017. “Robust and low-complexity blind source separation for meeting rooms". Hands-free Speech Communications and Microphone Arrays (HSCMA-17), pp. 156160. Kowalczyk, K., Van Walstijn, M., 2011. “Room acoustics simulation using 3-D compact explicit FDTD schemes”, IEEE Transactions on Audio, Speech, and Language Processing, 19(1), 3446. Krokstad, A., Strom, S. Sørsdal, S. 1968. “Calculating the acoustical room response by the use of a ray tracing technique”, Journal of Sound and Vibration, 8(1), 118-125. Lebedev, V., Laikov, D. 1999. “A quadrature formula for the sphere of the 131st algebraic order of accuracy,” Doklady Math., 59(3), 477–481. Li Z., Duraiswami, R. 2007. “Flexible and optimal design of spherical microphone arrays for beamforming”, IEEE Transactions on Audio, Speech, and Language Processing, 15(2), 702714 Mallat, S., 2008. A wavelet tour of signal processing: the sparse way London:Academic press. Mallat, S.G., Zhang, Z. 1993. “Matching pursuits with time-frequency dictionaries”, IEEE Transactions on Signal Processing, 41(12), 3397-3415. Medwin, H. 1981. “Shadowing by finite noise barriers”, Journal of the Acoustical Society of America, 69(4), 1060-1064. Meyer J., Elko, G. 2002. “A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield”, Proc. 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, II-1781 Meyer J., Elko G. W. 2004. Sayfa: 67, “Spherical microphone arrays for 3D sound recording”, Audio signal processing for next-generation multimedia communication systems, Editörler: Huang Y., Benesty J., New York:Springer Moore, A. H., Evers, C., Naylor, P. A. 2017. “Direction of arrival estimation in the spherical harmonic domain using subspace pseudointensity vectors,” IEEE/ACM Trans. on Audio, Speech and Language Process., 25(1)178–192
  • Moore, A., Evers, C., Naylor, P.A., Alon, D.L. Rafaely, B. 2015, August. Direction of arrival estimation using pseudo-intensity vectors with direct-path dominance test. In 23rd European Signal Processing Conference (EUSIPCO-15), 2296-2300 Murphy K. P. 2012. Machine learning: a probabilistic perspective. Cambridge: MIT Press Nadiri, O., Rafaely, B., 2014. Localization of multiple speakers under high reverberation using a spherical microphone array and the direct-path dominance test. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(10), 1494-1505. Naylor, G.M. 1993. ODEON—Another hybrid room acoustical model. Applied Acoustics, 38(24), 131-143. Nehorai A., Paldi, E. 1994. "Acoustic vector-sensor array processing" IEEE Transactions on Signal Processing, 42(9), 2481-2491 Park M., Rafaely B. 2005. “Sound-field analysis by plane-wave decomposition using spherical microphone array”, Journal of the Acoustical Society of America, 118(5), 3094-3103. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S., 1993. “Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition”, Proc. 27th Asilomar Conference on Signals, Systems and Computers, 40-44 Pätynen, J., Pulkki, V., Lokki, T., 2008. “Anechoic recording system for symphony orchestra”, Acta Acustica united with Acustica, 94(6), 856-865. Peters, N., Lossius, T. Schacher, J.C. 2012. “SpatDIF: Principles, specification, and examples.”, Proceedings of the 9th Sound and Music Computing Conference, 500-505. Rafaely, B. 2004. “Plane-wave decomposition of the sound field on a sphere by spherical convolution,” J. Acoust. Soc. Am., 116(4), 2149–2157 Rafaely, B. 2015. Fundamentals of spherical array processing, Berlin: Springer Rafaely, B., Alhaiany, K., 2018. “Speaker localization using direct path dominance test based on sound field directivity”, Signal Processing, 143, 42-47. Rafaely, B., Khaykin, D., 2011. Optimal model-based beamforming and independent steering for spherical loudspeaker arrays. IEEE Transactions on Audio, Speech, and Language Processing, 19(7), 2234-2238. Rafaely, B., Kolossa, D., 2017. March. Speaker localization in reverberant rooms based on direct path dominance test statistics. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-17), 6120-6124. Rafaely, B., Peled, Y., Agmon, M., Khaykin, D. Fisher, E., 2010. Sayfa: 281, Spherical microphone array beamforming. Speech Processing in Modern Communication. Berlin:Springer. Rafaely, B. Weiss, B. and Bachmat, E. 2007. “Spatial aliasing in spherical microphone arrays,” IEEE Transactions on Signal Processing, 55(3), 1003–1010 Rickard, S., Yilmaz, Ö. 2002. “On the approximate W-disjoint orthogonality of speech”, Proc. 2002 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP-02), I-529. Rocchesso, D. and Smith, J.O. 1997. “Circulant and elliptic feedback delay networks for artificial reverberation”, IEEE Transactions on Speech and Audio Processing, 5(1), 51-63. Roy, R., Kailath, T. 1989. “ESPRIT - estimation of signal parameters via rotational invariance techniques,” IEEE Transactions on Acoustics, Speech, and Signal Processing, 37, 984–995. Samet, H., 1981. “Connected component labeling using quadtrees”, Journal of the ACM, 28(3), 487-501. Sangwine S., Le Bihan, N. 2015. “Quaternion and Octonion Toolbox for MATLAB”, http://qtfm.sourceforge.net, Son erişim: 23 Mart 2018 Scheirer, E.D., Vaananen, R., Huopaniemi, J., 1999. “AudioBIFS: Describing audio scenes with the MPEG-4 multimedia standard” IEEE Transactions on Multimedia, 1(3), pp.237-250. Schmidt, R. O. 1986. “Multiple emitter location and signal parameter estimation,” IEEE Transactions on Antennas and Propagation, 34, 276–280
  • Schobben, D., Torkkola, K. Smaragdis, P., 1999. “Evaluation of blind signal separation methods” Proc. Int. Conf. Acoustics (ICA-99), 889-892 Soille, P. 2013. Morphological image analysis: principles and applications. New York:Springer Science & Business Media Souvenir, R., Pless, R. 2005. “Manifold clustering”, Proc. 10th IEEE Int. Conf. on Computer Vision, Vol. 1, 648-653 Strikwerda, J.C., 2004. Finite difference schemes and partial differential equations, Cambridge:SIAM. Sun, H., Teutsch, H., Mabande, E. Kellermann, W. 2011. “Robust localization of multiple sources in reverberant environments using eb-esprit with spherical microphone arrays,” in Proc. IEEE Int. Conf. on Acoust. Speech and Signal Process. (ICASSP 2011), 117–120. Sun, H., Mabande, E., Kowalczyk, K. Kellermann, W., 2012. “Localization of distinct reflections in rooms using spherical microphone array eigenbeam processing,” J. Acoust. Soc. Am., 131(4), 2828–2840. Svensson, U. P., Fred, R. I., Vanderkooy, J. 1999. “An analytic secondary source model of edge diffraction impulse responses”, Journal of the Acoustical Society of America, 106(5), 2331-2344. Svensson, P. 1999. Edge Diffraction Toolbox for MATLAB. http://folk.ntnu.no/ulfps/software/index.html, Son erişim: 1 Mayıs 2018 Teutsch, H. Kellermann, W. 2008. “Detection and localization of multiple wideband acoustic sources based on wavefield decomposition using spherical apertures,” in Proc. IEEE Int. Conf. on Acoust. Speech and Signal Pro- cess. (ICASSP-08), 5276–5279. Välimäki, V., Parker, J., Savioja, L., Smith, J.O., Abel, J., 2016. “More than 50 years of artificial reverberation”, 60th International AES Conference: DREAMS (Dereverberation and Reverberation of Audio, Music, and Speech) Vidal, R. 2010. A tutorial on subspace clustering. IEEE Signal Processing Magazine, 28(2), 52-68. Williams, E. G., 1999. “Fourier Acoustics: Sound radiation and nearfield acoustic holography”, London: Academic Press. Yan S., Sun H., Svensson U. P., Ma X., Hovem, J. M. “Optimal modal beamforming for spherical microphone arrays”, IEEE Transactions on Audio, Speech, and Language Processing, 19(2), 361-371, (2011) Yang, M. S. 1993. “A survey of fuzzy clustering”, Mathematical and Computer modelling, 18(11), 1-16. Zotkin D. N., Duraiswami R., Gumerov N. A. 2010. “Plane-wave decomposition of acoustical scenes via spherical and cylindrical microphone arrays”, IEEE Transactions on Audio, Speech, and Language Processing, 18(1), 2-16
APA HACIHABİBOĞLU H (2018). Analiz-temelli Sentez Yöntemleriyle Uzamsal Ses Üretimi. , 0 - 74.
Chicago HACIHABİBOĞLU Hüseyin Analiz-temelli Sentez Yöntemleriyle Uzamsal Ses Üretimi. (2018): 0 - 74.
MLA HACIHABİBOĞLU Hüseyin Analiz-temelli Sentez Yöntemleriyle Uzamsal Ses Üretimi. , 2018, ss.0 - 74.
AMA HACIHABİBOĞLU H Analiz-temelli Sentez Yöntemleriyle Uzamsal Ses Üretimi. . 2018; 0 - 74.
Vancouver HACIHABİBOĞLU H Analiz-temelli Sentez Yöntemleriyle Uzamsal Ses Üretimi. . 2018; 0 - 74.
IEEE HACIHABİBOĞLU H "Analiz-temelli Sentez Yöntemleriyle Uzamsal Ses Üretimi." , ss.0 - 74, 2018.
ISNAD HACIHABİBOĞLU, Hüseyin. "Analiz-temelli Sentez Yöntemleriyle Uzamsal Ses Üretimi". (2018), 0-74.
APA HACIHABİBOĞLU H (2018). Analiz-temelli Sentez Yöntemleriyle Uzamsal Ses Üretimi. , 0 - 74.
Chicago HACIHABİBOĞLU Hüseyin Analiz-temelli Sentez Yöntemleriyle Uzamsal Ses Üretimi. (2018): 0 - 74.
MLA HACIHABİBOĞLU Hüseyin Analiz-temelli Sentez Yöntemleriyle Uzamsal Ses Üretimi. , 2018, ss.0 - 74.
AMA HACIHABİBOĞLU H Analiz-temelli Sentez Yöntemleriyle Uzamsal Ses Üretimi. . 2018; 0 - 74.
Vancouver HACIHABİBOĞLU H Analiz-temelli Sentez Yöntemleriyle Uzamsal Ses Üretimi. . 2018; 0 - 74.
IEEE HACIHABİBOĞLU H "Analiz-temelli Sentez Yöntemleriyle Uzamsal Ses Üretimi." , ss.0 - 74, 2018.
ISNAD HACIHABİBOĞLU, Hüseyin. "Analiz-temelli Sentez Yöntemleriyle Uzamsal Ses Üretimi". (2018), 0-74.